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On the Conditions of a Stein Variety

By Takeo ASAMI

§ 1. Introduction. The purpose of this paper is to give a criterion
for a Stein variety. An analytic space 53 [1] with a countable base
is called a Stein variety, when:

1. 53 is holomorph-convex that is, a holomorphic convex hull of
any compact subset of 53 is compact. The holomorphic convex hull of
a subset K is the set of the points P satisfying \f(P) \ <Max\f(K) \ for
all functions holomorphic in 53.

2. For any two points P, Qe53(PφQ), there exists a function/
holomorphic in 53, such that f(P)=¥g(Q).

3. For any point Pe53, there exists a finite number of functions
holomorphic in 53 which imbed a neighborhood U of P in the following
way, i.e., by means of which U is represented as an analytic setυ S in
an open set of the space of complex variables of sufficiently high
dimensions such that S has the property that, for arbitrary point Pf of
S, any function holomorphic in a neighborhood of P7 is expressed as a
trace of a function of the space2).

The definition in this form is due to H. Grauert [2].
The problem of simplifying these conditions is treated by H. Grauert

[2] and R. Remmert [7]. Grauert proved that a holomorphic convex
analytic space (without the assumption of having a countable base) is
a Stein variety, if it is /f-complete. An analytic space 3ΐ is called
K-complete, if, for any point P e 3ΐ, there exist a finite number of func-
tions holomorphic in 3ΐ which map a neighborhood of P non degeneratedly
at P, i.e., the image of P in the space of complex variables has as an
inverse image in U a discrete set. Since, as Remmert remarked, K-
completeness follows immediately from the separability condition, so,
according to Grauert's result, one of the conditions (2., 3.) implies that
a holomorph-convex analytic space is a Stein variety. But a holomorph-

1) Namely the set which is locally the common zeros of a finite number of equations.
2) In this paper, we shall call for convenience the conditions 2. and 3. the separability

condition and the coordinate condition respectively.
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convex analytic space is not always a Stein variety, as a simple example
shows33.

In the present paper we shall introduce the notion of a positive
definite Levi function and derive the coordinate condition from the
existence of such a function and the holomorph-convexity. Thus we
shall prove the following Theorem :

Theorem. It is necessary and sufficient for an analytic space to be a
Stein variety that it is holomorph-convex and admits a positive definite
Levi function.

§ 2. Definition. In the following we assume an analytic space not
to be 0 dimentional unless we mention the contrary.

DEFINITION. Let φ be an upper semicontinuous4) function in an
analytic space 3Ϊ, which takes real values or — °o. We shall call φ a
positive definite Levi function, if, for any point P e 9ΐ, there exist a
neighborhood U of P and a family [σt] of characteristic surfaces in U
such that each σt is expressed by the equation f(Q9t)=0 (Q € U, 0 < t <il),
f(Q> t} being univalent and holomorphic for Q € U and continuous for t
in the interval [0, 1] and such that

1. σ0 passes through P and lies in the part φ^>φ(P), except P.
2. σt (ίφO) lies in the part

REMARK. When 91 is of 1 dimension, these conditions mean that
there exist continuous curves in U which start at P and lie in the part
φ^>φ(P), except P.

A pseudoconvex (plurisubharmonic) function with the property (PJ
which is defined in a complex analytic manifold is a positive definite
Levi function50.

§ 3. Lemma. Let φ be a positive definite Levi function in an analytic
space 3ΐ and let 31' be an analytic subspace contained in 3ΐ (31' may have
boundaries in 31). // we take the trace φ' of φ on 31', φ' is a positive
definite Levi function in 31'.

From this Lemma, it is evident that, for any analytic set A con-
tained in 91, φ cannot attain its relative maximums at inner points of

3) For example, the product space of the complex projective space and the space of
complex variables.

4) Precisely eφ upper semicontinuous.
5) "No. 13. Propriete pricipale" of Oka [4]. For the meaning of the property (Pi), see

p. 125 of Oka [5].
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A and that the set of the form φ = constant is non-dense in A. From
both facts it follows that, when A is compact and everywhere regular
in 3ϊ, A is 0 dimensional and so it is a finite point set.

Proof of the Lemma. Since the statement is obvious, if 3tr is of
the same dimension as 9ΐ, we assume that 3ΐ' is lower dimensional.
Let 31' be of n dimensions. It is sufficient to show that, for any point
Pe3ΐ', we dan determine a neighborhood [/' and a family {&/} of
characteristic surfaces satisfying the conditions in the definition. Let us
regard P as a point of 3ΐ and consider the neighborhood U and the
family {σt} of the characteristic surfaces which are already given by
the definition of φ. Roughly speaking, it will be shown that U' and σ-/
will be obtained as the section on U and σt by 3ΐ' respectively.

In fact, take from the intersection U and 31' an irreducible component
passing through P and denote it U'. As easily seen from the definition
of an analytic space, we can represent Uf as zeros of an irreducible
pseudopolynomial f ( x , jy)6) in a polycylinder of the space (xl9 •••Jxn9y)
To be more precise

- , xH9 y) = ym+A1(x)ym-1 + - +Am(x)

and the coefficients are holomorphic in the polycylinder γ : |
(ί = l, ••• , n)y and further we assume that P coincides with the origin.
Consider the trace of /(Q, t) on t/', which we denote by the same letter.
For each ty f(Q, t) is univalent7) and holomorphic in Uf and since σ0

passes through the origin, /(O, 0) = 0. Then two cases arise.
1. /=0; this means 9>'(Q)>?>'(P) for Q in U' different from P. Then
it is easy to construct the family of characteristic surfaces (or a conti-
nuous curve) satisfying the conditions in the definition.
2. /φO then we can prove the existence of a positive number ί0 such
that, for any t(Q<,ΐ<tQ), /(Q, t) always takes zeros.

After having proved this, if we set

/(Q, ί) = o Q e Uf, 0 <ς t <i f.0 >

{or/} is the required one.
Suppose that such a nositive number ί0 does not exist, then we

have a decreasing sequence [tk] (0<1^<1) (£ — 1,2, •••) converging to
0 such that fk=f(Q, tk) does not vanish in t/'. For each fk there exists
a pseudopolynomial

6) We use freely the theorems in Kap. II, particularly in §12 and §14, of Osgood [6].
7) This is evident if we suppose U be expressed as an analytic set which is imbedded

in the space of complex variables in the way explained in the condition 3) in Introduction.
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kx19 - , XH, z}=

such that Gk(x19 •••, xM9fk)=Q. Similarly for /0=/(Q, 0) we have

- , * , z) =

such that £(#!, ••• , xn9 /0)=0. (Here B^(x) is the m products of the
values of at the points of U' which are superposed over the point
(Xi, ••• , xn) 6 γ. The same fact holds for /0 and Bm(x).) Since the sequence
f 19/29'" converges uniformly to /0 on any campact subset of E/', the
sequence B^(x}y B%*(x), ••• converges to βm(Λ) in a similar manner in 7
of the space (x19 ••-, #„). Every jB^}(Λ;) does not vanish in 7 from the
assumption for /Λ, while 5^(0) =0. This contradicts the well known
fact (See p. 82 of Julia [3]), q.e.d.

§4. Proof of the Theorem.

Necessity. We show that a Stein variety 33 always admits a positive
definite Levi function. Owing to Remmert [7], we can suppose that 55 is
an analytic set in the space of complex variables (xίy , XN) of sufficiently
high dimension. Then Φ=\χ1

 2+ ••- + \xN\2 is a positive definite Levi
function in the space (x19 ••-, XN), for Φ is a pseudoconvex function with
the property (PJ. Hence, the Lemma implies that the trace of Φ or 55
is also a positive definite Levi function.

Sufficiency. Let 5R be a holomorph-convex analytic space with a
positive definite Levi function φ. It is sufficient to show that 5R is
/f-complete. Take an arbitrary point P 6 3ΐ. From the set 2 of points
P 7 e5R such that f(P')=f(P) for all functions holomorphic in 31. Being
the holomorph-convex hull of P, Σ is compact by the assumption. On
the other hand, 2 is an analytic set everywhere regular in 9ί. Hence
2 is a finite point set, as metioned in the proceeding section. Then we
can choose a neighborhood of P and n functions holomorphic in SR such
that the condition of /f-complete holds at P.
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