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Stonian Spaces and the Second Conjugate
Spaces of AM Spaces

By Junzo WADA

Let X be a compact space and let C(X) be the set of all real-valued
continuous functions on X. If any non-void subset of C(X) with an
upper bound has a least upper bound in C(X), such a compact space X
is called a stonian space.1} Stone [ίQ^\ has shown that a compact space
X is stonian if and only if it is extremally disconnected, that is to say,
if for any open set U in X its closure 0 is open. While, Kelley [9]
has proved that if for any Banach space F containing a Banach space
E there exists a projection of F on E whose norm is 1, E is isometric
to C(X), where X is stonian. Also Dixmier [4] has considered a compact
space Xsuch that C(X) is isomorphic to an L°°(R, μ) as Banach algebras,
where R is a locally compact space and μ is a positive measure on R.
He called such a space X a hyperstonian space. A hyperstonian space
is stonian. We shall see that a compact space X is hyperstonian if and
only if C(X) is lattice-isomorphic and isometric to a conjugate space of
an AL space.2)

In §1 we state some general properties of stonian spaces, and in
§2 we consider an AM space C(X) which is the second conjugate space
of an AM space. Such a space X is hyperstonian, and if the character
of X is countable, then X is the space βNQ, where N0 is a discrete space
whose cardinal number is at most countable (cf. Theorem 3, Corollary),

§ 1. Stonian spaces

For a completely regular space X, let βX denote the Cech com-

pactification of X. (cf. Cech [2]). Dixmier [4] has shown that βU=X
for any open dense set U in a stonian space X. Therefore we obtain
easily the following:

1) See Stone [10] and Dixmier [4]. Numbers in bracket refer to the reference cited at
the end of the paper.

2) See Kakutani [7] and [8].
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( i ) X is stonian if and only if for any open set U in X,
(ii) If X is a stonian space and if X has an open dense subspace which

satisfies the 1st axiom of countability, X is a space βN, where N
is a discrete space,

(iii) If X is a stonian space and if a point x of X is not isolated, then
{x} is not a Gδ set.

We shall prove here the following theorem.

Theorem 1. Let X be a stonian space. If X is a product R x R of
a compact space R, then X is finite.^

Proof. Suppose that a stonian X be of the form R x R, where R is
a compact space with infinite points. Then 7? is stonian. Let U be a
dense open set in R. Then RxR=βUxβU^> Ux U and C7x U is a dense
open set in RxR. Since RxR is stonian, β(Ux U) = RxR=βUxBU.

Now if for a fully normal space0 S β(SxS) = /9Sx#S, then S is
compact. (Ishiwata [6]). Therefore it is sufficient to prove that there
exists an open dense subset U in R which is not compact but fully
normal. We shall construct such an open set U. Since R is an infinite
set, there exists a countable family {t^}Γ=ι of mutually disjoint non

00

void sets which are both open and closed. Let V=R— Σ U{ and let
ι=l

U= V\J 2 ί/ί. Since the set U is the union of a countable family of
ι=l

open and compact sets in R which are mutually disjoint, U is fully
normal. Clearly, £7 is not compact and is dense in R.

REMARK. Theorem 1 shows that there exists no stonian space S
with infinite points of the form RxR. But we can find easily a totally
disconnected compact space S which is a product space RxR, where R
is compact and infinite.

§ 2. Second conjugate spaces of AM spaces.

Let X be a stonian space and let M(X) be the set of all measures
on X. A positive measure μ on X is called a normal measure if for any
nowhere dense set A, μ(A)=0. A real measure μ on Xis called normal
if its positive part and its negative part are both normal. Let M'(X)

3) Henrikson and Isbell announced the following theorem (Bull. Amer. Soc. Vol. 63. 1957
Abstract): if X and Y are infinite completely regular spaces such that β(Xx Y) = βXxβY,
then Xx Y is pseudo-compact, that is, any continuous function on Xx Y is always bounded.
If we make use of this theorem, we obtain moreover that if a stonian space X is a product
RxS of compact spaces R and S, then either R or S is finite.

4) See Tukey [11], p. 53.



Stonian spaces and the second donjugate spaces of AM spaces 197

denote the set of all normal measures on X. A stonian space X is
called hyper stonian if it has positive normal measures, the union of whose
carriers is dense in X. We shall see that a compact space X is hyper-
stonian if and only if C(X) is lattice-isomorphic and isometric to the
conjugate space of an AL space. Let E be an AM space. Then the
second conjugate space of E is lattice-isomorphic and isometric to C(X),
where X is hyperstonian, and the conjugate space of E is lattice-
isomorphic and isometric to M'(X). M'(X) is also lattice-isomorphic and
isometric to an Ll(Ω, μ), where Ω is an open dense set in X and μ is
a suitable positive measure on Ω. (cf. [4]). We consider now an AM
space C(X) which is the second conjugate space of an AM space. Let
E be a Banach space and £*, £** denote the conjugate space of E and
the second conjugate space of E respectively. For any closed linear

subspace V in E* we define its characteristic r by r=inf sup -J—ί->
*£E fξvr\s I ) X |1

where S is a unit sphere in E*. A closed linear subspace V in E* is
called minimally weakly dense if it is weakly dense in E* and if any
other closed subspace in V is not weakly dense in E*.

The following lemma was proved by Dixmier

Lemma, (i) Let E be a Banach space. Then E is a minimally
weakly dense svbspace in E** which is characteristic one.

(ii) // V is a minimally weakly dense subspace in E* which is charac-
teristic one, then E**=E@V+ and | |*| |<||# + 2|| for xeE, z£V+,
where V+ denotes the set {z\z£E**y z(/)=0 for any /€ V}.

Let K be an open set in a hyperstonian space. Then the character
of K is said to be countable if any family of non-void open and closed
sets in K which are mutually disjoint is at most countable.

We can prove the following theorem. Hereafter X denotes a hyper-
stonian space.

Theorem 2. C(X) is lattice-isomorphic and isometric to the second
conjugate space of an AM space with a unit2^ if and only if there exists
a lattice-closed and (topologically) closed linear subspace V in C(X) which
has constant functions such that

( I ) for any feC(X) and for any open and closed set K (in X) whose
character is countable, there exists a sequence {fn} in V such that
fn pointwise converges to f on K except a nowhere dense set.

(II) V is a minimal closed linear space which has the property (I) : any
other closed subspace in V does not satisfy (I).

Proof, (a) Let C(X) be lattice-isomorphic and isometric to £**
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and let E be an AM space with a unit. Then, by Lemma, there exists
a minimally weakly dense subspace V in C(X) which is lattice-closed.
We see here that E and E* are lattice-isomorphic and isometric to V
and M'(X) respectively. Since E has a unit, we can assume that V has
constant functions in C(X). In order to prove (I) and (II), we are only
to prove the equivalence of (I) and that V is weakly dense. Now if
the property (I) is satisfied, then we see easily that V is weakly dense.
Conversely, if V is weakly dense, then we see easily that for any
f £ C ( X ) and for any open and closed set K (in X) whose character is
countable, there exist fn e V such that

( !/(*) -Λ(*) I dμ(x) < 1 (« = 1, 2, -),
J/Γoα n

where Ω is an open dense set in X and μ is a suitable positive measure
on Ώ. Therefore, as is well known, a subsequence fn. of {/„} pointwise
converges to / almost everywhere on Kr\ Ω.5) Since any set of measure
null on Kr\ Ω, is nowhere dense, fn. pointwise converges to / on K except
a nowhere dense set.

(b) If properties (I) and (II) are satisfied, we see easily that V is
a minimally weakly dense subspace in C(X). (cf. (a)). We shall prove
that V is of characteristic one. For any u£M'(X)y let A and B be
carriers of the positive part u+ of u and of the negative part u~ of u
respectively and let the function / take the value 1 on A and the value
— 1 on B. Then, by (I), there exists a sequence {/„} in V such that /„
pointwise converges to / on A\JB except a nowhere dense set. We may
assume here that for any n, \\fn || oβ<l, since V has constant functions.6)

Since u(fn) converges to u(f) = || u || , V is of characteristic one. By
Lemma, M(X)=M(X)®V+ and H u ||< || u + z \\ for ueM'(X), z£V+.
Therefore if F is a linear functional on V, then there exists u e M'(X)
such that F(f) = u(f) for any /€ V and || F\\ = \\ u \\ , that is, M'(X) is
lattice-isomorphic and isometric to T7*, and C(X) is lattice-isomorphic
and isometric to V**. This concludes the proof.

We consider next an AL space with an JF-unit. Let I1 be the set

of all sequences {£,-} of real numbers with convergent Σ | £,• |. -71 is a
/=l

Banach space where the norm of x = {ξi] el1 is Σ \ ξ g \ . (cf. Banach [1]).
|=1

Theorem 3. // an AL space E with an F-unit2^ is lattice-isomorphic

5) See, for example, Halmos [5].

6) II / II oo denotes the uniform norm : || /|| «>= sup |/(V) |.
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and isometric to a conjugate space of an AM space, E is lattice-isomorphic

and isometric to I1.

Proof. Let E be of the form Ll(Ωy μ)9 where is an open set in a
hyperstonian space. Since E has an F-unit, the character of Ώ is
countable. If Z/(Ώ> μ) is the conjugate space of an AM space F and if
F is of the form of C(Y, yΛ> /*, λj - {/|/eC(F), f ( y Λ ) =λβ/(yβ),
0<X<<1, # €m}7), then function gΛ in U(Ω, μ) which correspond to
Ay Λ £F* are mutually distinct, where //y* is a dirac measure, that is to
say AyΛ(/) ==/(/*) for any /eF. We see easily that the carrier of
function g^ is a one-point set XΛ , and therefore, JCΛ is an isolated point
in Ω. Since the character of Ω is countable, the cardinal number of
Zo={y r t}Λem is at most countable. Since C(Y)>F, any linear functional
ξ on F can be extended to a linear functional ξ' on C(F). £' is a

measure on F and for any /eF, £(/) = ?'(/) = \ f ( x ) d ξ ' ( x ) . Since the

cardinal number of Y~0 is countable, we can put Z0={z1, z2y •••}. For
any «, let Fw denote the set of yβ with Y$ = zn. Then we have ξ(f) =

Σ( /(Λrff/(^) = Σ ( f λ^(jβ))/(^). I fweput^-f λβrfr(Λ),
. =ι JrM »=ι J FM3^β JFM3^

we obtain that ?(/) = ΣJ A,/(*J We see easily that if § is positive,«=i
any ^^ is non-negative and 11! 11 = Σ Ai •

«=1

Corollary. TjΓ C(-X") is lattice-isomorphic and isometric to the second
conjugate space of an AM space and if the character of X is countable,
then X is the space βNQ, where N0 is a discrete space whose cardinal number
is at most countable.

(Received October 10, 1957)
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