
Osaka Mathematical Journal
Vol. 8, No, 1, June, 1956.

Supplement to my Paper

" On the Homogeneous Linear Partial

Differential Equation of the First Order"

By Takashi KASUGA

In our paper [2] above-mentioned (in the following, we shall cite
it as "H"), we treated the following homogeneous partial differential
equation

|j + ΣΛ(*, Λ, - > Λ)|^ - 0 (« 2> 1)

without the usual condition of the total differentiability on the solution

Here we remark that we can treat the non-homogeneous linear
partial differential equation of a rather general type

j μ * — , - , 1 9 • • • , n , ί 9 • • • , yn)

in a similar way by the use of Theorem 1 of "//".

1. We shall use the same notations and abbreviations as explained
in § 1. 1 of "//". We add only a new abbreviation for points in Rn+2 :
( x \ y \ z) = (x, yl9 ••• 9 yn9 *).

In the following, we shall denote by G a fixed open set in Rn+l,
by h(x y), k(x jy) and fλ(x jy) (λ = l, ••• , n) n + 2 fixed continuous func-
tions defined on G which have continuous 3λ/3yμ> dk/dyμ,, df^/dyμ,
(λ, /Λ=l, ••• , n).

Under the above conditions, we shall consider the partial differential
equation

(1)
oχ μ=ι σyμ

With (1), we shall associate the simultaneous ordinary differential
equations



140 T. KASUGA

We denote by G, the open set in Rn+2 defined by

(x y z) : (x : y) e G + oo > z > - oo .

Then the continuous curves in Rn+2 representing the solutions of (2)

which are prolonged as far as possible on both sides in G, will be called

characteristic curves of (2) in G. Through any point (ξ η ξ) in G,

there passes one and only one characteristic curve of (2) in G°. We

represent it by C(ξ\ η\ ξ).

A continuous function z(x y) defined on G will be called a quasi-
solution of (1) on G, if it has dz/dx, ^z/dy^ (λ = 1, ••• , n) except at most
at the points of an enumerable set in G and satisfies (1) almost every-
where in G. Here dz/dχ, dz/dyλ need not necessarily be continuous.

On the other hand, a continuous function z(x\ y) defined on G will
be called a solution of (1) in G in the ordinary sense, if it is totally
differentiate and satisfies (1) everywhere in G.

We consider also the homogeneous partial differential equation

which was treated in "H". We define the characteristic curve C(ξ η \ G)
of (3) passing through the point (£ ή) of G, quasi-solutions of (3), and
solutions of (3) in the ordinary sense as in "/f".

For the proof of Theorem 1, we shall also consider the non-
homogeneous partial differential equation

l£+ΣΛ(*;:v)|^ = A(*; y) . (4)ox μ=ι σjyμ

We represent the characteristic curve of (4) in G which passes through

the point (ξ η ξ) of G by C*(ξ η] ξ).

We shall prove the following theorem.

Theorem 1. Let S be a hypersurface in Rn+2 representing a quasi-

solution z = z(x; y) of (1) on G and (ξ η\ ζ) £ S, then C(ξ η ] f)C s

By Theorem 1, we can easily prove, as Theorem 2 of "//", the
following :

Theorem 2. // for a fixed number ξco\ the family of all the
characteristic curves C(ξw η \ G) of (3) such that η e G[T0)] covers G and

is a totally dijferentiable function defined on G[fco:>], then there is

1) cf. Kamke [1] §16, Nr. 79, Satz 4.
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one and only one quasi-solution of (1) on G such that z(ξw η)=^(η) on
G[£cw] and this quasi-solution z(x y) is also a solution of (1) on G in
the ordinary sense.

The proof of this theorem goes in a similar way as in "ί/". Thus
we shall omit it.

2. Proof of Theorem 1.

Let (?' η f) be any point which C (? η f ) has in common with
S. Then

Cίf ; ? ; £ ) = C(F; V; Π and f - *(f V) - ( 5 )

We represent the characteristic curve C (ξ' η \ G) of (3) by

yκ = <Pκ(x) (λ = 1, ••• , n)

/3>jc>α. (6)

Then C(£7; ?7X f r— )̂ where a is a positive number, can be represented
in the form

(λ = !,-••,«)

x > a .

Also C*(lr; 97'; log a) can be represented in the form

\ = φM (λ = !,-••,«)
.

Then by the well known theory of the characteristics2^ there is a
solution z = z ( x ] y ) of (1) in the ordinary sense defined in a neighbour-
hood of (ξr η ) such that

z(ξ'\ *!') = ? -a (9)
and

z(x φ(x)) = ΨW (10)

in a neighbourhood of £'.
Also there is a solution 2 = 2*(# y) of (4) in the ordinary sense defined
in a neighbourhood of (ξf η ) such that

**(f; fl7

/)=logα (11)
and

Z*(X\ φ(x))=ψ*(x) (12)

in a neighbourhood of £'.

2) cf. Kamke [1] §32, Nr. 171, Satz 1 and §32, Nr. 173, Satz 4.
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If we put

z,(x y) - log [z(x y)-z(x y)} -z*(x y) , (13)

then by an easy calculation we can prove that z^(x y) is a quasi-solution
of (3) in a neighbourhood of (ξ' */)- Also by (5), (9) and (11)

Hence by Theorem 1 of "H",

z^x; φ(x)) =

in a neighbourhood of ξ f .
Therefore by (10), (12) and (13)

=lθg [Z(X\ φ(x)) — z(x; φ(x)}—Z*(x\ φ(x))

= log {*(*; ^W)-tW}~Ψ*W

and so
^(ΛΓ φ(x)) = γ(x) + exp ψ* W (14)

in a neighbourhood of F.

Hence, by the definition of ^r(x) and ψ*(x), z(x\ φ(x)} is differenti-
able and

Γ φ(x)) exp ψ *

\ φ(x))

and so by (14)

Z&l < p ( x ) ) = h ( x ; φ ( x ) ) z ( x ; φ(x))+k(x; φ(x))

in a neighbourhood of ξ f .

Therefore by the definition of φκ(x) and of C(ξf ηf ξ"7), considering

(5), it follows that S contains the portion of C(f ' ; ̂  f) (=C(I: η f))
in a neighbourhood of (£' ^ ζΌ

We can represent C (? 77 f ) in the form

(λ = l, — , w)

We have shown above that the set E of points x in the interval
such that z(x ^W)=^W, is open in the interval a<^
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Also by the continuity of φκ(x)> ψ(χ) and z(x y), E is closed in the
interval a<^x<^β. Furthermore E is not empty since ξ £E. Hence E
is identical with the interval a<^x<^β. This completes the proof of
Theorem 1.

(Received March 28, 1956)
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