Decompositions of Semi-Prime Rings and Jordan Isomorphisms

By Yoshiki Kurata

§1. Recently, in his paper [1], A. W. Goldie studied a minimal decomposition set of a semi-simple ring. In §2, we shall consider a minimal decomposition set of a semi-prime ring which is an extension of that of semi-simple rings, and shall obtain a generalization of a theorem of M. Nagata [4], Proposition 34.

In $\S 3$, we shall consider a Jordan isomorphism of a ring onto a semi-prime ring. Combining with the results in $\S 2$. we shall obtain some generalizations of theorems due to I. Kaplansky ([2], Theorems 1 and 3) under the assumption that the prime rings are not of characteristic 2.

The writer is grateful to Mr. H. Tominaga for his kind advices.
$\S 2$. A ring R is called a semi-prime ring if R is isomorphic to a subdirect sum of prime rings, that is, if there exist prime ideals $\mathfrak{F}_{\lambda}(\lambda \in \Lambda)$ in R such that $\bigcap_{\lambda \in \Lambda} \mathfrak{F}_{\lambda}=0$. Whenever Λ_{0} is a subset of Λ such that $\bigcap_{\lambda \in \Lambda_{0}} \mathfrak{P}_{\lambda}=0, R$ is isomorphic to a subdirect sum of prime rings $R / \mathfrak{F}_{\lambda}\left(\lambda \in \Lambda_{0}\right)$. Such a representation of R is said to be irredundant if R is not isomorphic to a subdirect sum of any proper subset of these rings.

A semi-prime ring R has an irredundant representation if and only if R satisfies the following conditions: There exist prime ideals $\mathfrak{B}_{\lambda}\left(\lambda \in \Lambda_{0}\right)$ in R such that $\bigcap_{\lambda \in \Lambda_{0}} \mathfrak{F}_{\lambda}=0$ and $\bigcap_{\lambda \in \Lambda_{1}} \mathfrak{S}_{\lambda} \neq 0$ for any proper subset Λ_{1} in Λ_{0}. A set of prime ideals which satisfies the above conditions is called a minimal decomposition set for R (we shall abbreviate it to m.d.s.). If we denote $\mathfrak{P}_{\lambda}^{*}=\bigcap_{\nu \in \Lambda_{0}, \nu \neq \lambda} \mathfrak{F}_{v}$, the latter condition may be replaced by $\mathfrak{P}_{\lambda}^{*} \neq 0$ for all $\lambda \in \Lambda_{0}$.

Lemma 1. Let \mathfrak{P} be a prime ideal of a ring R.
(i) If \mathfrak{A} is a two-sided ideal of R, then we have either $\mathfrak{A} \cong \mathfrak{Y}$ or $r(\mathfrak{X})^{1)} \cong \mathfrak{F}$.

[^0](ii) If, in particular, R is semi-prime and $r(\mathfrak{F}) \neq 0$, then \mathfrak{F} is a minimal prime ideal in R.

Proof. The first part is obvious by the definition of prime ideals. To prove the second part we suppose that \mathbb{E} is a prime ideal in R such
 implies $r(\mathfrak{F})^{2}=0$, which is a contradiction because R has no non-zero nilpotent ideals.

Lemma 2. Let $\left\{\mathfrak{F}_{\lambda}\right\}_{\lambda_{\in \Lambda_{0}}}$ be an m.d.s. for a semi-prime ring R. Then \mathfrak{F}_{λ} is a minimal prime ideal in R.

Proof. It follows from Lemma 1 (ii).
The following theorem is a generalization of [4], Proposition 34.
Theorem 3. A semi-prime ring R has at most one minimal decomposition set of prime ideals.

Proof. Let $\left\{\Re_{\lambda}\right\}_{\lambda \in \Lambda_{0}}$ be an m.d.s. for R and let \mathfrak{F} be a member of another m.d.s. for R. For each $\lambda \in \Lambda_{0}$, we have either $\mathfrak{S}_{3} \subseteq \mathfrak{B}_{\lambda}$ or $r(\mathfrak{F}) \subseteq \mathfrak{F}_{\lambda}$ by Lemma 1 (i). Since $\bigcap_{\lambda \in \Lambda_{0}} \mathfrak{S}_{\lambda}=0$ and $r\left(\mathfrak{F}_{\mathcal{B}}\right) \neq 0$, $\mathfrak{B} \subseteq \mathfrak{B}_{\lambda}$ for some $\lambda \in \Lambda_{0}$. It follows from Lemma 2 that $\mathfrak{F}=\mathfrak{F}_{\lambda}$.

Remark. From the above proof, we see that an m.d.s. for a semiprime ring R (if there exists) consists of all prime ideals of R with non-zero right (left) annihilators.

Let S be the complete direct sum of prime rings $R_{\lambda}(\lambda \in \Lambda)$. Then, for $x_{\lambda} \in R_{\lambda},\left(x_{\lambda}\right)$ will signify the element of S whose λ-component is x_{λ}. Now let $R_{\lambda}^{\prime \prime}$ be the subring of S consisting of all elements with zeros in all ν-th places for $\nu \neq \lambda$. Identifying $R_{\lambda}^{\prime \prime}$ with R_{λ}, we obtain $S=R_{\lambda} \oplus R_{\lambda}^{\circ}$ for all $\lambda \in \Lambda$, where R_{λ}° is an ideal of S consisting of all elements with zero in the λ-th place. A subring R of S is a subdirect sum of the prime rings $R_{\lambda}(\lambda \in \Lambda)$, if the set of its λ-th components is equal to R_{λ} for each $\lambda \in \Lambda$.

Theorem 4. $\left\{R \cap R_{\lambda}^{\circ}\right\}_{\lambda \in \Lambda}$ is an m.d.s. for a subdirect sum R of $R_{\lambda}(\lambda \in \Lambda)$ if and only if $R \cap R_{\lambda} \neq 0$ for all $\lambda \in \Lambda$.

Proof. The ideal $R \cap R_{\lambda}^{\circ}$ is a prime ideal of R, since $R /\left(R \cap R_{\lambda}^{\circ}\right)$ $\cong\left(R+R_{\lambda}^{\circ}\right) / R_{\lambda}^{\circ} \cong R_{\lambda}$. Evidently we have $\bigcap_{\lambda \in \Lambda}\left(R \cap R_{\lambda}^{\circ}\right)=R \cap \bigcap_{\lambda \in \Lambda} R_{\lambda}^{\circ}=0$, and $\left(R \cap R_{\lambda}^{\circ}\right)^{*}=R \cap\left(R_{\lambda}^{\circ}\right)^{*}=R \cap R_{\lambda} \neq 0$.

The converse part is clear.

Next, we assume that R is a special subdirect sum ${ }^{2)}$ of prime rings $R_{\lambda}(\lambda \in \Lambda)$, that is, R contains $R_{\lambda}^{\prime \prime}$ for all $\lambda \in \Lambda$. In this case we have $R=R_{\lambda} \oplus\left(R \cap R_{\lambda}^{\circ}\right)$, and hence we have

Corollary. If R is a special subdirect sum of prime rings $R_{\lambda}(\lambda \in \Lambda)$, R has an m.d.s. $\left\{R \cap R_{\lambda}^{\circ}\right\}_{\lambda \in \Lambda}$.

Furthermore, by Theorem 3, $\left\{R \cap R_{\lambda}^{\circ}\right\}_{\lambda \in \Lambda}$ is the unique m.d.s. for R, and hence the totality of R_{λ} which is equal to ($\left.R \cap R_{\lambda}^{\circ}\right)^{*}$ exhausts the unique prime components in our special subdirect sum representation of R.
$\S 3$. A mapping φ of a ring R into another ring R^{\prime} is called a Jordan homomorphism of R into R^{\prime} if it satisfies the following conditions:

$$
\begin{equation*}
\varphi(x+y)=\varphi(x)+\varphi(y), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\varphi(x y+y x)=\varphi(x) \varphi(y)+\varphi(y) \varphi(x) \tag{2}
\end{equation*}
$$

for all x and y in R. In case R^{\prime} is not of characteristic $2\left(2 x^{\prime}=0\right.$ implies $x^{\prime}=0$), (2^{\prime}) is equivalent to

$$
\varphi\left(x^{2}\right)=\varphi(x)^{2} .
$$

If, in particular, φ is one-to-one, then we shall say it is a Jordan isomorphism.

In his paper [5], M. F. Smiley proved that a Jordan homomorphism of a ring onto a prime ring which is not of characteristic 2 is either a homomorphism or an anti-homomorphism. In this section, we shall consider a Jordan isomorphism of a ring R onto a semi-prime ring R^{\prime}. Throughout this section, we assume that R^{\prime} is a semi-prime ring which is represented as a subdirect sum of prime rings $R_{\lambda}{ }^{\prime}(\lambda \ni \Lambda)$.

Theorem 5. Let φ be a Jordan isomorphism of a ring R onto R^{\prime}. Suppose that R_{λ}^{\prime} is not of characteristic 2 for each $\lambda \in \Lambda$. Then R is also semi-prime and isomorphic to a subdirect sum of prime rings each of which is either isomorphic or anti-isomorphic to some of $R_{\lambda}{ }^{\prime}$.

Proof. The mapping $\varphi_{\lambda}: R \ni x \rightarrow \varphi(x)_{\lambda} \in R_{\lambda}{ }^{\prime}$ is an onto Jordan homomorphism by our assumptions, where $\varphi(x)=\left(\varphi(x)_{\lambda}\right)$. By a theorem obtained by M.F. Smiley, φ_{λ} is either a homomorphism or an antihomomorphism. If we denote the kernel of φ_{λ} by \mathfrak{F}_{λ}, then \mathfrak{F}_{λ} is a two-sided ideal in R and ρ_{λ} induces either an isomorphism or an antiisomorphism of $R / \mathfrak{F}_{\lambda}$ onto $R_{\lambda}{ }^{\prime}$. Hence \mathfrak{F}_{λ} is a prime ideal in R. More-

[^1]over, if $x \in \bigcap_{\lambda \in \Lambda} \mathfrak{F}_{\lambda}, \varphi(x)_{\lambda}=0$ for all $\lambda \in \Lambda$, and therefore $\varphi(x)=0$. Since φ is one-to-one, $x=0$. Hence R is isomorphic to a subdirect sum of the prime rings $R / \mathfrak{F}_{\lambda}(\lambda \in \Lambda)$.

REMARK. In case R^{\prime} is a special subdirect sum of $R_{\lambda}{ }^{\prime}(\lambda \in \Lambda)$, our assumption for the characteristic is nothing but to say that R^{\prime} is not of characteristic 2.

Now, we suppose that R^{\prime} is a special subdirect sum of prime rings $R_{\lambda}{ }^{\prime}(\lambda \in \Lambda)$ and is not of characteristic 2 , and suppose that φ is a Jordan isomorphism of a ring R onto R^{\prime}. Then as is shown in Theorem $5, R$ is semi-prime, that is, there exist prime ideals $\mathfrak{F}_{\lambda}(\lambda \in \Lambda)$ in R such that $\bigcap_{\lambda \in \Lambda} \mathfrak{F}_{\lambda}=0$. Evidently, $R=\mathfrak{B}_{\lambda}^{*} \oplus \mathfrak{B}_{\lambda}$ corresponding to $R^{\prime}=R_{\lambda} \oplus\left(R^{\prime} \cap R_{\lambda}^{\prime \circ}\right)$. Then we can see that R is also a special subdirect sum of prime rings $\mathfrak{F}_{\lambda}^{*}(\lambda \in \Lambda) .{ }^{3)}$ And so, by Theorem 3 and Corollary to Theorem 4, $\left\{\mathfrak{F}_{\lambda}\right\}_{\lambda \in \Lambda}$ is the unique m. d.s. for R. Accordingly, if we denote $\mathfrak{F}_{\lambda}^{*}$ by R_{λ}, then the totality of R_{λ} exhausts the unique prime components in our special subdirect sum representation of R. On the other hand, the totality of $R_{\lambda}{ }^{\prime}$ are those of R^{\prime}. Now we shall prove the following theorem which corresponds to [2], Theorem 3.

Theorem 6. Under the above situation, the prime components of R and R^{\prime} can be paired off in such a way that φ is an isomorphism or an anti-isomorphism of each pair.

Proof. $\varphi\left(R_{\lambda}\right)=\varphi\left(\mathfrak{B}_{\lambda}\right)^{*}=\left(R^{\prime} \cap R_{\lambda}^{\prime 0}\right)^{*}=R_{\lambda}{ }^{\prime}$. Hence, φ is a Jordan isomorphism of R_{λ} onto $R_{\lambda}{ }^{\prime}$ and thus our proof is completed by [5].

Finally, we shall prove the following theorem which corresponds to [2], Theorem 1.

Theorem 7. Let φ, R and R^{\prime} be as in Theorem 5. Then φ induces in $V_{R}(R)^{4)}$ an isomorphism onto $V_{R^{\prime}}\left(R^{\prime}\right)$.

Proof. Let x be in $V_{R}(R)$, and let $y_{\lambda}{ }^{\prime}$ be in $R_{\lambda}{ }^{\prime}$. Taking an element y in R with $\varphi_{\lambda}(y)=y_{\lambda}{ }^{\prime}$, we have

$$
\begin{aligned}
& \varphi(x)_{\lambda} \cdot y_{\lambda}{ }^{\prime}=\varphi_{\lambda}(x) \cdot \varphi_{\lambda}(y) \\
= & \begin{cases}\varphi_{\lambda}(x y)=\varphi_{\lambda}(y x) & \text { if } \varphi_{\lambda} \text { is a homomorphism, } \\
\varphi_{\lambda}(y x)=\varphi_{\lambda}(x y) & \text { if } \varphi_{\lambda} \text { is an anti-homomorphism, }\end{cases} \\
= & \varphi_{\lambda}(y) \cdot \varphi_{\lambda}(x)=y_{\lambda}{ }^{\prime} \cdot \varphi(x)_{\lambda},
\end{aligned}
$$

which proves $\mathcal{P}\left(V_{R}(R)\right) \leqq V_{R^{\prime}}\left(R^{\prime}\right)$.

[^2]Conversely, let $\mathcal{\rho}(x)$ be an arbitrary element in $V_{R^{\prime}}\left(R^{\prime}\right)$. Then $\mathscr{P}_{\lambda}(x) \cdot \varphi_{\lambda}(y)=\varphi_{\lambda}(y) \cdot \mathscr{\varphi}_{\lambda}(x)$ for any y in R. As \mathcal{P}_{λ} is either a homomorphism or an anti-homomorphism, by the last equality one will readily see $\varphi(x y)=\varphi(y x)=\varphi(x) \cdot \varphi(y)$. This completes our proof.
(Received September 26, 1957)

Reference

[1] A. W. Goldie: Decompositions of semi-simple rings, J. London Math. Soc., 31 (1956), 40-48.
[2] I. Kaplansky: Semi-automorphisms of rings, Duke Math. J., 14 (1947), 521-525.
[3] N. H. McCoy : Subdirect sums of rings, Bull. Amer. Math. Soc., 53 (1947), 856877.
[4] M. Nagata: On the theory of radicals in a ring, J. Math. Soc. Japan, 3 (1951), 330-343.
[5] M. F. Smiley: Jordan homomorphisms onto prime rings, Trans. Amer. Math. Soc., 84 (1957), 426-429.

Department of Mathematics, Hokkaido University

[^0]: 1) $r(\mathfrak{H})(l(\mathfrak{A}))$ denotes the right (left) annihilator of \mathfrak{H} in R. If R is semi-prime, then $r(\mathfrak{H})=l(\mathfrak{H})$ for any two-sided ideal \mathfrak{H} in R.
[^1]: 2) See $[3], \S 9$.
[^2]: 3) See [3], Theorem 15.
 4) $\quad V_{R}(R)$ denotes the center of R.
