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One-to-one Continuous Muppings on
Locally Compact Spaces

By Junzo Wapa

It is a classical theorem of set-theoretical topology that a one-to-one
continuous mapping @ of a bicompact Hausdorff space X onto a
Hausdorff space Y is a homeomorphism”. But, in general, it cannot be
said that such a mapping ¢ is homeomorphic if the spaces X and Y
are both locally compact. In this paper we consider the problem for
locally compact spaces with some special conditions.

Throughout this paper, we shall use the word “space” for “Haus-
dorff space”. Let X and Y be two spaces, and let Y be a one-to-one
continuous image of X under a mapping . If the inverse mapping
@' is not continuous, there exists a point x in X and a neighborhood
U of x such that @(U) is not a neighborhood of @(x) in Y. Let D,
denote the set of all such points x in X, i.e., D, is the set of all points
x in X such that the inverse mapping @ '(y) are not continuous at the
points @(x). If D, is empty, the mapping ¢ is a homeomorphism from
X to Y. When X is locally compact, a subset of X will be said to be
bounded if the subset is contained in a bicompact subset of X. A°
denotes always the interior of A for any subset A in X.

We shall prove the following theorem.

Theorem. Let X be a locally compact Hausdorff space, and let X be
represented as a union i X;, where for each i X; is bicompact, X; X341
and X—X; is connecteag.— ' Let Y be a locally compact but not bicompact and
Hausdorf space, and let it be a one-to-one continuous image of X under
@. If the set D, is bounded in X, then the mapping ¢ is a homeomorphism.

We shall prove first the following lemmas.

Lemma 1. Let X be a locally compact space, and let ¢ be a one-to-one
continuous mapping from X onto a space Y. Then the image ¢(D,) of
D, under ¢ is closed in Y, and therefore D, is closed in X.

Proof. Suppose that ¢(D,) is not closed in Y. Then there exists

1) See, for example, [1] p. 95, Satz III. Numbers in brackets refer to the references
cited at the end of the paper.
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a point p, in X such that ¢(D,)—@(D,) >p(p,). Since D, 3 p,, there is
a bicompact neighborhood U of p, such that ¢(U) is a neighborhood of

@(p). It follows from @(D,) >p(p,) that there exists a point p in D,
such that @(U) is a neighborhood of ¢(p). But since p€ D,, there is a
phalaux {p,} in X such that {p,} does not converge to p in X and
{p(ps)} converges to @(p) in Y. We may here assume that the phal-
aux {p.} has not p as a cluster point. (cf. [5]). Since @(U) is a neigh-
borhood of @(p) and @(p,) converges to @(p), the subset U contains the
point p, if « is greater than a certain «,. This is a contradiction by
the compactness of U.

Lemma 2. Let X be a locally compact space, and let it be represented
as a union é X;, where for each i X; is bicompact, X; Xp, and X—X;
i=1

is connected. If Y is a bicompact space and if ¢ is a one-to-one continuous
mapping from X onto Y, then the image ¢(D,) of D, under ¢ is connected.
Therefore D, is connected if it is bounded.

Proof. If @(D,) is not connected, it follows from Lemma 1 that
@(D,) is a sum of two non void mutually disjoint subsets B, and B,
which are both closed in Y. If @(p) and @(q) are fixed points of B,
and B, respectively, then there exist two phalaux {p.} and {gs} in X,
where {p.} (or {gs}) does not converge to p (or ¢) and {p(p.,)} (or
{p(gp)}) converges to @(p) (or @(g)). Without any loss of generality,
we may assume that {p,} (or {gs}) has not p (or q) as a cluster point
and that the subset A,=B,v{p(p,)} and the subset A,=B,v {p(gp)}
are mutually disjoint since @(p)==p(q). Since A, and A, are both closed
in Y and Y is normal, there exists a real valued continuous function f
on Y such that

if yeA, f(»=0
and
if yed,, f=1.

Since X; is bicompact for each 7, there are a point p,,, in the phalaux
{$,} and a point ggy, in the sequence {gs} such that X—X; > p,,, and
X—X;>¢puy. Since Y—o@(X;) is connected, there exists a point #; such

that »,€¢ X— X, and fl(p(r)) =w12~ for each 7. The sequence {p(r;)} is
contained in the bicompact space Y, therefore the sequence {@(r;)} has a
cluster point @(r) and we see that f(q)(r))——%. If a point y in Y is

contained in ¢(D,), the valve of f(y) is equal to zero or to one. Hence
r¢D,. On the other hand, we see easily that the sequence {»;} has
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not » as a cluster point on account of the conditions of the family {X;}.
Therefore »€ D,. This contradiction shows that ¢(D,) is connected.
E. Hewitt® proved the following lemma.

Lemma 3. If X is a locally compact space, there exist a bicompact
space Y and a one-to-one continuous mapping from X onto Y such that
D, contains only one point.

We shall next prove our theorem.

Proof of Theorem. Let X be a locally compact Hausdorff space,
and let it be represented as a union 5“‘; X;, where for each 7 X; is
i=1

bicompact, X, X7,; and X—X; is connected. Let the space Y be locally
compact but not bicompact, and let it be a one-to-one continuous image of
X under @. Since D, is bounded, there exists a point y, such that
%€ Y—p(D,). It follows from Lemma 3 that there are a bicompact
(Hausdorff) space Z and a one-to-one continuous mapping » from Y
onto Z such that Dy contains only one point y,. The mapping Yo is
one-to-one and continuous from X onto Z, therefore set Dy, in X can
be defined and it is obvious that Dy,=D,\ve ' (Dy)=D,vp (). We
see here that D, is closed in X, D, ¥ 9 *(3,) and Dy, is connected from
Lemma 1 and Lemma 2. Therefore the subset D, must be empty. This
fact shows that ¢ is a homeomorphism.

ReEMARK. (1) In the theorem, the boundedness of D, is necessary.
If X is a 2-dimensional euclidean space with the ordinary topology, it
satisfies the conditions of the theorem. We next introduce new neigh-
borhoods U,(p) of a point p in X as follows:

If p is a point of the form (0, ) in X, we put

Up) = E{w, 0] ul<<y, lo—3< )]
VE{@, 0] lul>n, Jo—yl< ]

otherwise,

U0 =E{w o) [u—x1<, lo—3l< 11

and let Y be the space with this topology. Let @ be the identical
mapping from X to Y. Then the space Y is locally compact but not
bicompact and @ is continuous. Here D, is not bounded and the mapping
@ fails to be homeomorphic.

2) See Hewitt [2]. R. Sikorski shows also that if X is a locally compact separable space,
there exist a compact metrizable space Y and a one-to-one continuous mapping from X onto
Y such that D, contains only one point. (cf. [3] or [4]).
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(2) If »n>2, an n-dimensional euclidean space X=R" satisfies the
conditions of the theorem, but the theorem is false in the case of a
1-dimensional euclidean space R'. We next construct new neighborhoods
U,(p) of a point in X (=R") as follows:

If p=0, we put

U.(p) = E{yl yeX and |y|<l %’;
VE{y|lye X and y>n},
otherwise,
U,.(p) =E{yly6X and Iy—Pi<%} ,
and let Y be the space with this topology. Then the identical mapping

@ from X to Y is continuous. We see here that D,= {0} is bounded
in X but the mapping @ fails to be homeomorphic.

(Received March 23, 1956)
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