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Some Properties of (n— \)-Manifolds in the Euclidean n-Space

By Junzo TAO

S. S. Cairns showed that any polyhedral m-manifold in normal
position in some Euclidean space may have an analytic approximation
and some conditions are sufficient for a polyhedral m-manifold to be in
normal position in some Euclidean space [2]υ and that especially for
m<L4 any polyhedral m-manifold may have such a subdivision that it
is imbedded rectilinearly in normal position in some Euclidean space
and therefore any polyhedral m-manifold (m <4) has an analytic structure
[3]. It is an open question10 whether or not any polyhedral manifold
may be suitably subdivided and imbedded rectilinearly in normal posi-
tion in some Euclidean space and may have an analytic structure in
this way.

In the first part of this paper we shall show, along the same line
as S. S. Cairns, a condition that a polyhedral (n — l)-manifold in the
Euclidean w-space is in normal position and therefore has an analytic
structure. It is easily shown by examples that a polyhedral (»—!)-
manifold Pn~l is not always in normal position in the Euclidean w-space
even if Pn~1 is a Brouwer manifold, that is, a manifold in which the
star of any vertex of Pn~l is imbedded rectilinearly in the Euclidean
(w-l)-space.

In the second part of this paper we shall define the curvatura integra
for a polyhedral (n—l)-manifold Pn~l in regular position in the Euclidean
w-space Rn and show that it remains unaltered during an isotopic de-
formation of P"-1 in Rn.

The author wishes to express his hearty thanks to Prof. H. Terasaka
and Mr. H. Noguchi for their constant encouragement and advices during
the preparation of this paper.

1) The number in bracket indicates the number in the references.
2) After the preparation of this paper, I had an opportunity to notice the mimeographed

note by J. Milnor [5] in which it was shown that R. Thorn [6] constructed a polyhedral closed
8-manifold having no subdivision which is imbedded rectilinearly in normal position in any
Euclidean space.
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1. Differentiable appoximations of (n—1) -manifolds in the
Euclidean n-space.

Let S be a set of points in the Euclidean w-space Rn. A &-plane
Hk (&;>!) in Rn will be called transversal to S if there exists a positive
number 8 such that the straight line through any two points of S makes
an angle greater than 8 with Ήk. A &-plane Hk(p) (&;>!) through a
point p of S will be called transversal to S at p if Hk(p) is transversal
to some neighborhood p on S.

Let Mm be a topological m-manifold in the Euclidean w-space Rn.
We shall say that Mm is in normal position in Rn if it is possible to
define through each point p of Mn an (n—m)-plane Hn'm(p) which varies
continuously with p and is transversal to Mm at p.

Under a polyhedral m-manifold Pm we shall mean a locally finite
simplicial complex in some Euclidean space with the condition that every
vertex of Pm is an inner point of its star on Pm which is a complex
whose underlying space is homeomorphic to the m-simplex, that is,
combinatorially equivalent to the m-simplex. (An equivalent condition
would be that the link of every /-simplex, Q <*j <^m, should be com-
binatorially equivalent to the boundary of the (m—./)-simplex.)

Let Pm be a polyhedral m-manifold in the Euclidean n-space Rn.
We shall say that Pm is locally in normal position in Rn if the star of
every vertex on Pm is in normal position in Rn 3). Then we shall obtain
the following

Theorem 1. Every polyhedral (n—\)-manifold Pn~l locally in normal
position in the Euclidean n-space Rn is in normal position in Rn.

Before we proceed to the proof of the theorem we shall prove some
lemmas.

Lemma 1. Let p be a point of Pn~l and let St(p) be the star of p
on Pn~\ Then a straight line H(p] through p is transversal to St(p) if
and only if H(p) is transversal to Pn~l at p.

Proof. Let U(p) be a neighborhood of p on Pn~l which is contained
in St(p). If H(p) is transversal to St(p)y then H(p) is transversal to
U(p). Therefore H(p) is transversal to P""1 at p.

Conversely if H(p) is not transversal to St(p), then there exist two

3) According to S. S. Cairns Q2], a Brouwer manifold in general position in some Eucli-
dean space Rn, that is, a Brouwer manifold such that the vertices on the star of its any
simplex are linearly independent in Rn, is locally in normal position in R". But as shown
already in 2), a polyhedral manifold locally in normal position is not always in normal position.
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points q and r in St(p) which determine a straight line H(q, r) parallel
to H(p). If one of q and r is p, then H(q, r) coincides with H(p) and
has a common point except for p with any neighborhood of p in Pn~l.
Therefore H(p) is not transversal to Pn~l at p.

If q and r are different from p, then the line-segments /># and pry

which are determined by the points p and q and the points p and r
respectively, are contained in St(p). For any neighborhood U(p) of p on

P"'1, all the points of pq and pr sufficiently near to p are contained in
U(p). Therefore there exist two points q' and r' in U(p) which belong

to pq and pr respectively and determine a straight line parallel to H(q, r).
Thus H(p) is not transversal to Pn~l at p and the lemma is proved.

Lemma 2. Let p be a point of Pn~\ let St(p) be the star of p on
Pn~l and let H(p) be a straight line through p transversal to Pn~l at p.
Then the straight line H(q) through an inner point q of St(p] and parallel
to H(p) is transversal to Pn~l at q.

Proof. If we choose a neighborhood U(q) of q on Pn~l which is
contained in St(p], then a straight line transversal to St(p) is transversal
to U(q). Since H(p) is, according to Lemma 1, transversal to St(p), H(p)
is also transversal to U(q). Thus the lemma is proved.

Lemma 3. The totality of the straight lines transversal to Pn~l at a
point p of Pn~l is, whenever there exists such a line, homeomorphic to an
open (n—I)-eelI.

Proof. According to Lemma 1 we are only to prove that the
totality of the straight lines through p and transversal to the star St(p)
of p on Pn~l is homeomorphic to an open (n- l)-cell.

First consider the case that St(p) is composed of a single («—!)-
simplex s*~\ Then we choose affine coordinates (#ι ••-,#„) in Rn such
that Xi = ••• =xn — 0 at p and xn = 0 on the («—1)-plane determined by
sn~l. Then a straight line through p is transversal to St(p) if and only
if it is through a point (x 1 •••, xn_ly xn^>0). It is easy to see that the
totality of the straight lines through p and a point ( x 1 9 ••• ,xn-ι, *w>0)
is, regarding as a subset of the projective (n—1)-space composed of all
the straight lines through p, is homeomorphic to an open (n—l)-cell.

Secondly consider the case that St(p) is composed of two (n—1)-
simplexes sϊ"1 and s Γ1. Then the following two cases are possible:

(1) Sι~l and s^"1 are parallel. In this case the situation is the same
as above.

(2) s1~l and sT1 are not parallel. We choose affine coordinates
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(#ι> > x n) in Rn such that x^= ... =xn = Q at p and ^M_1 = 0, #w;>0 on
sϊ~l and #w = 0, J^.^O on s^1. Then it is easy to see that the
totality of the straight lines through p and transversal to St(p) is the
totality of the straight lines which are determined by p and a point
(#ι > ••• > #*-2> *«-ιI>0, #„]>()). It is homeomorphic to an open (« — l)-cell.

Finally consider the case that St(p) is composed of (n — l)-simplexes
sΐ~l, — ,sΓl (fe^3) where sΓ1 and s?ΐ} (ί = l, — ,fe) 4 > have a common
(w— 2) -simplex. According to the second case, a transversal line to
5?~1V75?7i is a straight line through ^> and a point of the intersection
of an open half space5) determined by s?"1 and that determined by s^\.

It may be easily proved that for a straight line H through any two
points of St(p) either there exists an w-simplex s™~1 parallel to H or
there exist two points q and r on sni~λ and snil\ respectively for some /
determining a straight line parallel to H.

From this fact we may show that a straight line H(p) through p
is transversal to S if and only if H(p) is through some point of

k
f\K(s™~1) where Kis^1) is an open half space of the (n — l)-plane deter -
i=l

mined by s™'1. The totality of the above mentioned line, if any, is an
open (n— l)-cell. Thus the lemma is proved.

Proof of Theorem 1. Let 8 be a positive constant less than — .

Let sj be any ./-simplex of P"'1 and let sn~l be any (n — l)-simplex of
Pn~l which belongs to the star of sj on Pn~\ We choose barycentric
coordinates (MO> ^i > •• ,^w_1) on s"'1 such that uj+1= ••• =un _! = 0 on sj.
Let Nsn-ι(sj) be the set of points whose barycentric coordinates (w 0, ••• ,
w«-ι) satisfy the following inequalities :

We shall define N(sJ) by

where St(sJ) is the star of s* on Pn~\
As St (sj) is a combinatorial (n— l)-cell, N(sJ') is also a combinatorial

(H— l)-cell and its boundary is a combinatorial (n— 2)-sphere. Thus

4) k+1 is regarded as 1.
5) If affine coordinates (*!,-•-,#„) in R" are chosen such that xn=Q on an (w-l)-plane

Kn~l (an (w-l)-simplex s""1), then the open half space determined by KM~1(sM~1) is the set
of points (#!, •••, xn-ί, *«>0) or the set of points (^i, ••• ,^«-ι,
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Pn~l is covered by these closed (n—1) -dimensional regions which are dis-
joint from each other except eventually for common faces.

We shall define transversal lines on N(sj) step by step by induction
on the dimension of the simplexes of Pn~l.

The initial step of induction is to define transversal lines on N(s°)
of every vertex s° of Pn~\ According to the hypothesis of the theorem,
we may define a straight line H(s°) which passes through s° and is
transversal to the star of s° at s°. Let p be any point of N(s°) and let
H(p) be the straight line through p and parallel to H(s°).

According to Lemma 2, H(p) is transversal to Pn~l at p. Then we
define a transversal line H(p) through p on N(s°) by the requirement

H(p)\\H(s°).

If transversal lines H(p) are defined on every N(sk) (&<j)> the
general step of induction is to extend the definition of H(p) over N(sj)
where sj is any /-simplex of Pn~l.

Let tj be the set of points where all the barycentric coordinates for
sj exceed £. Then H(p) is already defined on the closure of s' — tj by
the hypothesis of induction.

First we shall extend the definition of H(p) over tj. According to
Lemma 3 a straight line H(p) through an inner point p of the star of
sj is transversal to Pn~l at p if only if the straight line through the
origin 0 of Rn and parallel to H(p), regarded as an element of the pro-
jective (n— l)-space composed of all the lines through O, falls into an
open (n— l)-cell D(tj). Thus we obtain a mapping65 φ of the boundary
of tj into D(tj). As D(tj) is an open (n— l)-cell, we may extend φ to
the mapping from tj into D(tj). Thus H(p) is defined on tj.

Next we shall define H(p) over the other part of N(sJ). Let s"'1

be an (« — l)-simplex in the star of sj on Pn~l. Let tn~l be the set of
points where all the barycentric coordinates exceed 8. Let t'J be the
bounding simplex of tn~l parallel to tj. Let t"n~j~2 be the bounding
simplex of tn~l opposite to t'J. Consider any point q on tj and denote
by B^n-ϊl(q) the intersection of Nsn^(sj) with the (n— j— l)-plane deter-
mined by q and f'n~3~2 and define Bn~J~l(q) as follows:

where St(sj) is the star of sj on Pn~\

6) We shall always denote a mapping as "a continuous mapping
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As q ranges over tj\ the set Bn~j~I(q) fills out N(sj) in a one-to-one
continuous way. If now q is any point of tj and p is any point of
Bn~j~l(q), then H(p) will mean the straight line through p parallel to
H(q). According to Lemma 2, H(p) is transversal to P"'1 at p. Thus
the definition of H(p) on N(sj) is completed, and the theorem is proved.

Let Mm be a topological m-manifold in some Euclidean space Rn

and let £ be a given positive number. A differentiable m-manifold Vm

in R"Ό is said to be an ^-approximation of Mm in Rn

y if yw is home-
omorphic to Mm and the distance of the corresponding points of this
homeomorphism is less than £. If a polyhedral m-manifold Pm is in
normal position in some Euclidean space Rn

y there exists, according to
S. S. Cairns [2], an analytic manifold in Rn which is an ^-approximation
of Pm in Rn. Therefore we obtain the following

Theorem 2. Under the same conditions as Theorem 1, there exists,
for any given positive number £, an analytic manifold in Rn which is an
^-approximation of Pn'1 in Rn.

Next we shall say that a topological m-manifold in the Euclidean
w-space Rn is in regular position in Rn if there exist unit vectors
Vι(p) , ••• , vn_m(p) through every point p of Mm such that v,(p) , ••• , vn_m(p)
vary continuously with p and that the (n—m) -plane spanned by these
vectors is tranversal to Mm at p.

Let Mm be a compact w-manifold in regular position in Rn and let
£ be a given positive number. Then Mm may be imbedded, according
to H. Whitney [8], in a (n—m) -parameter family of manifolds
Mft, ••• , tn_m), | f , |<O (i = l, ••• , n—m), with the following conditions:

(1) M(0,-,0)=M.

(2) Mft, - , *„_ J is analytic if ft , - , tn_ J Φ (0 , - , 0) .

(3) Each manifold Mft, ••-, tn_m) is an ^-approximation of Mm in
ί?M.

(4) If p*=Z(p /,, - , tn_m) is the point of Mft , - , ί^J corre-
sponding to the point of Mm, Z is a continuous function of
its arguments, and the points />* fill out an open set J? con-
taining M in a one-to-one way hence no two of the manifolds
intersect. The point p* for p fixed fill out a portion of an
(n-m)-plane Hn~m(p) through p.

Theorem 3. Let P"'1 be a compact polyhedral (n — V)-manifold locally

7) For the definition of a "differentiable manifold in Rn ", see H. Whitney [7].
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in normal position in the Euclidean n-space Rn and let £ be any given
positive number. Then Pn~l may be imbedded in a one parameter family
of manifold M(t) ( |ί |<^l) which satisfy the above conditions (l)-(4).

Proof. According to Theorem 1, Pn~1 is in normal position in Rn.
Therefore there exists, through every point p of Pn'\ a straight line
H(p) transversal to Pn~l at p which varies continuously with p. It is
well known that every («— 1) -manifold in the Euclidean ^-space Rn is
orientable and divides Rn into two domains A and D2.

To show that Pn~l is in regular position in Rn, we are only to
orient the straight line H(p) at any point p of Pn~l from D1 to D2.

2. Curvatura integra and isotopy of (n — ΐ) -manifolds in the
Euclidean n-space.

Let Pn~l be a compact polyhedral (n- l)-manifold in regular position
in the Euclidean w-space Rn. Then we may define through every point
p of Pn~l a unit vector v(p) which varies continuously with p and trans-
versal to Pn~l at p. Making correspond the point p to v(p), we shall
obtain a mapping φ of Pn~^ into the unit sphere of Rn. As Pn~l is
orientable, we may define the degree of φ. Then we obtain the
following

Lemma 4. Under the above conditions, the degree of φ is independent
of v(p] defined on Pn~l provided that v(p) varies continuously with p and
is transversal to Pn~l at p.

Proof. Let v(p] and w(p) be transversal unit vectors on Pn l and
let φ and ψ be the mappings of Pn~l to the unit sphere Sn~l of Rn

defined by v(p) and w(p) respectively. To prove the lemma, we shall
show that there exists a mapping Φ(py t) of Pn~lxl^ into Sn~1 such that
φ(p)=Φ(p,Q), ψ(p)—φ(p,l) and the unit vector vt(p) through p and

parallel to the unit vector O Φ(p, t) through the origin O of Rn is
transversal to Pn~l at p.

We shall define Φ(p, t) on Pn-1xO\JPn~1xl so that Φ(p, Q)=φ(p)
and Φ(p, l)=ψ(p). Then we extend to the other part of Pr ' * x / by
induction on the dimension of the simplexes of Pn~l.

First we shall define Φ on s°xl for every vertex of s° on Pn'\
Let T(s°) be the totality of the unit vectors transversal to Pn~l at s°.
As <p(s°) and ψ(s°) fall into T(s°) which is an open (n— l)-cell by
Lemma 3, we may extend the mapping Φ over s°xl so that Φ(p, t) falls

8) 7 is the unit interval C°»
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into T(s°), that the unit vector vt(p) through p and parallel to the unit
>

vector O Φ(p, t) through O is transversal to Pn l at p.
If Φ is defined on sk*I for every ^-simplex (k<^j) of Pn~\ then

we shall extend Φ to sj'xl for any j-simplex of Pn~\ Let T(sj) be the
totality of the unit vectors through 0 transversal to the star St(sJ) of
sj. Φ is already defined on the boundary of sjxl. If p is an element
of the boundary of s yx/, then vt(p) is transversal to Pn'λ at p. As
T(sj) is an open (n—l)-cell, we may extend the mapping Φ over sjxl

so that Φ(A t) falls into T(sJ), that is, that the unit vector through p
>

and parallel to the unit vector O Φ(p, t) through O is transversal to

Pn~l at p. Thus the lemma is proved.
Now we shall define the curυatura Integra d(Pn^1) of Pn~l in Rn as

the degree of the mapping φ.
If Mm is a differentiate m-manifold in some Euclidean space Rn,

then, according to S. S. Cairns [1], Mm may be so triangulated into
cells (σm) that the vertices of each m-cell determine a non singular
m-simplex and that the totality of simplexes so determined is a poly-
hedral manifold Pm homeomorphic to Mm in such a way that the cor-
responding m-cells have identical vertices and that the tangent m-plane
to Mm at any point of a cell σm of (σm) differs arbitrarily small in its
direction from the m-plane determined by the simplex corresponding to
σm. We shall call Pm a Cairns' approximation of Mm in Rn.

Now let p and q be the corresponding points on Pm and Mm respec-
tively. If H(p) is the straight line through p parallel to the normal line
to Mm at q and Pm is a sufficiently close approximation of Mm, then
H(p) is, according to S. S. Cairns [2], transversal to Pm as required by
the definition of normal lines. Therefore we obtain the following

Theorem 4. If Mn~l is a compact differentiable manifold in the
Euclidean n-space Rn, then the usual curυatura integra of M"~l in Rn

coincides with the curυatura integra of a polyhedral (n — \)-manifold which
is a Cairns' approximation sufficiently close to Mn"λ in Rn.

Let Pm and Qm be a polyhedral m-manifolds in some Euclidean
space Rn. Then we shall say that Pm and Qm are congruent (or isotopic)
in Rn, if there exists an orientation preserving semi-linear homeomor-
phism ψ of Rn which satisfies ψ(Pm)=Qm. Then there exists, according
to V. K. A. M. Gugenheim [4], a semi-linear homeomorphism Φ(p, t)
= (Φί(ί)> t) of P w x/ into Rnxl such that φt(p) is a semi-linear home-
omorphism of Pm into Rn and that φ0(Pm)=Pm and ^(Pm)=Qm. Then
we shall obtain the following
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Theorem 5. If Pn~l and Qn~l are compact polyhedral (n— ^-mani-

folds in regular position in the Euclidean n-space Rn, then d(Pn~l) = d(Qn~1).

Proof. Let Mn~l(t) be an analytic approximation lying in the outer
part9) of P*"1 which is defined in Theorem 3 for some fixed /ΦO. Let
P/n~l be a Cairns' approximation of Mn~l(t) that is contained in #10) but
does not intersect Pn~\

If H(p) is a transversal line through every point p of Pn~l which is
defined in the condition (4) of Theorem 3, then H(p) intersects Pfn l

only at one point. It is easily shown that there exists a conguence Tr

between Pn~l and P/n~l by which every point p of Pn~l corresponds to
the point H(p)f\P'n-\

In the same way as Pn~\ we shall define a polyhedral (n— l)-mani-
fold Q'n~l such that it is in the neighborhood of Qn~1 and is lying in
the outer part of Qn~l and a transversal line H'(q) through every point
q of Qn~l intersects Qfn~l only at one point. Let T" be a congruence
between Q*"1 and Q'n~l by which every point q of Qn~l correspond to

Let T be a conguence between Pn l ank Q""1 and let p be any

point of Pn~\ Making correspond every line-segment p.T'(p) to the line-

segment T(p) T"(T(p))y we obtain a semi -linear isomorphism between

the polyhedron P= \J P T'(p) and the polyhedron Q= \J q T"(q)
pζpn-i peo"-ι

which is easily extended to a congruence F between P and Q.
Corresponding to T and F, we get a semi-linear homeomorphism

V(p9 t) = (φt(p), t) and Φ(p,u, t) = (χt(p,u), t) of P^x/ and Px/=P
x / x / into Rnxl respectively such that φ0(Pn~l) =P"-\ Φ1(P"~l)=Qn~1>

τr0(P) — P, τr1(P)=Q and φt(p) and πt(p> u) are semi-linear homeomor-

phisms of Pn~l and P into Rn respectively.
Making correspond to every point p of φt(Pn~l) a vector vt(p)

defined by πt(py 0) πt(p, 1), we obtain a vector field {vt(p)} on
pn

c-
l = φt(Pn~1). Then we obtain a mapping <pt of PΓ1 into the unit

sphere of Rn by the help of this vector field. As φt(p) and πt(p9 u)
vary continuously with their arguments and t, the degree of mapping
φt remains unaltered when t varies from 0 to 1. Since the degree of
<P0 and the degree of <pλ coincide with d(Pn~l) and d(Qn~l) respectively,
the theorem is thus proved.

9) P" λ divides Rn into two domains. One of the closures of these domains is compact
and the other is not compact. By the "outer part" of pn~l we shall mean the domain whose
closure is not compact.

10) For the definition of R, see the condition (4) of Theorem 3.
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Since a Cairns' approximation of Mn~l(t) sufficiently near to it is
isotopic to Pn~\ we obtain from Theorem 4 and 5 the following

Corollary. If Pn~l is a compact polyhedral (n—1)-manifold in regular
position in Rn and if Mn~1(t) is the manifoΓd defined in Theorem 3, then
the usual curvatura integra of Mn~l(t) UΦO) in Rn is equal to the cur-
vatura integra of Pn~l in Rn.

(Received April 5, 1958)
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