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Direct, Subdirect Decompositions and Congruence Relations

By Junji HasHiMOTO

1. Introduction

On the direct decompositions of (universal) algebras, applying to all
of groups, rings, linear algebras and lattices, many researches have been
made, but almost all of them are concerned with the decompositions
into a finite number of factors. In the present paper we attempt to extend
those earlier results to the case of infinite factors and clarify the structure
of some algebras.

By an algebra A, we shall mean below a set of elements, together
with a number of finitary operations f,. Each f, is a single-valued
function assigning for some finite n=mn(a) to every sequence (x,, -+, x,)
of n elements of A, a value f,(x,, -+, x,) in A. A congruence relation 6
on an algebra A is an equivalence relation x=y(0) with the substitu-
tion property for each f,: If x,=y,(0), then f,(x,, -+, x,)=Ff.(y:, -+, 3,)
(#). A congruence relation 8 on A generates a homomorphism of A onto
the algebra 6(A) of subsets Cla, ) = {x; x=a(0)} of A, which we denote
by the same notation 4. If we define 6@ to mean that x=y(d) implies
x=y(p), then all congruence relations on A form a complete, upper
continuous lattice ®(A4), which we shall call the structure lattice of A.
By the (complete) direct union A=II A, of algebras A, having the
same operations f, is meant the algebra whose elements are the sets
{%,; ©€Q} with x,€ 4,, in which algebraic combination is performed
component by component: If x'= {x{; o€ Q}, then f,(x', -+, x")={f,(xs,
e X% w€ Q).

Direct factorizations of an algebra A are correlated with the lattice-
theoretic properties of congruence relations on A; for instance

TuroREM 1.1. The representations of an algebva A as a direct union
A=A, x-x A, correspond one-one with the sets of permutable congruence
relations 0., -, 6, on A satisfying

0n--ng,=0 and (@,N---NO;_)vb,=I[i=2, ---, n].

But this theorem does not hold for infinite ». We first intend to
obtain the corresponding theorem for infinite #, by introducing the con-
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cept of L-restricted factorizations, which includes complete direct factori-
zations and discrete or finitely-restricted direct factorizations.

We shall state in § 2 some important preliminaries on congruence
relations, and define in § 3 L-restricted factorizations and show the first
main theorems mentioned above. In §4 we shall especially discuss the
relations between finitely restricted factorizations and congruence rela-
tions, and obtain a unique factorization theorem. In §5 we shall deal
with factorizations into simple factors and give a condition for some
algebras to be completely reducible. Further we prove in § 6 the unicity
of factorizations for algebras with distributive structure lattices and
derive some other properties of such algebras, in referrence to which
we shall clarify in § 7, 8 the structure of some lattices.

All the basic theories and notations employed throughout this work
may be found in Birkhoff [1], Ore [5] and Shoda [6].

2. Preliminaries on congruence relations

A semilattice is a partially ordered set K any two of whose elements
have a least upper bound xvy. In the present paper we shall assume
that any semilattice contains the least element 0. An idea/ of a semi-
lattice K is a non-void subset J of K satisfying (1) x€J and y€ J imply
xvuye ], and (2) x€J and ¢+<x imply #€J. It is easily shown that all
ideals of a semilattice K form a complete, upper continuous lattice J(K),
which includes K by identifying an element a€ K with the principal
ideal (@] generated by a.

An element a of a complete lattice L is called inaccessible if any
covering {x,} of a, i.e., a set of elements x, satifying \/x,>a, contains
a finite covering {x,;} of a. Let a and & be inaccessible and suppose
that \/x,>avb. Then {x,} contains finite coverings \/x,,>a and
\/%,;>>b, and then \/x,,w\/x,;>>a\vb. Hence aub is also inaccessible.
Accordingly,

LEMMA 2.1. The inaccessible elements of any complete lattice L form
a semilattice K(L).

Now an ideal J of a semilattice K is written J=\/,c,(a]. If J is
inaccessible in J(K), then J=(a,]v---(a,]=(a,v--va,]. Conversely, if
(@]1<J,, namely a€\/J,, then we can find a finite number of ;€ J,,
such that a<la,v - va,; hence (a]<J, v+ U], So inaccessible elements
in J(K) are nothing but principal ideals. Hence

1) On rings, discrete direct sums in the sense of N. H. McCoy, Subdirect sums of rings,
Bull. Amer. Math. Soc. 53 (1947).
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LemMmA 2.2. If K is any semilattice, K(J(K))=K.

If a subset S of a complete lattice L contains inf X for every subset
X<S, then we call S /\—closed. Dually if S always contains sup X, then
we call S \/-closed. If S is /\-closed and \/-closed, then S is called a
closed sublattice. A closed sublattice is a complete lattice as a sublattice
of L.

Now let A be an algebra, ®(A4) the lattice of congruence relations
on A and I a closed sublattice of ®(A4). If P is a set of pairs (@, b) of
elements of A, we define the congruence relation 0x(P) generated by P
in 3, as the least of elements 0 of = satisfying a6b for every pair
(@, b)ye P. 1t is easily seen that 65(P)=\/w.»cr0s(a, b), where 0s(a, b)
is the congruence relation generated by one pair (a, b).

LemMmA 2.3. A congruence relation 0 is inaccessible in 2, if and only
if it is generated by a finite set of pairs of elements.

Proor. Let 6 be inaccessible and P the set of all pairs (a,, b,)
satisfying a,0b,. Then evidently 0=05(P)=\/,0x(a,, b,). Since 6 is
inaccessible, there exist a finite number of pairs (a;, b;) € P such that
0=\/0s(a;, b). Conversely, if 6=\/,0s(a;,b;) for a finite number of
pairs (a;, b;) and {6,} is a covering of 6 in =, then \/0,>05(a;, b;) and
a;=b; (\/0,) ; hence we can find a finite number of ¢;;€ {6,} and a;;€ A
such that ¢;,=a;¥0,4;,0;,---0,,a,,=0b;. Therefore \/0,;>05(a;, b;) and we
get a finite covering {6,;} of 6.

Now inaccessible elements of % form a semilattice K= K(Z). If we
denote by 6 an element of = and by J an ideal in K, then we can
consider (natural) mappings J(0)= {0, ; 6,<6, 0, € K} of 3 into the lattice
J(K) formed by all ideals of K and 0(J)=\/g,c,0, of J(K) into =. It is
easy to show that 0(J(0)<6 and J<J(O(J)). x0y implies 6Os(x, y) <6,
Os(x, y) € J(0), 0z(x, ) <0(J(0)) and x=y(9(J(6))); hence 0 <6(J(0)). If
pe JO()), then p<0(J)=\/o,c,0, and we can find a finite number of
0;¢€ J satisfying ¢<\/0;, since @ is inaccessible. Since J is an ideal,
we have \/0;€ ], o€ J and hence J(0(]))<J. Thus 6(J(0))=0, JO(J)=]
and evidently this correspondence 6] is order-preserving; hence we have

THEOREM 2.1. If % is a closed sublattice of ©(A), then %= J(K(Z)).

In this meaning we call K(Z) the kernel of =.» ‘
Again we deal with permutability of congruence relations. Two

2) By the way, the lattice L (A) of all subalgebras of A has the same structure :
L=J(K(L)). Furthermore it can be proved that any ideal lattice J(K) is isomorphic with
the lattice of all subalgebras of some algebra.
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congruence relations 8, and 6, are called permutable, if x=y0,v0,)
implies x0.6,y, i.e., x6,26,y for some z.

LemMA 2.4. Let 6., ---, 0, be congruence relations on A and put
@;=0,n---NO;_ NO;,,~---Nb,. If @, -, @, are permutable and x,, ---,
x,€ A satisfy x;=x;(p;up;) for every pair (i, j), then we can find an
element x € A satisfying x=x; 0)).

Proor. Since x;=x;,.(p;v®;.,), we can find x;;.,€ A such that
X ;Pinx; and x;;,.9:%;,, for =1, ---, n—1. Suppose that

(1) Xirit1,eenivpPitpXismitp-1
and x,—,,-+1,...,,-+p¢,-x,-+1,...,,-+1, for 1= 1, ety n—p.

If i+p+1<m, we have ;. ..;1p0Pitptr¥icrmivp ANA X, i1 p=Xitritphr
(P; P11 ; hence we can find x;.... ;... € A such that x;,... ;. p 1 PispaXinits
and X;,...;ipePikisrmivprn. S0 that we can always find ;... ;. , € A satisfy-
ing (1). Then ‘

XiPi+1%i,i11Pi+2 X5 i+1,i+2Pi+3 " PuXisit1,1m

PiaXivivenPi-2Xiz e nPios " Pr1Xe, g

Since @;<6; for j==i; we have x,0x,,..,,.

This proposition however does not hold when {6;} is not a finite set.
We call a set S of congruence relations completely permutable if and only
if any subset {6,} <S satisfies the following condition : If x,=x,(p,\U®,),
where @,=/\,:.0,, there exists x€ A such that x=wx,(9,). If S is
completely permutable, then all congruence relations in S are permutable.
Further it is easily shown that the joins \ /6, of any number of permutable
congruence relations 6, are permutable ; hence

LEMMA 2.5. Let Z be a closed sublattice of O(A). If the kernal K(3)
is completely permutable, then %, is permutable.

We give next some useful examples of completely permutable con-
gruence relations.

THEOREM 2.2. Let S be a /\-closed set of permutable congruence
relations. If S satisfies the descending chain condition, then S is com-
pletely permutable.

Proor. Let X={0,} be any subset of S and choose ¢;€ X so that
0,220,n---N0;_,. Since S satisfies the descending chain condition, the
chain 6, >60,n6,">6,n60,n0,”>--- must end at 6,n---n6@,; namely every
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0, € X satisfies 8,>6,n:--ng,. Now assume that x,=ux,(p,vp,), where
Por=/vsr0,. If we set Y={0, -, 0,}, Z=X-Y, p=/\p,cs0, and
0/=06,np, then @,=0/n--N0;_ NG ,N---NO,' and x,=x;(p,vup)).
Since @; are permutable, we can find x such that x=x;(¢;) and hence
x=x;(0,) for i=1, ---, n, by Lemma 2.4. If 6,€Z, then ¢,<0,n---NG,
= /\g,cx0,<<®; and hence x,=x,(p;). Since §;<p<6, and ¢,<p<4,,
we have x=ux,(0,), completing the proof.

THEOREM 2.3. Let A be a Boolean algebra. Then K(O(A)) is com-
pletely permutable if and only if A is complete.

Proor. All congruence relations and all ideals of a Boolean algebra
A correspond one-one, and it follows from Lemma 2.2 that congruence
relations 6, in K(®(A)) correspond to principal ideals (a,] so that {x;
x0,0} = {x; x<a,}. It is easy to see that x6,y is equivalent to (xny')
V' N80, (xny)yuxny<a, and xna’ <y<xvua,.

Assume that A is complete, {6,} is any subset of K(®(A)) and {a,}
is the set of elements corresponding to 6,. If we put /\,+.a,=b,, then
=%,/ \vs20, U /\y5.6,) implies (x,Nnx,)v(x)Nx,)<bwb,. Set x=/\,
(\/vaabyuxy). Then xnx/<(\/vxubyur) N/ = (\/szub) N2 < a,, since
b,<a, for v==p. 2'Nx=0/\(A\sarb/ N 2) N2, =\/A(/\vrdy "2 N x,)
S\/Aﬂm(/\mxbul N (b b)) é\/m‘:u(b#/ nby) < a,. Hence (xn xv-/) v @n xu)
< a,; namely x=ux,(6,).

Conversely if K(®(A)) is completely permutable, we shall show that
A contains sup X for any subset X={x,; p€ M} of A. We first prove
in the case x,nx,=0, hence x,<ux,/, for A=4=pu. Let {a,; »€ N} be the
set of upper bounds of X and put x,=0 for v€ N and a,=ux," for pe€ M.
Then we have x;<a, for & n€ M+ N provided £==7; hence (x¢nx,) v
(' N x,) € Neselag] v Nesqlas). If follows from complete permutability
that we can find x € A such that x=x(a;) for £ € M+ N, whence x=0(a,),
meaning x<a,, for v€ N and x=x,(x,’), meaning x>x,N () =x,, for
p€ M. Thus x=sup X. Next we prove generally by using transfinite
induction. Assume that A contains y,=\/,..%, for x<x and put z,=x,,
z,=y./nx, Then A contains u,=\/..,2, for A<k, since z,n2z,=0 for
v<_p<A<«x. Evidently u,=y, for any finite n. If u,=y, for p<A<kx,
then 2z,<x, and u, >u,vz,=y, (3. Nx,) >z, for u<\, whence we have
Uy =\/uer¥. for A<k, especially #,=\/,...%., completing the proof.

3. L-restricted factorizations

If A is a finite algebra, then by factoring again and again each
factor of the direct factorization of A we can obtain a representation
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of A as a direct union of directly indecomposable algebras, but an
infinite algebra has not necessarily such a factorization. Again in the
theory of many algebras, such as groups, rings etc., we often consider
the finitely restricted direct union, i.e., the subsystem of elements of
TIA, whose components excluding some finite number are identical with
those of a special element 0. In this view we feel the necessity to
extend the meaning of direct unions.

Let Q be a set of indices » and L a family of subsets of Q. Then
it is natural to define an L-restricted direct umion I1.,,A, to mean a
subalgebra S of the complete direct union A=1I,.,A, such that

(I) x={%,; 0€Q}, y=1{yo; ©€Q} and x,y€S imply {®; X7y}
€L,

) x={t.; €}, y={10; 0€Q}, x€S and {o; x,+y}€L
imply y€ S.

While this is an extended interpretation of direct unions, for any
partition Q=Q,+Q,, S=1I,,A, must be decomposed into a direct union
M A, %1 ,,A, so that the components of x= {x,; 0 € Q} be x,={x,;
0€Q}, x,={x,; 0€Q,}. If x=(x, x,) and y=(y,, ¥, under the above
decomposition, then z=/{(y,, x,) € S must have the components 2z, such
that z,=y, for © € Q, and z,=2x, for 0w €Q,, and then {o; x,7+y.} =M
implies {o; x,=F2,} =MnQ,. Hence L must contain N with M provided
N<M. If we omit the factors A, which consist of only one element
from any direct union, we get an isomorphic system; hence we shall
assume, without loss of generality, that every factor A, contains two
or more elements. Then it follows from the condition (II) that for
M, Ne L we can find %, 9, 2€S so that {w; x,=Fy.} =M, {0; x,=+=2,}
=Nn(Q—M) and hence {w; y,4+2,} =MUN. In summary we must
assume that L is an ideal of the Boolean algebra 22 of all subsets of Q.

If L coincides with the whole Boolean algebra 22, then II,A,
coincides with the complete direct union II,.A4,, and if L is the ideal
of all finite subsets of Q, then II,A, becomes a finitely restricted direct
union.

We can define an L-restricted subdirect union of A, in the same
way. A subdirect union of A, is a subalgebra S of the direct union
II,0A, such that all elements of A, appear as o—components of elements
of S. If S is a subdirect union of A, satisfying the condition (I) men-
tioned above, then we say that S is an L-restricted subdirect union of
A,. .
We shall now correlate L-restricted factorizations of an algebra A
with congruence relations on A. If A is decomposed into a subdirect
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union of {A,; »€Q}, then the correspondence from each element x=
{x%,; ® € Q} to its w—component x, is a homomorphism 6* of A onto A,,
and hence generates a congruence relation, which may be denoted by
the same notation 6¥. Hence every subdirect factorization of A is
written in the form {0%(A); » € Q} which means the subdirect factoriza-
tion where the wo—component of x is 6¥(x).

Let L be an ideal of the Boolean algebra 22 All ideals of L form
a complete atomic distributive lattice J(L), which includes L as a
sublattice by identifying an element M€ L with the principal ideal of L
generated by M, which we shall denote by the same notation M.
Again the subset {M; Me L, M> o} of L forms a prime ideal P,. As-
sociating P, with 0%, we can characterize an L-restricted subdirect
factorization as follows.

THEOREM 3.1. Let {0F; w€Q} be a set of congruence relations on an
algebra A and L an ideal of the Boolean algebra 22. Then A is decomposed
into an L-restricted subdivect union {0%(A); » € Q} if and only if for every
ideal J of L there exists a congruence relation 0(J) on A which satisfies

(1) oNL)=/N0.), (2) 6(0)=0, (3) Vmelf(M)=1I,
(4) 60f*=0(P,), where P,—={M; Mc L, M3 w}.

Proor. Suppose that A is decomposed into an L-restricted subdirect
union of {#*(A); ®€Q}. By x, we denote the w-component of x€ A,
ie., x,=0%(x). Associated with Me L, we define the congruence relation
O(M) = Nuvea-m0¥. Tt is easily seen that M<N implies ¢(M)<60(N) and
the relation x=y(0(M)) is equivalent to {w; x,=Fy.}<M If J is an
ideal of L, we set 0(])=\/me,;0(M). Then it is obvious that {w; x,==
y.} € J implies x=y(0(])). Conversely if x=y(6(])), there exist a finite
number of elements x,=zx, x,, -, ¥,—=y of A and congruence relations
0(M,) with M;€ J such that x;_,=x;(0(M;)). Then x=y(@(M)), where
M=\/M; € J; hence the relation x=y(0(])) is equivalent to {o; ¥,= .}
€J. Now the relation x=y(/\0(J,)) is equivalent to {w; x,=y.} €],
for all », {w; %,7#y.} €/\J, and x=y(0(/\],)); hence O(/\],)=/0(.).
Since 6(0) = N\.caf%, x=y»(0(0)) implies x,=y, for all w; hence 6(0)=0.
By the definition of L-restricted factorizations, any two elements x, y
satisfy M= {o; %,74+¥.} €L and x=y(0(M)); so \/mef(M)=1. The
relation x=y(0%), where 7€ Q, is equivalent to {w; x,==y.} 37, {0; x.
=+y.} € P, and x=y(0(P,)); hence G¥=0(P,).

Conversely suppose that congruence relations 6(J) satisfy the condi-
tions (1)-(4). Putting x,=60%(x) and x*={x,; 0€Q}, we have the
homomorphism x—x* of A into II0%(A). It follows from (1) and (2)
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that Nuca?¥ = Nocad(P.) =0(/\wecaP.) =0(0) =0, and x*=y* implies x=y
(0%) for all € Q and x=y; hence {0%(A); o € Q} is a subdirect factoriza-
tion of A. It follows from (3) that any #, y€ A satisfy x=y(\/pe0(M))
and we can find a finite sequence of elements x,=zx, x,, ---, x,—y and
congruence relations 0(M;); M;€ L so that x;_,=x,;(0(M;)). If M=\/M,,
then Me L and 6(M;) <<0(M); hence x=y(0(M)). Since 6(M)=0(/\.ca_nmP.)
= Noeo-u0*, x=y@(M)) means {o; x,=+y,} < M, whence {o; x,=Fy,} €L,
completing the proof.

The correspondence J— 6(J), mentioned in the above theorem, is not
necessarily one-one. It is natural to call a component A, in a subdirect
factorization {A.,; o € Q} of A redundant, if the correspondence {x,; ®
€Q}—>{x,; o€ Q—xn} is an isomorphism of A into Il,,_,A,, and a
subdirect factorization irredundant, if none of its component is redundant.
If we denote by ¢, the congruence relation corresponding to the one-ele-
ment subset {7} € L, namely 6,=0(5) = /\.,0¥, then it is obviously seen
that A, is redundant if and only if 6,=0. If M is any subset of Q%, by
0(M) we denote the congruence relation corresponding to the ideal J(M)
of L which consists of elements of L included in M. Since J(M)=
Noca-mPo; OM)=Noca_n9P,). If 0(M)=06(N) is compatible with
M—NE€ 5, then 6,<0(M)=0(N)<0* and 0,=0, whence A, is redundant.
So we infer that the correspondence M—60(M) is one-one if and only if
the factorization is irredundant. However even if M—60(M) is one-one,
J—6(]) is not necessarily one-one. We can prove that if {A4,; o € Q}
is the L-restricted direct decomposition, the above correspondence is
isomorphic. Namely, denoting by X the closed sublattice of ©(A)
generated by {0%}, we can deduce the following theorem.

THEOREM 3.2. The representations of an algebra A as an L-resticted
direct union of {A.; @ € Q} correspond one-one with closed sublattices X

of O®(A) satisfying that
(1) =30, [, (2) K==L, (3) K(Z) is completely permutable,
where K(Z) denotes the kernel of =.

Proor. Suppose that A=1II,A, and define the congruence relations
0(]), corresponding to the ideals J of L, in the same way as in Theorem
3.1. We shall show that the set = of the congruence relations 6(J) is
a closed sublattice of ®(4). Suppose that x=y(@(\//,)) and put M=
{w; x,4+y,}. Then Me\/J, and hence we can choose a finite number
of subsets M; of Q so that M=\/M;, M;nM;=0 (i4=7); i, j=1, -, n

3) The set M need not be contained in L ; hence J(M) is not necessarily a principal ideal.



Direct, Subdirect Decompositions and Congruencs Relations 95

and each M, belongs to some one of J,. We define formally the elements
=z, &', ---, "=y, as follows:

= {x!; 0€Q} with x{=2x%" for w €M; and x! =y, for we M,.
Since x€ A and {o; xi==x,} =M, v---UM;€L, x*e¢ A. Again since {w;
xi714=x!} belongs to some J,, 2 '=x' mod some 6(J,); hence x=y
(\/6(].)), proving 6(\/J,) < 6(],). It is obvious that 8(\/J,)) =>\/6(/.), so
we have 6(\/J,)=\/60(J,). Combining this with Theorem 3.1, we infer
that % is a closed sublattice of ®(A) generated by {6*} and the corres-
pondence J—6(J) is a homomorphism. If :J,—J,>M, given x€ A, we
set ¥ so that y,=x, for €M and y,=tx, for ©€ M. Then since {o;
x,Fy.} =MeL,ye Aand x=y(0(])), x==y(0(J,)). Hence = is isomorphic
with J(L) and accordingly K(3)=~L, by Lemma 2.2. It remains to prove
(3). If {8,}<<K(E) and @,=/\,u0,, then 6, is written 6,=6(M,) with
M,e L and so ¢,=0(\/,.M,). If ¥*=a*(@p,np,), then {o; x)=+x} <
/\v:t:vaU /\v:\:p. M\n {C" ; x:\: :x:} 2\/\'#)\(‘0— M'v) f\\/,,*‘,.v(ﬂ—— Mv) 2 (‘Q_Mp.)
N(Q—M, and hence o€ (Q—M,)N(Q2—M, implies x,=x.. We set
x={x,; o € Q} so that if o € /\M,, x, be arbitrary, and if » is contained
in some Q—M,, then x,=x). Then x,=2x) for any M satisfying
Q—M, 3w, since o € (Q—M,) N (Q2—M,) implies x3=x. Thus we obtained
x € A such that x=2"(9,).

Conversely suppose that 3 is a closed sublattice of ®(A) satisfying
(1)-(3). Then it follows from Theorem 2.1 that == J(L). Let 8(J) be
the element of 3 corresponding to J€ J(I) and put 6*=46\P,), where
P,={M; Me L, M>w}. Then it follows from Theorem 3.1 that A is
decomposed into an L-restricted subdirect union of {#*(A); »€ 2} and
x=y@(M)) is equivalent to {w; x,=+y,} <M. Now suppose that x=
{#o; ©€Q} €A and {y,; weQ} cI0¥(A) satisfy {w: x,=y.} < Me€L.
Since y, € 6F(A), we can find y"€ A such that y;=6F1y")=y,. Since 6%
and 6(n) are permutable, by Lemma 2.5, and 0¥ uUé(y)=1, we can find
x" € A such that x"=x(6(5)) and x"==y"(0¥), accordingly x) ==z, for w79
and x)=3]=y,. Now put §,=60M—w) for o€ M. Then 6,€ K(Z) and
Notnlo=0(z). Since xf=x"(0(5)b(y)), we can find y*€ A such that
y*=2x°(0(M—ow)) for o € M, by the condition (3). If weM, yk=2x2=1y.,,
and if 0 €M, y*=x«] for any € M and hence y*=x,=y,. Thus y*=
{¥0; @€ Q} and {6%(4); o € Q} becomes the L-restricted direct factoriza-
tion. So the proof is completed.

If Nocapt=0, then A is decomposed into a subdirect union of
{6*(A) ; € Q} and congruence relations 61M) are defined. If d(n)voF=1I
and 6(5) and 0F are permutable, then for x, "€ A we can find x"€ A
such that x"=x(0(») and x"=y»"(0}). Then the condition (II) of L-
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restricted direct decompositions follows from complete permutability of
{0(M) ; Me L}, as is shown above. Hence

COROLLARY. An algebra A is decomposed into the complete direct
union of {0%(4); o0 €Q} if and only if

(1) /\wEQeuﬂ:::O) (2) (/\m#noi)ueley
(3)  {Nwemt*; Me 2% is completely permutable.

Now L is an atomic, relatively complemented, distributive lattice.
Conversely if K(Z) is such a lattice and {0, ; o € Q} is the set of atoms
of K{(Z), then corresponding 8¢ K(3) to M= {w; 6,<<6}, we obtain an
isomorphism between K(Z) and a lattice of subsets of Q. If 6% is the
congruence relation corresponding to the prime ideal P,={0;026.,,
0 € K(Z)}, then 6(M) e K(Z), which corresponds to M, is written (M) =
Neoca-ml¥, since (0(M)]= Nuvca-mP.. Moreover if 6(M) € K(Z) and w € M,
then K(Z) contains (M — w) which is the complement of 4, in the interval
[0, 8(M)]. Now if = contains 0 and 7, A is decomposed into subdirect
union of {0*(A); we Q}. Assume 6(M)e K(Z) and N<M, and choose
x€ A and yelld*¥(A) so that {w; x,74=y.} =N. If K(Z) is completely
permutable, then we can show y€ A in the same way as in the last
part of the proof of the above theorem. Then it is easy to show that
Os(x, y) € K(Z) is written in the form 6(N). Hence K(Z) is isomorphic
with an ideal L of 2% and A can be decomposed into an L-restricted
direct union. So we can infer

THEOREM 3.3. The representations of an algebra A as a (restricted)
direct union of {A.; o€ Q} correspond one-one withc losed sublattices = of
O(A) satisfying that (1) =30, I, 2) K(Z) is an atomic, relatively com-
plemented, distributive lattice as a sublattice of ®(A), (3) K(Z) is completely
permutable.

Complete direct factorizations correspond to = such that K(Z)> 1.
Now congruence relations on a Boolean algebra A are permutable, but
K(®(A)) is not completely permutable unless A is complete, as is shown
in Theorem 2.3. Hence the above condition (3) cannot be replaced by
usual permutability. Moreover Theorem 2.3 indicates that the condition
that K(Z) is atomic cannot dispense with. But it seems that complete
Boolean algebras yield fundamental models of direct factorizations of
all algebras.

4. Fintely restricted factorizations

In Theorem 3.3 finitely restricted factorizations correspond to X in
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which K(3) satisfies the descending chain condition. On that occasion
> becomes a Boolean algebra. Further we can show generally

LeMMA 4.1. The ideal lattice J(K) of a semilattice K is complemented
and modular if and only if K is a relatively complemented modular lattice
satisfying the descending chain condition.

Proor. If @/ denotes a relative complement of @;va)_, in [a;_,, I]
in a complemented modular lattice, then I=a, >a,_>a, >--- implies
0=a,/<a’<a,/<---; hence a complemented modular lattice satisfying
one chain condition has a finite length. Let K be a relatively comple-
mented modular lattice satisfying the descending chain condition and J
any ideal in K. If I'={J,} is a maximal chain of ideals satisfying
JunJ=0, then the set-sum J’ of all J, is also an ideal satisfying J'nJ
=0. Given a€ K, the principal ideal (¢] has a finite length; hence
(@]n(Jwu]) becomes a principal ideal (] and any x€ ], yeJ satisfy
an(xvuy)<b. If b is a relative complement of b such that bnbd'=0,
bub=a, then VnNnixuy)<an(xuy)<<b and V' n(xvy <b'nb=0.
Hence ((ywd')nx)vy=(yub)n(xuy) =y n(x\vy)=y and so ((yb’)
Nx<ynx=0; namely (/v (@®])nJ=0. Since I' is a maximal chain,
it follows that & €J and a=bub' € Jv). Thus JuJ=K and J(K) is
complemented. Conversely if J(K) is complemented and modular and
J<(a], then J' exists such that /JnJ’=0 and JuvJ' = (a], whence we
have be J, ¥ € J' such that bubd’ =a. It follows from the modular law
that /= (b], /= (b"] and hence (a] satisfies the ascending chain condi-
tion. Further (x]n(y] must be a principal ideal and hence K contains
xny. We conclude altogether that K is a relatively complemented
modular lattice satisfying the descending chain condition.

Further if K(Z) is a lattice satisfying the descending chain condition,
it follows from Theorem 2.2 that complete permutability can be replaced
by usual permutability ; hence we infer

THEOREM 4.1. The representations of an algebra A as a finitely
restricted direct union {A,; o € Q} correspond one-one with closed sublattices
% of O©(A) satisfying that (1) %€0, 1, (2) = is a Boolean algebra, (3) all
congruence relations in = are permutable.

Furthermore we can show that a \/-closed sublattice % of ©(4)
which is complemented and modular and contains 0, I generates a
finitely restricted factorization.

LEMMA 4 2. Let = be a \/-closed modular sublattice of a compelete,
upper continuous lattice ® and S(Q)={0,: 0 €Q} a subset of elements 0,
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of = different from O and satisfying that \/,c.o9.=1I and 6,n )\ ,cq_20.=0
for all €, Then the closed sublattice of © gemerated by S() is iso-
morphic with 29,

Proor. Put 6(M)=\/,enb., and 0(0)=0. If 6(M)=6(N) and e M
—N, then \/,co 0, =>0(N)=0(M) >0, and 6,=06,"\/uca_.0.=0. Hence
0(M)=6(N) implies M=N. Put 0*=\/uca_,0u, P(M)=Nuca-nb* and
p(Q)=1I. Then (M)>6(M). Since p(M)NO(M)=0(M), M is contained
in a maximal chain {N,} of subsets of 2 such that @(M)N0(N,)=0(M).
Then N=\/N, also satisfies @(M)NO(N)=6(M), since 6(N,) ? 6(N) and
® is upper continuous. Suppose that o € Q—N<Q—M. Then 6% >p(M),
6% >6(N) and 0,, 0* and O(N) are elements of a modular lattice X;
hence we have @(M)NO(N+ o)< 0*n (@, d(N))=(0*¥n80,)vi(N)=0(N)
and (M) NO(N+ o) =p(M)n0(N)=6(M), which contradicts that {N,}
is a maximal chain. Therefore p(M)N0(Q)=0(M) and @(M)=~0(M),
since 0(Q)=I>@(M). Thus \/0(M,)=0(\/M,), /\0(M,)=6(/\M,) and
the closed sublattice generated by {6,; o€ Q} is a Boolean algebra iso-
morphic with 2©,

Lemma 4.3. If a \/—closed sublattice = of O(A) is complemented and
modular, then there exists a subset S(Q)= {0, ; o € Q} of points of = such
that the closed sublattice of ©(A) generated by S(Q) is a Boolean algebra
and contains 0, I of =.

Proor. We shall first show that = is atomic. Let  be any element
of % different from 0 and ¢ a complement of §. Choose two elements
x,y of A so that x==y(¢), and consider the partially ordered set C(x, y)
of all congruence relations 0, € 2 such that x==y(d,). Then ¢ is contained
in a maximal chain I' in C(x, ). Put o=supl'. x=y(0c) means x=y
(0,) for some 6,€1'; hence x=Ey(s) and besides o€ 3. If o< 7< I and
T€32, then 7 €3 exists such that 7n7’=¢, Tus’=1I Since I' is a
maximal chain, x=y(7), x=y(v’) and hence x=y(0). Therefore o is a
maximal element of =. Then its relative complement o, satisfying
ond’ =60 and oo’ =1, covers ¢ and hence § "¢’ covers 0, by Dedekind’s
transposition principle. Thus = is atomic. Now let {d,; o, € Q*} be the
set of all points of = and consider a maximal chain C(M) of subsets M
of indices o satisfying that 6,"\\/uem-.0.=0 for all n€ M. If Q is the
set-sum of Me C(M), then we have \/uerr— 00 1 \Vuca-nfo and 0,N\/uco_,0.
=0 for all »€Q, since ®(A) is upper continuous. Put \/,co_,0.=0F.
Then 6F}e=. If ¢o=0,960Ff=\/,caf,+1, then a complement ¢’ of ¢
contains a point #; of %, which satisfies 6:"\\/,c0f,=0 and 6, (6;\0F)
=0,Nn@pN (O 05)=0, N (PO ub¥)=0,n0%=0; namely 0,N\/uca t_0

2]
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=0 for all € Q+§, which contradicts that C(M) is a maximal chain.
Hence 6,n0%¥ =1 and S(Q) = {4, ; o € Q} satisfies the conditions in Lemma
42, Thus the closed sublattice generated by S(Q) is a Boolean algebra
isomorphic with 29,

Again 0% are maximal elements in = and the above Boolean algebra
{0(M)} is considered to be generated by {6*; 0w€Q}. Then we can
deduce immediately

THEOREM 4.2. If a \/-closed sublattice % of ®(A) containing 0 and
I is complemented and modular, then we can choose a set {0%; w€ Q} of
maximal elements of % so that A be decomposed into an irredundant, finitely
restricted, subdirect union of {0¥(A); 0 € Q}. If all congruence relations
of 2 are permutable moreover, then the above factorization is a finitely
restricted direct factorization.

We may choose many systems of maximal elements 6% satisfying
the condition of Theorem 4.2 from =, and A may be factorized in many
ways. What sorts of relations are there among those factorizations?
In order to clarify this we first prove some lemmas.

LeMMA 4.4. Let = be a \/~closed modular sublattice of a complete,
upper continuous lattice ® and S(Q)={0,; o€ Q} a system of points 0,
of = such that the closed sublattice of ® generated by S(Q) is isomorphic
with 22 and contains 0,1 of Z. Then 0, can be replaced by any element
0 of 3 satisfying 0n0Ff=0 and 0 0F=1I, where 0 =\/,cq_,0.,.

Proor. It is sufficient to prove that the closed sublattice generated
by S'(Q) = {p, ; ® € 2}, where ¢, =46, for w=7 and @,=4, is isomorphic
with 22 and contains 0, I. Put @¥=\/,ca.tP,. If E==7, then @p¥=
Voca-t-ndo V0= (0FN0F) V0 and @fnek=(0Ffn0F) o) oF=(0Fn0F)
v(@NOF)=0fn0F; hence pinpf=p:n@¥noF=0;n0fn0f=0. Since
p,NP¥=0n0F=0, we have ¢, \p¥=0 for all w€ Q and \/ cop, =0\ 0F
=1. Then it follows from Lemma 4.2 that the closed sublattice generat-
ed by S’(€2) is isomorphic with 22,

LEMMA 4.5. Let O, = and S(Q) be the same as are defined in Lemma
4.4 and O(M)=\/,epr0,. If O€3 satisfies 0NO(N)=0 for some N<Q,
then there exists M<Q satisfying that 0n0(M)=0, 6 UO0(M)=I and
MZ>N; hence 0 and 0(Q2— M) are perspective.

PrOOF. N is contained in a maximal chain I' of subsets M, satisfy-
ing 6n0(M,)=0 and M=\/M, >N also satisfies 0\ 0(M)=0, since ® is
upper continuous. Put @=0ué(M). Then @€ and @==I implies
pn0,=0 for some w € 2, since 0, are points of % and \/,ce9,=1 Then
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we have 0NOM+w)=0non (0, vO(M))=0u(lpnb )vo(M))=0ui(M)=0,
which contradicts that I' is a maximal chain. Thus ¢ vVé(M)=1I, com-
pleting the proof.

Now let A have a one-element subalgebra ¢ and e=(e¢, ¢,) in a
direct decomposition A=A, x A4, of A. If 6 is the congruence relation
generated by the homomorphism from x € A to its A,—component x,, then
the congruence class C(0) ={x; x==e(0)} is the subalgebra A¥= {(x,, ¢,) ;
x,€A} of A which is isomorphic with A,. Hence any direct factor
0*(A) may be replaced by the congruence class C(d,). Further, as is
already known, the projectivity between two congruence relations yields
an isomorphism between their congruence classes; namely

LEMMA 4.6. Let A be an algebra with a one-element subalgebra ¢ and
3 a sublattice of ®(A) such that Z€0, I and all congruence relations in
2 are permutable. If [0, 0] and [0, ¢ are projective intervals in =, then
the congruence classes C(0) and C(p) are isomorphic.

It is obviously seen that the congruence class C(6(M)) (the homor-
phic image of A mod 6(2--M) in general) is isomorphic with the finitely
restricted direct union of {C(d,)); » € M} ({0*(4); » € M}) in the factoriza-
tion mentioned in Theorem 4.1; hence from Lemma 4.5 we can deduce

THEOREM 4.3. Let A be an algebra with a one-element subalgebra and
S a \/-closed sublattice of ®(A) such that %30,1 and all congruence
relations in 3 are permutable. If the closed sublattice of ®(A) generated
by a set {0,; o€ Q} of points of = forms a Boolean algebra and contains
0, I, then any congruence class C(0) with 0 € %, is isomorphic with the finitely
restricted divect union of {C(0,); o € M}, where M is a subset of Q.

LEMMA 4.7. Let 3 be a \/-closed modular sublattice of a complete,
upper continuous lattice ® and S(Q)={0,; o €Q}, S(H)y={p,; n€ H} two
systems of points of 3 satisfying the conditions in Lemma 4.4. Then there
is a one-one correspondence from S() into S(H), under which correspond-
ing two elements are perspective.

Proor. Using the axiom of choice, we can well-order Q so that
Q={1, -, a -, -} and SQ)NSH)={0,; p<a}, and put ¢,=0,
for p<a. If @, is defined for each p<\ so that ¢, € S(H) and ¢, =+,
for p==», then we may regard the subset C,={p; p<A}<Q as a
subset of H. Let D, be a subset of H such that C,<<D,<H, and put
E.=0-C,, Q,=D,+E,. If we pul D,=C,, then the closed sublattice
generated by

SQ,)={p,; n€D,}+{0.; peE,} =S)
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is an atomic Boolean algebra and contains 0, I of =. Now let A be an
ordinal number, and {p,; v<p}, D, and S(Q,) be defined for all p< A
so that

(1) o, and 6, be perspective and ¢, € {p,; n€ H—D,},
(2) C.<D,<H and D, <D, for v<p,
(3) the closed sublattice generate by

S@Q)={p,; n€D}+1{0,; veE,}

be an atomic Boolean algebra containing 0, [ of =. Accordingly @(D,) N
0(E,) =0 and @(D,) VO(E,) =1, where @(D,) =\/,¢cp,P, and 0(E,) =\/secg.0s.
Then we shall construct S(Q,) satisfying the above conditions.

Case I: A—1=p exists. Let 4 be the complement of 6., which
is contained in {0,; »€E,}, in the Boolean algebra generated by S(Q,).
Then y*>@(D,). If >, for all y€ H—D,, ¥ must coincide with
I; therefore @,Ny¥=0 and @, Uy¥ =1 for some n€ H—-D,, since @, is
a point and % a maximal element of 3. Put ¢,=¢, and D,,,=D.+px,
ie, {p,; n€D\}={p,; €Dy} +p.. Then it follows from Lemma 4.4
that the system S(Q)) = {®,; 7€ Di} + {0,; v€ E,}, which is obtained by
replacing 0. of S(Q.) by ., satisfies the condition (3) mentioned above.
The other conditions (1), (2) are obvious. '

Case II: M is a limit-ordinal. In this case {p.; p< A} are all
defined. Put D=\/ucxDu. Then @(D.) t (D) and @(D,) NE6(E,\) < @(D,)
NO(E,) =0 for all x<\; hence (D)NO(E,) =0. It follows from Lemma
4.5 that there exists D\<<H such that @(D,)nO(E,) =0, ¢(D)VOE,)=I
and D,>D. The conditions (1), (2) are satisfied. We show that S(Q,)
= {p,; n€ D\} + {0, ; v € E\} satisfies the condition (3). If we set ,=¢,
for n€ Dy, ¥,=0, for v€ Ex and ¥ =\/;co, V¢, then \/icore=@(D))
VO(E,) =I and we may write ¥¥ =p((Q\—E) D)o Q—&) NE,). For
E=mn€ Dy, ¥,nYF =1, N@(Dy) N (P(Dr— ) VO(E))) = Y, " ((P(D)) NO(EL) v
@ (Dr— ) =@,NP(D\—7n) =0 and it is similar for £=v€E,. Hence
YenyF =0 for all £€Q, and it follows from Lemma 4.2 that the closed
sublattice generated by S(,) is an atomic Boolean algebra.

If for some A, H—D, is exhausted, then ¢(D,) =1 and hence 0(E,) =
0; namely E, is void. So we can find o, for all A€ Q and the proposi-
tion is thus proved.

THEOREM 4.4. Let = be a \/-closed modular sublattice of a complete,
upper continuous lattice ® and S(Q)={0,; 0 € Q} and S(H)= {p,; n€ H}
two systems of points of 3 such that both the closed sublattices of ©®
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generated by them are atomic Boolean algebras and contain O, I of =.
Then there is a one-one correspondence between S(Q) and S(H) and the 0,
and 0, are projective in pairs.

Proor. Let 6, be any element of S(Q) and P(w) the class of all
elements of S(Q) projective to 6, in =. Again let 6, correspond to @,
under the correspondence mentioned in Lemma 4.7. Then the images
of the elements in P(w) under this correspondence are projective to ¢,
in ¥ and containd in the class P(y) of all elements of S(H) projective
to @,. So P(w) corresponds one-one with a subset of P(7). Conversely
we may consider a simliar correspondence from S(H) into S(), under
which P(7;) corresponds one-one with a subset of P(w). Then there exists
a one-one correspondence between P(o) and P(). Thus we can find a
one-one correspondence between all classes P(w) and P(z), and the theorem
is proved.

Referring Lemma 4.6, we infer that the factorization of an algebra
with a one-element subalgebra mentioned in Theorem 4.2 is not in-
fluenced by the selection of the system S(Q) to within isomorphism.

CorOLLARY. Let A=1I,,C(#,)=1L,.5C(®,) be two representations of
an algebra A with a one-element subalgebra as a finitely restricted divect
union. If there exists a \/-closed sublattice 3 of ©(A) such that 6, and
@, are points of 3 and all congruence relations in 3 are permutable, then
there is a ome-one correspondence between 2 and H, and the C(0,) and
C(p,) are pairwise isomorphic.

A congruence relation 8 on A is called a decomposition congruence
relation if and only if 4 has a complement ¢’ which is permutable with
6; that is to say, A is decomposed into 6(A4) x ¢ (A). All congruence
relations (M) mentioned in Theorem 3.2 are decomposition congruence
relations. If & and @ are two dccomposition congruence relations and
0< o, then it is easy to see 0(A) = p(A) x p*(A4), where p* =09’ ; hence
if 6(A) is an indecomposable direct factor, ¢ is a maximal decomposition
congruence relation. Conversely if a direct factor 8(A4) is decomposed
into a direct union @8(A) x ¢’0(A), then evidently @@ is a decomposition
congruence relation on A and @6 _>6 ; hence if 6 is a maximal decomposi-
tion congruence relation, then 6(A) is directly indecomposable.

Now let A be an algebra on which all congruence relations are per-
mutable and all decomposition congruence relations form a sublattice
6,(A) of B(A). If 6,(A) is \/—closed in ©O(4), then it follows from
Theorem 4.2 that A is decomposed into a finitely restricted direct union
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of directly indecomposable factors. Conversely suppose that A is de-
composed into a finitely restricted direct union of indecomposable factors
{0*¥(A) ; w€ Q}, and define 4, and (M) as before. Given a subset {p,}
of 8,(4), we set y.=\/,cup, and assume ¥.€ 0O, for p< A If A—-1
exists, then Yn=vn_; U@, ,€0,. If A is a limit ordinal, then . 1 V.
We can find a maximal subset M of Q satisfying yn0(M)=0. A\
0(M) =6, implies Y, O0(M)=*0, and hence Yy v0(M))Nn6,=0 for all
#<_A, since (Y, vOM))n0,€ 0O, and 6, is a point in O,. Since v O(M)
P O0(M), we have WnvuoM)n8,=0, @ voM))N(E@DM)E,)=
((WYra v OM)) N 6,) v O(M))=060(M) and N O(M + w)=1,N0(M) =0, which is
a contradiction. Hence +r\\v0(M) >0, for all ® € Q—M and so v O(M)=
I'; acchrdingly € ®, and thus O, is \/—closed.

THEOREM 4.5. Let A be an algebra on which all congruence relations
are permutable and decomposition congruence rvelations form a sublattice
0,(A) of O(A). Then A is decomposed into a finitely restricted direct
union of directly indecomposable factors if and only if ©,(A) is \/-closed
in ©(A).

If A contains a one-element subalgebra moreover, then ®,(A) satisfies
the conditions in Cor. of Theorem 4.4 ; hence

CorOLLARY. Let A=11,0A,=11,cyB, be any two representations of
an algebra A as a finitely restricted direct union of indecomposable factors,
where (1) A has a one-element subalgebra, (2) all congruence relations on
A are permutable, (3) all decomposition congruence relations on A form a
sublattice of ®(A). Then there is a one-one correspondence between L and
H, and the A, and B, are pairwise isomorphic.

5. Factorizations into simple factors

Almost all of well-known algebras, such as groups, rings etc., have
modular structure lattices. Applying the results in the last paragraph,
we shall discuss the finitely restricted factorizations of such algebras
into simple factors.

If 0* is a maximal element of ®(4), then the homomorphic image
0*(A) of A is simple. Therefore if ®(A4) is complemented and modular,
then we can infer, by using Theorem 4.2, that A is decomposed into
an irredundant, finitely restricted subdirect union of simple factors.

We shall prove the converse of this fact. Let A be an algebra with
a modular stiucture lattice ®(A) and decomposed into an irredundant,
finitely restricted, subdirect union of simple algebras {4, ; » € Q}. Define
0% and (M) in the same way as in Theorem 3.1; namely §(M)= N.ca-m0*
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and x=y(@(M)) means {w; x,=Fy.} <M. Since 0X(A)=A, is simple,
0* is maximal, and since the factorization is irredundant, 6, = 0(w)<£6¥;
hence 6,v@*=1I. We shall first prove O(M)=\/,embo. If we put
Vel =@ M), then evidently @(M)<6(M). Suppose that x=y(@(M))
and put {w; x,==%.} =N. Then N<M and N is a finite set, so we put
N={w,, -+, »,} and N;= {o,, *-*, o;} for i=1, .-, n. Evidently (V)=
0(w,) <<p(M). From O(N;_,) <@p(M) we can deduce §(V;) = (6o, 5)) N O(N;)
=0u, U (0%,NO(N))) =00,V O(N,_,) <@(M); hence we have O(N)<p(M)
and x=y(@(M)). Thus O(M)<@p(M). Now let & be any congruence
relation on A and consider a maximal chain I' of subsets M, of Q
satisfying 6 n0(M,) =0. It follows from the above argument that M=
supl' satisfies 0(M,) 1 (M) and hence 6n6(M)=0. As a complement
0, of a maximal element 6* is a point, =6\ 8(M)=3>6, implies p"6,=0
and 0NOM+ 0)=0nen(@,v0(M)=0n((pn6,)vo(M)=60n0(M)=0,
which is impossible since I' is a maximal chain. Then 6\ 0(M) >\/,caf., =
0(Q2)=1I. Thus 0 has a complement (M). In summary

THEOREM 5.1. Let A be an algebra with a modular structure lattice
®(A). Then A can be decomposed into an irredundant, finitely restricted,
subdirect union of simple factors if and only if O(A) is complemented.

This is a generalization of the following result which has been
guessed by the author and proved by Tanaka [7].

CorOLLARY. Congruence relations on a lattibe L form a Boolean algebra
if and only if L can be decomposed into an irredundant, finitely restricted,
subdirect union of simple factors.

Further referring Theorem 4.5, we have

THEOREM 5.2. Let A be an algebra on which all congruence relations
are permutable. Then A can be decomposed into a finitely restricted direct
union of simple factors if and only if O(A) is complemented. Moreover
if A contains a one-element subalgebra, then the factorization is unique to
within isomor phism.

This yields the condition in order that a group or a ring be com-
pletely reducible ; namely

CorOLLARY. A group G (with or without operators) can be decomposed
into a finitely restricted divect product of simple groups if and only if
every normal subgroup H has a complementary normal subgroup H' satisfy-
ing HNH' = {¢}, HH' = G".

4) For instance, vector spaces satisfy this condition.
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This includes the results of Blair [2] on the decomposition of rings
into simple rings or minimal ideals.

6. Algebras with distributive structure lattices

We shall first show an extended unique factorization theorem for
an algebra A on which congruence relations form a distributive lattice.

Let an algebra A be decomposed into an L-restricted direct union
of {A¢; E€E} and each factor A decomposed into an Lgrestricted
direct union of {A,s; 7€) € Hg}. If L* is the family of subsets M*
of Q= {»&); 7)€ Hy, §E€ E} written in the forms M*=\/¢,M; with
MeL and M€ L;, then it is obviously seen that L* is an ideal of the
Boolean algebra 22 and A is isomorphic with the L*-restiicted direct
union of {4, ; 7)€ Q}. We call the L*-restricted direct decomposition
A=TII;xA,; just mentioned a refinement of the decomposition A=1I,A;.

THEOREM 6.1. Let E, H be two sets of indices & n and X, Y ideals
of the Boolean algebras 2=, 2¥ respectively. If an algebra A with a dis-
tributive structure lattice is directly decomposed in two ways A=1I, A=
II A,, then there exists a common refinement A=11,A¢, such that Ay=
HYAg,, and A,,,-'—‘—HXA;;,,.

ReMark. We assume, without loss of generality, that each of A;
and A, contains two or more elements, but some of A;, may be one-
element algebras.

Proor. Define the congruence relations 6, ¢¥, 6; and @, as before :
OF(x)y=1x¢ € Ag, pF(x)=x,€ A,, 0: V0F =1, 0:N0Ff =0, p,vp¥=1I ¢ Np¥=
0. Put ki =0Fup¥. If x=y then 6f(x)=0¥(y) and hence ¥ (x)=
wE(y) for all ne H Hence defining of(xy) =¥ (x)=2x¢, (similarly
¥ (x,) = x¢,), we obtain a homomorphism ¢} from A; onto Ag, =¥ (4).
Suppose that x¢, =3, for all »€ H, in other words x=y(/\,cx\V%). Then
since GNPl =0 0F vpF) =0:np¥, 0:n /\yerVE < /N\yen® =0 and
MNoeaVty = Naen¥ly N 0V 0F) = (/\,en¥ity NO) V0F = 0§, we infer that
x=y(0¥), namely x;=y;; hence the mapping x;—{x¢,; 7€ H} is an
isomorphism of A; into II .4A:, and A; is decomposed into a subdiret
union of {A¢,; n€ H}. Now if x and y are any two elements of A and
£ is a fixed index in E, then it is evident that {7; x¢,=Fye,} < {n; %,
¥,} € Y. Conversely suppose that x;= {x¢,; n€ H}, y:= {3:,; 7€ H} with
xe=0F(x) € A, yr €I, cyAr, and M= {5; x¢,==y:,} € Y. We can choose
a set of elements z2"€ A so that ¥ (2")=2:,, and an elements z€ A so
that z,=x, for € M and z,=2; for n€ M, since {y; z,4+x,} <MecY.
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Then if 7€M, we have zy,=r1¥(z,)=1F(x,) =2%¢,=2,, and if €M,
2e, =78 () =, (2") =y;,; hence yg=z2:€ A;. Thus A; is isomorphic
with a Y-restricted direct union of {A:,; n€ H}.

Now if A; is directly indecomposable, then A, are one-element
algebras except some one A, so 0Fuef=I for 5=7E). Then
0F = /\,eu0F v p¥) = 0F U@k, >pXe,. Moreover if A, is directly in-
decomposable, we infer similary @, >0% ), and hence 0F >0¥, ), ; then
E(n(&)) =§, for otherwise 0Ff =0F 0% +,=I. Hence if all of A; and A,
are directly indecomposable, there is a one-one correspondence between
E and H under which the corresponding congruence relations ¢} and
@¥ are identical. Further observing that {&; x¢==y¢} corresponds to
{n; x,=y,} under this correspondence, we conclude

COROLLARY. Let A be an algebra on which congruence relations form
a distributive lattice. Then for any two direct factorizations of A into
directly indecomposable factors, A=IIyA;=11,A,, there exists a one-one
correspondence & — (&) between factors under which X=Y and A=A, .

It follows from Theorem 6.1 that two direct decompositions A=
0(A) x 0 (A) =p(A) x9’(A) yield a refinement A=+r,(A) X, (A) X Y, (A) x
¥ (A), where Y, =0uUp, J,=00Uq’, =0 Up, J,=0 e’ Putting
together the three factors, we have a decomposition A=1}r(A) x’'(A)
with y=0uU@ and ' =0 n¢’; hence all decomposition congruence
relations from a sublattice ®,(4) of ®(A4). Further if ¢ is a decomposi-
tion congruence relation ; there exists for any pair x, ¥y an element z
such that x0z8'y. So x=y(@uUp) implies z=x=y(@v®) and 2=y mod
0 Nn(@vp)=0 no; hence 6 is permutable with any congruence relation ¢.

THEOREM 6.2. All decomposition congruence relations on an algebra
A with a distributive structure lattice ®(A) form a Boolean algebra as a
sublattice of O(A) and they are permutable with any congruence relation.

Referring Theorem 4.5 and its proof, we have

COROLLARY. An algebra A with a distributive structure lattice ©(A)
is decomposed into a finitely restricted direct union of indecomposable factors
if and only if the set of decomposition congruence relationsis \/—closed in
O(A).

We shall next show an application of this corollary. We say that
a lattice L satisfies the restricted chain condition if every closed interval
of L satisfies either one of chain conditions. Let 6, be decomposition
congruence relations on a lattice L satisfying the restricted chain condi-
tion and put 0=\/0,. If an interval [x, y] satisfies the ascending
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conditioni, then we can find a maximal elethent z satisying x==z(f) and
+<z<y. Since 6, is a decomposition congruence relation, we can find
an element # such that 20,40,y and z2<<u<y. Then u=z=x(f) and
herice u=2z, since z is a maximal element satisfying x=z(6). Thus
z=y(0,)) for every 6,’. If we put &=/\0,/, then every interval [z, y]
satisfies x=y (0 @) ; hence ¢ =1I. It is easy to show & n0=\/{0’'~0,)
=0. Since & is permutable with every 6,, ¢ and ¢ are permutable.
Thus 0 € ®,(A) and B,(A) is \/—closed.

THEOREM 6.3. Amny lattice satisfying the restricted chain condition is
a finitely restricted direct union of direcily indecomposable lattices.

CoroLLARY. If a lattice L with O, I satisfies either one of chain
conditions, then L is decomposed into a direct union of a finite number
of indecomposable factors.

Now let an algebra A with a distributive structure lattice be de-
composed into an L-restricted direct union of indecomposable factors
{0¥(A); » €Q} and define 6,, 0(M) as before. Given 6 €8,(A4), we set
M= {w; 6,<6}. Since 0, is a point in 0, we get for 0w €Q2—M,
0,n0=0, 0¥ =0%U(0,n0)=0%U0>0 and O(M)=\,ca.n0*>0. Again
the complement 6’ of ¢ satisfies 6,n 0’ =0 for » € M, where 6(Q—M)>¥¢".
So we conclude altogether § =6(M). Accordingly

THEOREM 6.4. If an algebra A with a distributive structure lattice
O(A) is decomposed into a (restricted) direct umion of indecomposable
factors, then ©,(A) is atomic and /\-closed in O(A).

7. Direct decomposition of complete lattices

Congruence relations on a lattice L form a distributive lattice ®(L)
and decomposition congruence relations on L form a Boolean algebra ®,(L)
as a sublattice of ®(L). So applying the results in the last paragraph,
we shall discuss the direct decompositions of complete lattices.

THEOREM 7.1. For a complete lattice L the following conditions are
equivalent :

(1) L is a direct union of directly indécomposable lattices,

(2) O, (L) is atomic and /\-closed in O(L),

(3) OL) is atomic and )\ co0F =0, where {6%; o€ O} is the set of
all maximal elements in O(L).

Proor. (1) implies (2) by Theorem 6.4 and it is easy to see that
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(2) implies (3). If (3) holds, then L is decomposed into a subdirect union
of directly indecomposable lattices {0*(L); o €Q}. Given {x,; o €Q}
with x,€0%(L), we can find x* € L such that 6*(x*)=x, and y* € L such
that 0<y*<x» and 00 y°0*x>, where 6, is the complement of ¢*. Put
Veecad”=y. We can find x"€L such that y"<z"<y and y"0}2"0,y.
Since 0,0 and so y*0}0 for w==17, we have y"0Fy" U y*0F2"U y0, yuy> =3y.
Then 2"V y°0Fy"0%z" and 2"\ y°0,90,2" ; accordingly 2"y =2" and 2" >y*
for all w€Q. Thus we have 2"=y, y0Fy"0Fx" and 0% (y) =0%(x") =x, for
all 7€, So L is isomorphic with the complete direct union of {¢%(L);
» €0},

Further let us consider the case that L is atomic. If p is a point
of L and 6 € ®,(L), then it is easy to see that p=0(f) or p=0(¢") holds.
Let {6,} be all elements of .O,(L) satisfying p=0(d,). If @ B, (L)
satisfies 0< @< 0= /\b,, then we have p==0(p), p=0(¢’) and p=0(0N¢’).
Hence if ©,(L) is /\—closed in ©(L), then 6@’ € Oy (L), ¢’ >0 and =0,
so we can show that ©,(L) is atomic.

COROLLARY. A complete atomic lattice L is a direct union of directly
indecomposable lattices if and only if O, (L) is /\-closed in O(L).

It is well-known that a complete atomic Boolean algebra is decom-
posed into a direct union of the two-element lattices. Then it may be
a natural inquiry whether a complete atomic distributive lattice is directly
decomposed into indecomposable factors. But the answer is negative,
as shown below.

In a complete lattice L decomposition congruence relations 6, cor-
respond one-one to elements ¢, in the center C(L) so that C(4,)= {x;
x=00,}=(,] and C'(0,)={x; x=I1(,)}=[c,). Further C(/\,) =
NCO,) = /\(ca]=(/\ca] and C’'(\6,)=[\/c.) ; hence

LEMMA 7.1. Let L be a complete lattice. If O, (L) is /\—closed in
O(L), then the center C(L) is a closed sublattice of L.

Let © be a set which consists of a directed set of points p, and
another point p, and introduce a topology in the space 2 so that if M
contains a cofinal subset of {p,}, then M=Mwvup, otherwise M =M.
Then the lattice L of all closed subsets of Q is complete, atomic and
distributive, and moreover ©(L), ®,(L) and C(L) are atomic ; nevertheless
L cannot be directly decomposed into indecomposable factors. We can
show more generally

THEOREM 7.2. Let L be the lattice of all closed subsets of a totally
disconnected T,~space Q2. Then L cannot be decomposed into a direct union
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of indecomposable factors, unless Q2 is discrete.

Proor. If Q is not discrete, then there exists a point p such that
Q—p>p. Since Q is totally disconnected, we can find for every point
g¢=+p an open and closed subset M, so that M,>p and M,>4. Then
M,eC(L) and \M,=p€C(L); hence C(L) is not closed in L and the
theorem is proved with Lemma 7.1 and Theorem 7.1.

As is shown in a previous paper [4], the lattice ®(L) of all con-
gruence relations of a distributions lattice L is isomorphic with the
lattice of all open subsets of a totally-disconnected locally-compact T,~-
space.

COROLLARY. Let L be any distributive lattice. Then O(L) cannot be
decomposed into a divect union of indecomposable factors, unless every
closed interval of L has a finite length.

8. The structure of relatively complemented lattices

Dilworth [3] has proved that a relatively complemented lattice with
0, I satisfying the asceding chain condition is a direct union of a finite
number of simple lattices. We intend to generalize this result for atomic
relatively complemented lattices. In the present section we shall call a
lattice L atomic if and only if every interval of L contains a prime
interval and uniserial if and only if all prime intervals of L are projective.
First it is easy to show

LEmMmA 8.1. All congruence relations on a relatively complemented
lattice are permutable.

LEmMA 8.2, Let x, 3y, 2 be any three elements of a relatively com-
plemented lattice satisfying x<_y. Then any subinterval of the interval
[xnz, ynz] (or [xvz, yuz]) is projective to a subinterval of [x, y].

Proor. Suppose xnz<wu<v<yn=z. Lettbe a relative complement
of u in [xnz, v]. Then it is easy to see x< xvt<y and that [, v],
[xnz, t] and [x, x\Ut] are successive transposes.

It follows from this lemma that any subinterval of an interval
[xnz, 2] is projective to a subinterval of its transpose [x, x\Uz]; hence
we infer

CorOLLARY. 1. Let [x, y]| and [a, b] be projective intervals in a
relatively complemented lattice. Then any subinterval [u, v] of [x, y] is
projective to some subinterval [c, d] of [a, b].
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CoROLLARY 2. Let an interval [ x, y] be projective to a prime interval
[p, q] in a relatively complemented lattice. Then any subinterval of [x, y]
is projective to [ p, q].

LEMMA 8.3. Let x, y, z be elements of a relatively complemented lattice
satisfying xy<z. If[x, 2] contains a prime interval [ p, q), then either
[x, ¥] or [y, 2] contains a subinierval projective to [ p, q].

Proor. Let ¢ be a relative complement of p in [x, ¢] and put iny=u.
If u==x, then [x, y] contains [x, ] projective to [p, ¢q], and if u=ux,
then [y, 2] contains [y, y ] projective to [p, q]

LEMMA 8.4. Let L be an atomic, relatively complemented lattice.
Then with every prime interval [ p, ql, a congruence relation 6% = 0% p, q]
can be associated so that

(1) p==q(6%), (2) p==q(0) imply 0<6%,

(3) the homomorphic image 0*(L) be uniserial,
(4) O0*Lp, gl=0*[r, s] if and anly if [ p, q] and [, s] are projective.

Proor. We define x=y(6*) to mean that the interval [xny, xvy]
contains no interval projective to [p,q]. If @, b are two elements
in [xny, xvy] and x=y(0*), then a=5b(0%). It follows from Lemma 8.2
that x=y(0*) implies (xNy)Nnz=(xvy)Nnz(0*) and xNnz=ynz(6*), and
similary xvz=yuvz(0*). Then from x=y, y=2z(0*) we can deduce
XNYNZ=YyN2, yN2=2, 2=yVJg, yvz=xIYyuvz(@*) and that [xnynz,
x\Uyvz] cannot contain any interval projective to [, ¢], by Lemma 8.3;
hence x=2z(0*). Thus @* is a congruence relation. Now suppose that
p==4q0) and x=y(0). If [xny, xvy] contains an interval projective to
[ 5, 4], then p=q(0) follows; hence [xny, xUy] cannot contain such a
subinterval and x=y(0*), proving (2). As (1) and (4) are obvious, it
remains to prove (3). If 6%(x)< 6*(y), then the interval [xny, xvy]
must contain a prime interval [, s] projective to [ p, ¢]. It is obvious
that [0*(r), 0*(s)] is a prime interval in 6*(L) and 6*(x)<g*(r)< *(s) <
0*%(y) ; hence 6*(L) is atomic. Further if [6*(x), 6*(y)] is any prime
interval, then it coincides with [6*(), 6*(s)] which is projective to [6*(p),
6*(q)].

Further if we define x=y(d[ p, ¢]) to mean that all prime intervals
contained in [xny, xvy] are projective to [p, ¢], then it is similary
shown that 6[ p, ¢] is a congruence relation and 6*[ p, g]N0[ p, g]=0.

LEMMA 8.5. The congruence relation 0% p, q] defined in Lemma 8.4
is a maximal decomposition congruence relation if either: (1) L satisfies
the restricted chain condition, or (2) L is conditionally complete.
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ProoF. Let [a, b] be any interval of L and S the set of elements
x satisfying x=a(0*[p, ¢]) and a<x<b. (1) If [a, b] satisfies the
ascending chain condition, then S contains a maximal element c¢. (2) If
[a, b] is complete, put c=supS. Then c=a(6*[p, ¢]). Indeed if [q, c]
contains a subinterval [7, s] projective to [ p, ¢], then the relative com-
plement # of s in [7, c] satisfies < {\vx<c for some x €S and hence
[a, ] contains a subinterval [xN¢, x] projective to [ p, ¢]. So in either
case, ¢ is a maximal element in S. Suppose that [c, b] contains a prime
interval [7, s which is not projective to [ p, ¢]. If ¢ is a relative com-
plement of » in [¢, s, then we have r=s and ¢=#(6*), which contradicts
that ¢ is a maximal element in S. Hence c¢=b(d[ p, ¢]). Thus we get
a=b(*[p, g1 p, ¢l) and G*[ p, ¢l O[ p, g]=1, whence F*[p, q] is a
decomposition congruence relation. Any congruence relation ¢ >6*[ p, ¢
annuls every prime interval; hence every congruence relation 6==0
satisfies r=s(@n0) for some prime interval [, s] and pn€=340. So
0%[ p, ¢] is maximal in O, (L).

Now let {¢*; » € 2} be the set of all congruence relations 0% =6*[ p, ¢
associated with prime intervals. Then it is obvious that /\ co0*=0;
hence from Theorem 7.1 we can infer

THEOREM 8.1. A complete, atomic, relatively complemented lattice is
a direct union of uniserial, relatively complemented lattices.

A uniserial, relatively complemented lattice is directly indecomposable
but not always simple. We can show that if it satisfies the restricted
chain condition it is simple. Indeed a congruence relation =0 on such
a lattice L annuls every prime interval ; hence if ¢ is an element in any
interval [a, b] satisfying c=a(f) and [ p, ¢] is a prime interval contained
in [¢, o], then the relative complement d of p in [c, ¢] satisfies d=c=
a(f), and so a=b(6).

Therfore combining Theorem 6.3 and Lemma 8.5, we have

THEOREM 8.2. A relatively complemented lattice satisfying the restrict-
ed chain condition is a finitely restricted direct union of simple, relatively
complemented lattices.

CorOLLARY. All congruence relations on a relatively complemented
lattice satisfying the restricted chain condition form a Boolean algebra.

(Received May 8, 1957)
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