On Compact Galois Groups of Division Rings ## By Nobuo Nobusawa On the subject of general non-commutative Galois theory, the present author has proved the existence of a fundamental correspondence between topologically closed regular subgroups and subrings for Galois division ring extensions with locally finite Galois groups,—in this case the groups are compact.¹⁾ The main object of this paper is to give a necessary and sufficient condition for such compact Galois groups. In § 1 it will be proved that a locally finite regular automorphism group is essentially outer, that is, can not contain but a finite number of inner automorphisms. Conversely we shall show in § 2 that an essentially outer regular automorphism group is necessarily locally finite when the division ring extension is algebraic. At the same time, an extension theorem and a normality theorem will be proved for the Galois extensions in [7]. And lastly in § 3 it will be proved that in the Galois extensions under the same assumptions any finite extensions are simply generated. #### § 1. Locally finite automorphism groups. Let \mathfrak{G} be a group of automorphisms of a division ring P. All the \mathfrak{G} -invariant elements of P form a subring Φ of P; in this situation we say that \mathfrak{G} is an automorphism group of P/Φ . DEFINITION. So is said to be *locally finite* when each element of P is mapped by So to at most a finite number of elements. It is clear that, if there exists an automorphism group of P/Φ which is locally finite, then P is locally (left) finite over Φ , that is, any subring generated by Φ and a finite number of elements of P has a finite (left) rank over Φ . For, such a subring is always considered to be contained in a ring which has a finite automorphism group over Φ and the ring with a finite automorphism group over Φ has a finite rank over Φ . ¹⁾ See [7]. ²⁾ Its rank is not greater than the number of elements of the automorphism group. See $\lceil 3 \rceil$. The regularization \mathfrak{G}^* of a given automorphism group \mathfrak{G} is defined thus: if \mathfrak{G} is an automorphism group of P/Φ , we consider all the inner automorphisms of P leaving each element of Φ invariant, that is, the inner automorphisms induced by all the elements of $V(\Phi)^{\mathfrak{F}}$; \mathfrak{G}^* is the group generated by these inner automorphisms and \mathfrak{G} . We say \mathfrak{G} is a regular group if $\mathfrak{G}^* = \mathfrak{G}$. The main idea of the proof of the next Lemma is due to D. Zelinsky who kindly permitted me to cite it here. **Lemma 1.** Let $\$ be a regular group of P/Φ which consists only of inner automorphisms (hence of all the inner automorphisms induced by the element of $V(\Phi)$). If there exists an element of P that is moved really by $\$ but to at most a finite number of elements, then $V(\Phi)$ is a finite field, that is, $\$ is a finite abelian group. Proof. Let σ be the element as mentioned in the Lemma. Then there exists such an element $\rho(\pm 0)$ in $V(\Phi)$ that $\rho \sigma \rho^{-1} \pm \sigma$ by the assumption. - 1°. First we shall show that $V(\sigma, \Phi)$ is a finite field where $V(\sigma, \Phi)$ is the centralizer of the ring generated by σ and Φ . For any element τ of $V(\sigma, \Phi)$ we denote by I_{τ} the inner automorphism induced by $1+\rho\tau$. Since $1+\rho\tau\in V(\Phi)$, I_{τ} is contained in \mathfrak{G} . Now it will be shown that, if $\tau \neq \tau'$ $(\tau, \tau' \in V(\sigma, \Phi))$, then $\sigma I_{\tau} \neq \sigma I_{\tau'}$. For, assume $\sigma I_{\tau} = \sigma I_{\tau'}$. Then $(1+\rho\tau)\sigma(1+\rho\tau)^{-1} = (1+\rho\tau')\sigma(1+\rho\tau')^{-1}$ and hence $(1+\rho\tau')^{-1}(1+\rho\tau)\sigma((1+\rho\tau')^{-1}(1+\rho\tau))^{-1} = \sigma$, that is, $(1+\rho\tau')^{-1}(1+\rho\tau) = \tau'' \in V(\sigma, \Phi)$. This implies that $\rho(\tau-\tau'\tau'')=\tau''-1\in V(\sigma, \Phi)$. Since ρ is not contained in $V(\sigma, \Phi)$, we have $\tau-\tau'\tau''=\tau''-1=0$, that is, $\tau=\tau'$, which is a contradiction. Considering then that $\{\sigma I_{\tau} \mid \tau \in V(\sigma, \Phi)\}$ must be finite by assumption, we get the result that $V(\sigma, \Phi)$ is a finite set. Since it is a division ring, it is a finite field. - 2°. Next we shall show that $[V(\Phi):V(\sigma,\Phi)]_l < \infty$. Let $\alpha_1^{-1}\sigma\alpha_1(=\sigma)$, $\alpha_2^{-1}\sigma\alpha_2$, \cdots , $\alpha_n^{-1}\sigma\alpha_n$ be all the different images of σ by $\mathfrak G$ where α_i are elements of $V(\Phi)$. Now for any element ξ of $V(\Phi)$, we have $\xi^{-1}\sigma\xi=\alpha_i^{-1}\sigma\alpha_i$ for some element α_i ; that is, $\xi\alpha_i^{-1}\in V(\sigma,\Phi)$ and hence $\xi\in V(\sigma,\Phi)\alpha_i$. This implies that α_1 , α_2 , \cdots , α_n form a (not necessarily independent) $V(\sigma,\Phi)$ -basis of $V(\Phi)$. Thus we have $[V(\Phi):V(\sigma,\Phi)]_l < \infty$. By 1° and 2° , $V(\Phi)$ is a finite field. ³⁾ $V(\mathbf{0})$ implies the centralizer of $\mathbf{0}$ in P. ⁴⁾ All our operators will be written on the right. As a result of this convention, a product st of operators means the composite obtained by performing first s, then t. The proof of the next Theorem on a necessary condition for locally finiteness is now quite easy by Lemma 1. **Theorem 1.**5 Let \mathfrak{G} be a regular automorphism group of P/Φ . If \mathfrak{G} is locally finite, then \mathfrak{G} contains at most a finite number of inner automorphisms of P. Proof. If $\mathfrak D$ is the set of all the inner automorphisms contained in $\mathfrak D$, then $\mathfrak D$ is a locally finite regular automorphism group of P/Ψ where Ψ is the subring of all the $\mathfrak D$ -invariant elements of P. If $P \neq \Psi$, then $\mathfrak D$ is a finite group by Lemma 1. And if $P = \Psi$, then $\mathfrak D$ consists only of the identity automorphism. We insert here an example of finite regular automorphism groups which consist only of inner automorphisms. Let F be a finite field consisting of p elements (p is a prime number) and K an infinite algebraic extension of F. We construct a non-commutative polynomial ring K[x] where x is an indeterminate and the multiplication of x with an element k of K is defined so that $xk=k^px$ ($k \in K$). Now we can make the quotient division ring K(x) of K[x]. The center of K(x) is F. Let K be any finite extension of K contained in K. All the inner automorphisms induced by the elements of K make a finite regular automorphism group which consists only of inner automorphisms. REMARK. From Lemma 1, it is clear that if the characteristic of P is 0 then S is an outer automorphism group, that is, S contains no inner automorphism except the identity automorphism. # § 2. Essentially outer automorphism groups and Galois theory. It has been shown in §1 that a locally finite regular automorphism group contains only a finite number of inner automorphisms, but it will be proved that conversely a regular automorphism group of P/Φ which contains only a finite number of inner automorphisms is necessarily locally finite if P is (left) algebraic over Φ . Let Σ be a subring of P containing Φ . Σ is considered as a Φ_l -module where Φ_l signifies the ring of operators induced by left multiplications of the elements of Φ . The most important role is played by $\mathfrak{M}(\Sigma)$ which we define as the set of all the Φ_l -homomorphisms of Φ_l -module Σ into P. $\mathfrak{M}(\Sigma)$ is then a Σ_r (left)-P_r (right) two-sided module. ⁵⁾ The same result has been first given by T. Nagahara and H. Tominaga. See [5]. N. Nobusawa Lemma 2. If $[\Sigma : \Phi]_l = n < \infty$, then $[\mathfrak{M}(\Sigma) : P_r]_r = n$. Proof. Let $\xi_1, \xi_2, \dots, \xi_n$ be an independent Φ_i -basis of Σ . Any element of $\mathfrak{M}(\Sigma)$ is then uniquely determined by its restriction to ξ_i . If e_i are the elements of $\mathfrak{M}(\Sigma)$ such that $\xi_i e_i = 1$ and $\xi_j e_i = 0$ (j + 1), then e_1, e_2, \dots, e_n form an independent P_r -right basis of $\mathfrak{M}(\Sigma)$. Let \mathfrak{G} be an automorphism group of P/Φ . We denote by \mathfrak{G}_{Σ} the restrictions of \mathfrak{G} to Σ and by S_{Σ} ($S \in \mathfrak{G}$) the restriction of S to Σ . It is clear that $\mathfrak{G}_{\Sigma}P_r$ is a $\Sigma_r - P_r$ two-sided submodule of $\mathfrak{M}(\Sigma)$ and $S_{\Sigma}P_r$ is an irreducible $\Sigma_r - P_r$ two-sided submodule of $\mathfrak{M}(\Sigma)$. **Lemma 3.** Let \Re be an irreducible $\Sigma_r - P_r$, two-sided submodule of $\Re(\Sigma)$ which is isomorphic to $S_{\Sigma}P_r$. If an element s of \Re corresponds to S_{Σ} in this isomorphism, then $s = S_{\Sigma}(1 \cdot s)_t$. Proof. For any element σ of Σ , $\sigma_r s$ corresponds to $\sigma_r S_{\Sigma}$ in this isomorphism, but $\sigma_r S_{\Sigma} = S_{\Sigma}(\sigma \cdot S_{\Sigma})$. On the other hand $s(\sigma \cdot S_{\Sigma})$ corresponds to $S_{\Sigma}(\sigma \cdot S_{\Sigma})$, and hence $\sigma_r s = s(\sigma \cdot S_{\Sigma})$. Then, $\sigma \cdot s = 1 \cdot \sigma_r s = 1 \cdot s(\sigma \cdot S_{\Sigma}) = \sigma \cdot S_{\Sigma}(1 \cdot s)_I$. Hences $s = S_{\Sigma}(1 \cdot s)_I$. DEFINITION. P is said to be (left) *algebraic* over Φ if any subring generated by Φ and an element of P has a finite (left) rank over Φ . **Theorem 2.** Let \mathfrak{G} be a regular automorphism group of P/Φ where P is algebraic over Φ . If \mathfrak{G} contains only a finite number of inner automorphisms, then \mathfrak{G} is locally finite. Proof. It will suffice to show that, for any subring Σ of P which contains Φ and has a finite rank over Φ , \mathfrak{G}_{Σ} is a finite set, because P is algebraic over Φ and each element of P is contained in such a subring Σ . By Lemma 2 we have $[\mathfrak{G}_{\Sigma}P_r:P_r]_r \leq [\mathfrak{M}(\Sigma):P_r]_r = [\Sigma:\Phi]_l < \infty$ and hence there do not exist infinitely many irreducible $\Sigma_r - P_r$ two-sided modules which are not isomorphic with each other. On the other hand, let T and S be two elements of \mathfrak{G} such that $T_{\Sigma}P_r$ is isomorphic to $S_{\Sigma}P_r$. If $T_{\Sigma}\rho_r$ ($\rho \in P$) corresponds in this isomorphism to S_{Σ} , then by Lemma 3 $T_{\Sigma}\rho_r = S_{\Sigma}(1 \cdot T_{\Sigma}\rho_r)_l = S_{\Sigma}\rho_l$, that is, $T_{\Sigma} = S_{\Sigma}I$ where $I = \rho_l\rho_r^{-1} \in \mathfrak{G}$. But the inner automorphisms in \mathfrak{G} are finite in number, and this implies that \mathfrak{G}_{Σ} is finite. **Lemma 4.** If \mathfrak{G} is a locally finite regular automorphism group of P/Φ , then $\mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma}P_{r}$ for any subring Σ which has a finite rank over Φ . Proof. Σ is imbedded in a subring Λ of P on which \mathfrak{G} induces a finite regular automorphism group \mathfrak{G}_{Λ} over Φ . Each element of $\mathfrak{M}(\Sigma)$ can be then extended to an element of $\mathfrak{M}(\Lambda)$, in other words, $\mathfrak{M}(\Sigma)$ is considered to be the restriction of $\mathfrak{M}(\Lambda)$ to Σ . But $\mathfrak{M}(\Lambda) = \mathfrak{G}_{\Lambda}P_r$ since the elements of P_r -basis of $\mathfrak{M}(\Lambda)$ in the sens of Lemma 2 are contained already in $\mathfrak{G}_{\Lambda}\Lambda_r$. Hence $\mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma}P_r$. **Theorem 3.** (Extension Theorem) Let the maximal automorphism group $\mathfrak G$ of P/Φ be locally finite For any subring Σ of P containing Φ , any isomorphism T' of Σ into P which is the identity on Φ can be extended to an automorphism T of P. Proof. 1°. First assume that $[\Sigma : \Phi]_I < \infty$. Then $T' \in \mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma} P_r$ by Lemma 4. Since $T'P_r$ is an irreducible $\Sigma_r - P_r$ two-sided module, it is isomorphic to $S_{\Sigma}P_r$ for some element S of \mathfrak{G} . As in the proof of Theorem 2, we can show that $T' = S_{\Sigma}I = (SI)_{\Sigma}$ for some inner automorphism I of \mathfrak{G} . If we put SI = T, T is an extension of T'. 2°. Generally let Σ be the join of the subrings Σ_{α} which are finite over $\Phi: \Sigma = \bigcup_{\alpha} \Sigma_{\alpha}$. Let T_{α}' be the restriction of T' to Σ_{α} . T_{α}' is always extendable to an automorphism of P by 1°; we denote the set of all these extensions of T_{α}' by E_{α} . Then E_{α} is a topologically closed set. If $\bigcap_{\alpha} E_{\alpha} = \phi$, then there exist a finite number of α_i $(i=1, \dots, m)$ such that $\bigcap_{i=1}^{m} E_{\alpha i} = \phi$, for \mathfrak{B} is a compact group. If we consider Σ_{β} which is generated by Σ_{α_i} $(i=1, \dots, m)$, then $E_{\beta} = \bigcap_{\alpha} E_{\alpha_i} = \phi$. This is a contradiction by 1°. Now any element T of $\bigcap_{\alpha} E_{\alpha}$ is the required extension of T'. If $\mathfrak G$ is a locally finite automorphism group, then P is locally finite over Φ and it is possible to introduce a Haussdorf topology in $\mathfrak G.^{\mathfrak G}$. In [7] the present author showed the fundamental correspondence between topologically closed regular subgroups and subrings when the maximal automorphism group $\mathfrak G$ of P/Φ is locally finite. But it will be shown that, if $\mathfrak G$ is a locally finite regular automorphism group of P/Φ , its topological closure $\overline{\mathfrak G}$ is the maximal automorphism group of P/Φ which is naturally locally finite. **Theorem 4.** If \mathfrak{G} is a locally finite regular automorphism group of P/Φ , then its topological closure $\bar{\mathfrak{G}}$ is the maximal automorphism group of P/Φ . ⁶⁾ See [7]. Proof. Let T be any automorphism of P leaving each element of Φ invariant and Σ any subring containing Φ which has a finite rank over Φ . Then $T_{\Sigma} \in \mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma} P_r$ by Lemma 4 and, as in the proof of Theorem 2, $T_{\Sigma} = (SI)_{\Sigma}$ where $SI \in \mathfrak{G}$ since \mathfrak{G} is regular. This implies $T \in \overline{\mathfrak{G}}$. Let Σ be a subring of P containing Φ , and Φ the subgroup of Φ consisting of all the automorphisms of Φ which leave Σ setwise invariant. **Theorem 5.** (Normality Theorem) Let the maximal automorphism group \mathfrak{G} of P/Φ be locally finite. Then Σ is a Galois extension of Φ (that is, there exists an automorphism group of Σ/Φ) if and only if the topological closure $\bar{\mathfrak{F}}^*$ of the regularization \mathfrak{F}^* of \mathfrak{F} is equal to \mathfrak{G} . Proof. First assume that Σ is a Galois extension of Φ . Since any automorphism of Σ which is the identity of Φ is extendable to an automorphism of P, that is, to an automorphism contained in \mathbb{Q} , and since $\Phi(\mathbb{Q}(\Sigma)) = \Sigma^{7}$ Φ is the same as the ring of all the \mathbb{Q} -invariant elements of P. This implies that \mathbb{Q}^* is a regular automorphism group of P/Φ . Then $\mathbb{Q}^* = \mathbb{Q}$ by Theorem 4. Next assume that $\bar{\mathfrak{D}}^*=\mathfrak{G}$. Let Ψ be the ring of all the \mathfrak{D} -invariant elements. Then, as before, $\bar{\mathfrak{D}}^*$ is the maximal automorphism group of P/Ψ and hence $\Psi=\Phi$. Of course \mathfrak{D} is an automorphism group of Σ/Φ , this is, Σ is a Galois extension of Φ . ### § 3. Structure of the Galois extensions. Using a result due to Kasch, it will be proved that, if P is a Galois extension of Φ with the locally finite maximal automorphism group \mathfrak{G} , then any subring which is finite over Φ is simply generated over Φ . We always assume that Φ is not a finite field, for, if Φ is a finite field, P becomes a field and the assertion is clear. **Lemma 5.** (KASCH) Let Σ be a subring of P containing Φ . For any finite number of element s_1, s_2, \dots, s_n of $\mathfrak{M}(\Sigma)$, non of which is the identity mapping, there exists an element σ of Σ such that $\sigma s_i \neq \sigma$ $(i=1,\dots,n)$. Proof. We shall prove the lemma by induction. Since it is clear when n=1, assume that the lemma is true for s_1, s_2, \dots, s_{n-1} . Then there exists an element σ' of Σ such that $\sigma's_i \neq \sigma'$ $(i=1, \dots, n-1)$. On ⁷⁾ $\mathfrak{G}(\Sigma)$ implies the subgroup of \mathfrak{G} consisting of all the automorphisms in \mathfrak{G} which leave each element of Σ invariant, and $\mathfrak{O}(\mathfrak{H})$ implies the subring of all the \mathfrak{H} -invariant elements. the other hand let σ'' be such an element of Σ that $\sigma''s_n \neq \sigma''$. Now we consider the element $\sigma' + \varphi \sigma''$ where φ is any element of Φ . We have $(\sigma' + \varphi \sigma'')s_i - (\sigma' + \varphi \sigma'') = (\sigma's_i - \sigma') + \varphi(\sigma''s_i - \sigma'')$. Since $\sigma's_i - \sigma' \neq 0$ for $i=1, \cdots, n-1$, and $\sigma''s_i - \sigma'' \neq 0$ for i=n, there exist only a finite number of elements φ in Φ such that they satisfy the equality: $(\sigma's_i - \sigma') + \varphi(\sigma''s_i - \sigma'') = 0$ for some i. But Φ is assumed to contain infinitely many elements and hence there exists such an element θ in Φ that, if we put $\sigma = \sigma' + \theta \sigma''$, then $\sigma s_i \neq \sigma$ for $i=1, \cdots, n$, which completes the proof of Lemma 5. **Theorem 6.** If P is a Galois extension of Φ with a locally finite regular automorphism group \mathfrak{G} , and if Σ is a subring containing Φ which has a finite rank over Φ , then there exists an element α in Σ such that Σ is generated by α and Φ . Proof. We have $\mathfrak{M}(\Sigma) = \mathfrak{G}_{\Sigma} P_{r}$ by Lemma 4 and we apply Lemma 5 to all the elements of \mathfrak{G}_{Σ} except the identity mapping (\mathfrak{G}_{Σ} is a finite set.). Then we can find an element α in Σ such that α is really moved by any element of \mathfrak{G}_{Σ} except the identity mapping. It will be shown that Σ is then generated by α and Φ . For, if it is not so, there exists an element of β such that $\beta S + \beta$ and $\alpha S = \alpha$ by Galois theory, which is a contradiction since α is moved by S_{Σ} . **Corollary.** Under the same conditions as in Theorem 6, there exists an element α in Σ such that α is mapped to all its different images by the elements of \mathfrak{G}_{Σ} . Proof. We may choose an element α such that Σ is generated by α and Φ . Then each element of \mathfrak{G}_{Σ} is uniquely determined by its restriction to α . REMARK. In the case that \mathfrak{G} is an outer group, if $[\Sigma:\Phi]_l=n$, then the number of different images of α is n. (Received March 28, 1956) #### References - [1] H. Cartan: Théorie de Galois pour les corps non commutatifs, Ann. Sci. Ecole Norm. Sup. 64 (1947). - [2] N. Jacobson: The fundamental theorem of Galois theory for quasifields, Ann. of Math. 41 (1940). - [3] N. Jacobson: A note on division rings, Amer. J. Math. 69 (1947). - [4] F. Kasch: Über den Satz vom primitiven Element bei Schiefkörpern, J. Reine Angew. Math. 189 (1951). - [5] T. Nagahara and H. Tominaga: A note on Galois theory of division rings of infinite degree, Proc. Japan Acad. 31 (1955). - [6] T. Nakayama: Galois theory of simple rings, Trans. Amer. Math. Soc. 73 (1952). - [7] N. Nobusawa: An extension of Krull's Galois theory to division rings, Osaka Math. J. 7 (1955).