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Alexander Polynomials as Isotopy Invariants, I

By Shin’ichi KINOSHITA

Introduction

As an isotopy invariant J. W. Alexander [1] introduced polynomials
of knots, so-called the Alexander polynomials A (#) of knots. Recently
R. H. Fox generalized this notion to the case of links and the polynomials
A(t,, -, t,) of links with multiplicity » are called again the Alexander
polynomials of links. The relation between the Alexander polynomials
A(¢) and A(t,, -+, %,) to the groups of knots and links, i. e. the funda-
mental groups of the complementary domain of knots and links, is studied
by R. H. Fox [3][4] by the use of his free differential calculus.

The notion of the Alexander polynomials is naturally extended to
the more general cases. But the way of the extension does not seem
to be unique in the method and in the subject. In this paper we shall
treat the case of n-dimensional cycles K"(n=>1) with integral coefficients
in the (#+2)-dimensional sphere S"*>. Of course we shall study them
from the semi-linear stand point of view.

In §1 we define the Alexander polynomials of K" in S"** by the
use of free differential calculus. It should be remarked that according
to R. H. Fox [4] not only one Alexander polynomial but the sequences
of the Alexander polynomials are defined. In fact we have two sequences
of the Alexander polynomials i.e. A(¢, .- ,¢,) and A(#). In §2 we
give a presentation of the fundamental group of S$"**—|K”|” and from
this we are led to the Alexander polynomials. In §3 a theorem of
A® (¢t - t,) is proved, which is similar to that of G. Torres [7] for
the case of links. In §4 we treat briefly the general cases of theorems
of E. Artin [2] and H. Seifert [6]. In §5 we shall give an example of
a linear graph, which will seem to be of interest to some readers.

§1

1. Let K" be an zn-dimensional complex with integral coeffecients
in the (#+2)-dimensional sphere S"**(x=1). Further suppose that K" is

1) K" is a complex with integral coefficients and |K"| is a polyhedron,
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a cycle. Of course the fundamental group F(S"'*—|K"|) is an isotopy
invariant of K" in S™*%.

Now suppose that |K"| consists of # components |[K%l,---,|Kzl.
Let g be an element of F(S""—|K"|) and g a closed path which repr-
sents g. Put

(1) A; = Link (g, K%)®. (J=1-,p)
Then A; is an integer and independent of the choice of g.
Let Z; be an infinite cyclic group (j=1,---, %) and #; a generator
of Z,. Put
Z”. = I;=1 Zj .

Further if we put
P(g) =t -+ thw

for every geF(S""?—|K"|), then @ is a homomorphism of F(S"**—|K"|)

into Z*. Let {g,, &, -, g} be a set of generators of F(S"**—|K"|) and

{R,, -+, Rg} be a set of relators. Further let X be a free group of @+1

generators. Then there exists a homomorphism Jr of X onto F(S""*—|K"|).
Using the Fox’s free differential calculus [37] [4], we put

v=(g)"
8
The matrix M is the so-called Alexander matrix and its elements are
polynomials of £, -+, £,.

Now let d be an arbitrary integer. The greatest common factor
AD(t ... t) of the minor determinats of M of order (@+1)—d, where
a+1 is the number of columns of M, is called the d-th Alexander poly-
nomial. Of course A@(¢,,.--,%,) is determined only up to a factor
+#1--- £, . It should be understood that A“(¢, ..., ¢)=1 for d=a+1
and that AD(¢, ..., £)=0 if M has fewer than («¢+1)—d rows. If the

group F(S""*—|K"|) and o is fixed, then the sequence A“(f, ---,t,)
(d=0, 1, --+) is their invariant®. Therefore we have the following

Theorem 1. The sequence A(t,,---, 1) is an isotopy invariant of
K” in S**,
2. Let Z be an infinite cyclic group and ¢ a generator of Z. If we
put
A= (g, K7),
instead of (1), and put

2) Link (g, K;*) is the linking number of g and K"
3) See R. H. Fox [4].
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P'(g) =1t
for every ge F(S""*— |K"|), then we have another homomorphism ¢’ of
F(S"*—|K"|) into Z. From this in the same way we have the Alexander

matrix
'y
M/ — (gR' )4’
&
and also a sequence A“(f) of the Alexander polynomials. Of course A“’(¢)
is determined only up to a factor +#. Just as Theorem 1 we have

Theorem 2. The sequence of the Alexander polynomials A (f) is an
isotopy invariant of K" in S™*

ReEmArRk. If |K™| is connected, then two sequences of the Alexander
polynomials are the same.

§2.

1. Let K" (r=1) be an n-dimensional cycle with integral coeffi-
cients in S™". Then we may suppose that K” is contained in the
(n+2)-dimensional Euclidean space E*'% Further we may assume that
vertices of K” are linearly independent, i.e., if A4,, 4,, -, A,,, are n+3
vertices of K", then they are not cotained in a (#+1)-dimensional hyper-
plane of E"*2. Then there is a projection p of K” into an (z-+1)-dimen-
sional hyperplane E"*' such that if A, ---, A,., are vertices of K", then
p(Ay), -+ ,p(A,.) are linearly independent in E”*'. The projection of
this kind will be called a regular projection of K".

E™—p(|K"|) is decomposed in regions. We put

E™'—p(|K") =G,V G,V -V G,.

Let B,€G,, B, €G,, - ,B,€G,. Further let P and @ be two points satis-
fying the following conditions :
(1) P and Q are contained in the different components of E""*—E"",

(2) (PB;VYB,.Q)~ Kr=0 forevery i (=0, 1, -, @)
Convensionally we may suppose that
E™ = (x,, X1y, 0),
P =, ---,0, 1),
Q =(, ---,0, —1).
2. Now we put

gi':ﬁiuB—x_'QUQ‘B_OUBO—uP' (i=0’1"",a)

4) Ki={yly€xp(), r€ K"}
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Then g; is a simple closed curve in S*"?2— |K"|. Let g; be the element
of F(E™*—|K™|) such that g; represents g;. Then it is easy to see that
o, 81, '+ , 84 generate F(E"*—|K"|). By definition g,=1.

Let s, and s, be a pair of open n-dimensional simplices of K" such
that p(s,) A D(sp)==0. Then L=p(s,) A p(s,) is an (n—1)-dimensional
open disk. Put

Lot = {x|p7" ()N K"| —(s,Yss)) = 0, x €L} .

Then L—L2* is at most (#—2)-dimensional. Let L3, ---, L% be compo-
nents of L+, Then each L{P(k=1, -, N) is the boundary of at most
four regions. Let G,, G,, G,, G, be these four regions, where it may
occur that some of them

coincide. The position of G,,

G,, G,, G, may be supposed

Gy Gu as follows: Let s, be the
under simplex with regards to

o /i L? and s, the over one. Of
“ab i p(Sp)  course we consider only a suf-
/ kot ficiently small neighborhood of

L?. Suppose that the normal
vectors of p(s,) with sufficien-
tly small absolute value are
p(Sa) contained in G, and G,. As-
Fig. 1 sume that G, and G, have an
n-dimensional common boun-
dary and that G, and G, have an n-dimensional common boundary in a
sufficiently small neighborhood of L%.
Then it is easy to see that for each LY we have a relation

g.85'¢8. =1 (LY)
It is easy to see that a presentation of F(E""*--|K™"|) is given as follows :

Generators. oy &> 5 8-

g-87'gg. =1, (LP)

Relalions.

This is a kind of so-called over presentations.
3. Now we construct the Alexander matrix of the over presentation
of F(E™?—|K"|). Suppose that s, € |K%| and s,€ | K%|, where |K%| and
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| K?| are components of |K"|. Suppose further that coefficients of s,
and s, of K" are B, and B, respectively.

First we suppose that the normal vectors of p(s,) with sufficiently
small absolute value are contained in G, and G, in a sufficiently small
neighborhood of Ly. If

P(gy) =13t - Ly - B35 - f:ln ,
then

P(g,) =1t - t$y+5a L tﬁ”‘ ,
P(g,) =1 -+ v Pa oo o oe fhu,
P(g) =t - thy - 1387 Po oo fhu

Put R¥=g,g:'g:g.". Then

o w
<8E,R ¥
o
2R
8.

Q

3

ey
b> = (- &85 1)¢:_t§b
) (grgs 1)¢= tgb

2 pa

9g;
)

og.

(e,

Secondly we suppose that the normal vectors of s, with sufficiently
small absolute value are contained in G, and G, in a sufficiently small
neighborhood of L$*. If

ab> =(—g,g87'8:8.") =—1.

P(g) =11 - By - £hs - Ehe,

then
P(gy) = 1 -+ B Pe e £l5 o Lhu,
P(g,) =t - By Pa e Pho*Po oo fhu
P(gy) = 11 - By - Bg*Po oos 20,
Then
] oy
(9g,R‘:b> =1,
] 2]
(agsR:b) = ( grgs ) = —'ts By
o ey
<—9—&sz> (8710 = t;P
() (47
<aguRZb) = ( g’gs_lgtgu 1)¢_ —1
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§3.

Let K” be an xn-dimensional cycle with integral coefficients in S™*%.
Let M be the Alexander matrix obtained from the over presentation
(in §2) of F(S**—|K™|). Further let o(g,)=#% - v (i=0, -, @). Put
G, G,-G, -G,

1 00 - 0>
E, £ o £ . E,
Then 319.,&,=0. Further it is easy to see that

SV ot fyinE =0,

=

Hence
Teo (B Bin—1)E, =0
Then
<1 06.0 ........................ O)s)
£, £ g‘j... E () oo thu—1) - &,
. 1 0 6 B T 0 >
CONE, BB E (e 1) - &,
Now put
1 000
M, = ( A > .
Eo gl...fi...f‘”
Let A, (¢, -+ ,t.,) be the greatest common factor of determinants of order

a« of M,. If £} #)is—1=0, then all the determinants of order & of
M, are equal to 0. From now on we consider the terms # - ¢yix—1==0.
Then (£} - t)/u—1) divides A (¢, -, 1) (B - £w—1) for k=1, -, p
and therefore it must divide A, ,%,) 6(¢, -, %), where 6(¢,, -+, t,)
is the greatest common factor of £ - fyiu—1, -, £% --- £i%—1. But it
is easy to see that

A AS

B hu—l B ha—1

(k=1) ya)

A,S

b1 a1

Then the common value of (=1, -, ) is AD(t, -, t.).

Therefore

5) In the proof we use the notation E mening delation of &,
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(87 -+ thin—1)
B(tu 7tu)
It K" is an orientable manifold with multipicity #=1, then 8 ()=
{—1. If K" is that with #=2, then 8(¢, --, 1) = 1.

Theorem 3.° A (¢, -, t,)=AD(, -, 1)

J

§4.
Let E"*? be the subset of E"** such that (x,, -, x,.,) €E"" if and
only if x,.,>0. Let K” be an n-dimensional complex in E%*? and K"

be the (#+1)-dimensional complex in E”* obtained from K" by the
rotation about the axis x,,,—0 in E"". Then we have the following

Theorem 4. F(E""*—|K"|) is isomorphic to F(E""— |K"™|).

This theorem was proved by E. Artin [2] for z=1. The proof for
arbitrary n will be done similarly.

If K" is a cycle with integral coefficients, then K""* is also a cycle
with the same one. Clearly we have

Theorem 5. A“(t, -, t,) and A(t) of K" in E%'® are equal to
that of K" in E™*°, respectively.

Let f(#) be a pclynomial satisfying the following conditions :

(1) [f@Q)]=1,

(2) The coefficients of f(f) are symmetric.
Then it was proved by H. Seifert [6] that there exists a knot whose
Alexander polynomial A™(#) is equal to f(¢). Using Theorem 2, we can
see the following

Theorem 6. Let f(t) be a polynomial satisfying the following con-
ditions :

(1) 1f| =1,

(2) The coefficients of f(t) are symmetric.
Then there exists a connected n—dimensional manifold in E**, whose Alex-
ander polynomial A™(t) is equal to f(¢).

Further by a remark of E. Artin [2] a connected manifold can be
replaced by S™.

Recently the above Seifert’s theorem is extended to the case of links
by F. Hosokawa [5]. Of course his theorem can be generalized along
the same way.

6) By the same way it can be proved that

4= st
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§5.

Let K, be a linear graph
as shown in Fig. 2, where two
simple arc from A to B have the
coefficients 1 and other one simple
arc from B to A has the coefficient
2. Then the presentation of F(S*—
|K,|) is as follows:

Fig. 2

Generators. 8oy &1y, 81
Relations. go=1 g.g5'8g:'=1,
8:83'8:85' =1, £8:'gg7 =1,
g8a'gg7 =1, ggi'qgs'=1.
The homomorphism @ maps g,—1, g,—t™, g&—1, &—1t, g~ g&—1,
g—1t', g —1. Therefore the Alexander matrix is given by the following
one:

& & & & & & & &
1 0 0 0 0 0 0 0
-1 0 0 0 1 —¢ t 0
0 0 t —t 1 -1 0 0
-t 1 0 0 0 0 it =1
0 ttt =t 0 0 0 1 -1
—t* # 0 -1 1 0 0 0

From this it follows that

AD(f) = f—t+1.
On the other hand if K, is a trivial é-curve (as shown in Fig. 3), then
AD(H=1.

Therefore K, and K, are not isotopic. It
should be remarked that three simple closed
curves constructed from K, are trivial knots.

(Received September 29, 1958)
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