Supplement to my Paper "The Theory of Construction of Finite Semigroups II"

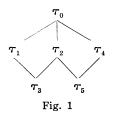
By Takayuki TAMURA

When a finite semilattice $T = \{\tau_0, \tau_1, \dots, \tau_{n-1}\}$ and a system of finite semigroups S_{τ} ($\tau \in T$) are arbitrarily given, there exists a composition Sof S_{τ} by T. (See [1], 3 or §8, p. 30) Let τ_{n-1} be a minimal element of T, and we may regard T as a composition of a semilattice $T_0 = \{\tau_0, \dots, \tau_{n-2}\}$ and $\{\tau_{n-1}\}$ i.e. $T = (T_0, \gamma, \tau_{n-1})$. (cf. [1] §8, p. 28) We use the successive method in construction of S. More precisely, the composition of S_{τ} ($\tau \in T$) by T is constructed as a composition $S_0 = \sum_{\tau \in T_0} S_{\tau}$ and $S_{\tau_{n-1}}$. (cf. Theorem 24 in [1]) The following problem was proposed as an unsolved one in the previous paper [1], 3 of §8.

Can we adopt as S_0 an arbitrary composition of S_{τ} ($\tau \in T_0$) by T_0 when we construct S? This means a question whether there are Φ_0 ($\subset \Phi$) and Ψ_0 ($\subset \Psi$) fulfilling (8.4.1), (8.4.2) and (8.4.3) for any composition S_0 of S_{τ} by T_0 .

In the present short note, this question is denied, giving a simple counter example in the following manner.

Let $T = (T_0, \gamma, \tau_5) = \{\tau_i; 0 \le i \le 5\}$ be a semilattice of order 6 with multiplication defined by the following diagram.



where $T_0 = \{\tau_i; 0 \leq i \leq 4\}$ and $\gamma = \begin{pmatrix} \tau_0 & \tau_1 & \tau_2 & \tau_3 & \tau_4 \\ \tau_0 & \tau_0 & \tau_2 & \tau_2 & \tau_4 \end{pmatrix}$.

 S_{τ_i} (0 $\leq i \leq 5$) are defined as

$$egin{array}{lll} S_{ au_0} = \{a,\ b\} & ext{with} & a^2 = ba = a \ , & ba = b^2 = b \ , \ S_{ au_1} = \{c\} \ , & S_{ au_2} = \{d\} \ , & S_{ au_3} = \{e\} \ , & S_{ au_4} = \{f\} \ , & S_{ au_5} = \{g\} \ . \end{array}$$

T. TAMURA

Let σ be the mapping $\begin{pmatrix} a & b & c & d & e & f & g \\ \tau_0 & \tau_0 & \tau_1 & \tau_2 & \tau_3 & \tau_4 & \tau_5 \end{pmatrix}$. Consider a composition S_0 of S_{τ_i} ($0 \leq i \leq 4$) by T_0 with the following multiplication.

	a	b	С	d	e	f
a	a	b	b	b	a	a
b	a	b	b	b	b	a
С	a	b	С	b	С	a
d	a	b	b	d	d	а
e	a	b	С	d	e	a
f	a a a a a	b	b	b	a	f

Since $S_0' = \{a, b, c, d, e\}$ was obtained as 1079_5 in [2] and S_0 is a composition of S_0' and $\{f\}$, S_0 is seen to be a semigroup by testing the conditions of $\S1$ in $\lceil 1 \rceil$.

In order to get a composition S of S_0 and $\{g\}$ such that S is a composition of S_{τ_i} $(0 \leq i \leq 5)$ by T, we must find a right translation φ of S_0 such that $\sigma \varphi = \gamma \sigma$ i.e.

> $\varphi(a), \varphi(b), \text{ and } \varphi(c) \text{ are } a \text{ or } b,$ $\varphi(d) = \varphi(e) = d, \quad \varphi(f) = f.$

To tell the truth, there is no such φ . Because, if there is a right translation φ , then

$$\varphi(a) = \varphi(af) = a\varphi(f) = af = a ,$$

while
$$\varphi(a) = \varphi(ae) = a\varphi(e) = ad = b .$$

w

Consequently there is no composition S of S_0 and $\{g\}$ which is, at the same time, a composition of S_{τ_i} ($0 \leq i \leq 5$) by T.

As seen in [2], any semilattice of order at most 5 is either a lattice or a semilattice having a minimal element τ_4 which is covered by only one element; and hence, for the minimal element τ_4 , the question is affirmed. Furthermore, if T is a semilattice of order 6 except one having the tyne of Fig. 1, then the question is affirmed for a suitable minimal element. For, we obtain easily that a semilattice of order 6, whose every minimal element is covered by two elements at least, is nothing but a semilattice having the type of Fig. 1.

We notice, however, that there is a minimal element for which the question is denied even if T is of order 5.

For example, let S_0 be a semigroup with multiplication

236

which is a composition of $S_{\tau_0} = \{a, b\}$, $S_{\tau_1} = \{c\}$, $S_{\tau_2} = \{d\}$, and $S_{\tau_3} = \{e\}$ by the semilattice T_0 :

Let T be a semilattice with diagram

There is no composition of S_0 and $S_{\tau_4} = \{f\}$ which is a composition of S_{τ_i} ($0 \leq i \leq 4$) by T at the same time. Because we find no right translation φ of S_0 which satisfies

$$\varphi(c) = a \text{ or } b, \quad \varphi(d) = d, \quad \varphi(e) = e.$$

Generally it is suggested that the nature of the question depends not only on T but also on the structure of each S_{τ} , S_0 and S_1 . We shall take up the more precise study of this problem again after the structure of finite s-indecomposable semigroups is clarified.

(Received September 25, 1957)

References

- T. TAMURA: The theory of construction of finite semigroups (Compositions of semigroups, and finite s-decomposable semigroups), Osaka Math. J. 9, 1-42 (1957).