## On the Pseudo-Harmonic Functions

By Yukinari Tôki and Kôichi TARUMOTO

**Introduction.** Let F be an orientable surface. Let u(p) be a real-valued function in a neighborhood  $N_{p_0}$  of  $p_0$  on F where  $N_{p_0}$  corresponds to the unit circular disc in the complex plane by the topological mapping  $z = T_{p_0}(p)$ , z = x + iy.

Set 
$$u(p) = u(T_{p_0}(p)) = U(z).$$

Then u(p) is termed *pseudo-harmonic* at  $p_0$ , if U(z) is harmonic and not identically constant in |z| < 1. A real-valued function on F is termed *pseudo-harmonic* if it is pseudo-harmonic on each point of F. In this paper we will prove that there exist the local parameters such that F is a Riemann surface with respect to them and u(p) is harmonic on F.

## 1. Terminologies and notations.

Let u(p) be a pseudo-harmonic function on F. By the level-curve of u(p) with the height c, we mean the locus of the equation u(p) = c. It is well known that with each point  $p_0 \in F$ , there exists a suitably chosen neighborhood  $N_{p_0}$  of  $p_0$  and a topological mapping  $z = T_{p_0}(p)$  of  $N_{p_0}$  onto |z| < |1 under which  $p_0$  goes into  $p_0$  and the level-curves of  $p_0$  in  $p_0$  go into the level-curves of  $p_0$  and the level-curves of  $p_0$  in  $p_0$  a canonical neighborhood of  $p_0$ . When  $p_0$  is shall call  $p_0$  a regular point and  $p_0$  a simple canonical neighborhood. When  $p_0$  we shall call  $p_0$  a saddle-point of order  $p_0$ . A real-valued function  $p_0$  on  $p_0$  is called "pseudo-conjugate to a pseudo-harmonic function  $p_0$ ", if it satisfies the following condition.

There exists a topological mapping  $z = T_{p_0}(p)$  by which  $N_{p_0}$  corresponds to |z| < 1, and  $U(z) = u(T_{p_0}(p))$  is conjugate-harmonic to  $V(z) = v(T_{p_0}(p))$  in |z| < 1.

<sup>1)</sup> Y. Tôki, A topological characterization of pseudo-harmonic functions, Osaka Mathematical J. 3 (1951), 101–122. See also J. Jenkins and M. Morse, Topological methods on Riemann surface, pseudoharmonic function. Contributions to the theory of Riemann surfaces 1953 p. 114.

## 2. The triangulation of a surface.

Let F be an orientable surface and u(p) be a pseudo-harmonic function on it. In the first place, we can easily triangulate the surface F such that each saddle-point of u(p) is a vertex of a triangle and each triangle of F is contained in a canonical neighborhood, especially any triangle without the saddle-points is contained in a simple canonical neighborhood. We shall prove the following lemmas on this triangulation.

**Lemma 1.** We can triangulate the surface F such that each side of any triangle of F intersects every one of the level-curves of u(p) at most at the finite number of points.

Proof. Let  $\Delta$  be any triangle on F and a, b, c, be the three vertices of it. Let  $L_i$   $(i=1,2\cdots n)$  and  $M_j$   $(j=1,2\cdots m)$  be the sides of the triangles with the common vertex a and b respectively: especially  $L_1$  denotes the arc  $\widehat{ab}$ ,  $M_1$  denotes the arc  $\widehat{ba}$ . There exists a canonical neighborhood  $N_A$   $(N_A \supset \Delta)$  and a topological mapping  $z=T_A(p)$  under which  $\Delta$  is mapped onto a curvilinear triangle  $\Delta'$  in |z| < 1. Let the points a', b', c', be the three vertices of  $\Delta'$  and  $L_i'$   $(i=1, 2\cdots n)$  and  $M_j'$   $(j=1, 2\cdots m)$  the mapped images of the arc  $L_i$   $(i=1, 2\cdots n)$  and  $M_j$   $(i=1, \cdots m)$  in  $N_A$ . Let  $C_{a'}$  and  $C_{b'}$  be the sufficiently small circles with the center a', b' and contained in |z| < 1 respectively. Let  $a_i'$   $(i=1, 2, \cdots n)$  be the points at which the arc  $L_i'$  cut the circle  $C_{a'}$  for the last time. We can choose the points  $b_j'$   $(j=1, 2\cdots m)$  on  $C_{b'}$  similarly. We can connect  $a_1'$  and  $a_1'$  by a polygon without intersecting  $a_1'$   $a_1'$   $a_2'$   $a_1'$   $a_2'$   $a_1'$   $a_2'$   $a_1'$   $a_1'$   $a_2'$   $a_1'$   $a_1'$   $a_2'$   $a_1'$   $a_1'$   $a_2'$   $a_1'$   $a_1'$ 





Fig. 2.

 $C_{a'}$  and  $C_{b'}$ . We also connect  $a_{j'}$  and a' by the radius in the circle  $C_{a'}$ . We connect  $b_{j'}$  and b' similarly. We repeat this deformation with respect to every side of the traingles on F. In this repetition, each side of the triangles are varied in finite times: for instance, side  $\widehat{ab}$  varies in (m+n-1)-times. When some part of a side of a triangle lies on a level-curve, then we can deform slightly it such that each one of sides of the deformed triangle cut the level-curves at most once.

Therefore we have after a finite number of time the desired triangulation. A point p on the sides of a triangles is termed a critical point when the side through the point p is on one side of the level-curve u(p) except to the point p in the neighborhood of p from now.

**Lemma 2.** We can triangulate the surface F such that each side of any triangle of F intersects every one of the level-curves of u(p) at most at one point.

Proof. Let  $\Delta$  be any triangle of F such that each side of it intersects every one of the level-curves of u(p) at most at a finite number of points. When  $\Delta$  have ciritical points or saddle-points on its boundary. Let us subdivide  $\Delta$  into triangles and polygonal domains by the level-curves through the critical points and the saddle-point.

Let one of these polygonal domains be  $\Sigma$ . The polygonal domain  $\Sigma$  can be mapped onto a rectangle  $\Sigma^*$  by the topological mapping  $z = S_{\Sigma}(p)$  under which the level-lines in  $\Sigma$  go into the lines parallel to the y-axies and the vertices of  $\Sigma$  go into points on the boundary of  $\Sigma^*$ .

The polygonal domain  $\Sigma^*$  can be subdivided into triangles by lines connecting the center of  $\Sigma^*$  to the vertices. Let us subdivide  $\Sigma$  into triangles which are the inverse images of the triangles of  $\Sigma^*$ .



simple-canonical neighborhood.

Fig. 1.

Saddle-point of order 2.

Subdivide each polygonal domain of F into triangles similarly. We can easily deform the above triangulation slightly such that each side of the triangles intersect the level-lines at most once.

**Theorem.** Let u(p) be pseudo-harmonic on F. We can associate the local parameters of F such that F is a Riemann surface with respect to them and u(p) is harmonic on it.

Proof. By the lemma 2, we can subdivide the surface F such that each side of any triangle of F intersects every one of the level-curves of u(p) at most at one point. Therefore each triangle of  $\{\Delta\}$  can be mapped onto the rectilinear one in the z-plane and at the same time the level-curves of u(p) can be mapped onto the lines parallel to the y-axis.

Let these transformations be  $z = \tau_{\mathcal{A}}(p)$ . It is clear that the function  $u(\tau_{\mathcal{A}}^{-1}(z))$  is harmonic. Let  $p_0$  be any point on F and  $\Delta_{p_0}$  be a triangle such that  $\Delta_{p_0} \ni p_0$ . The following three cases will arise:

- (i)  $p_0$  is contained in  $\Delta p_0$ .
- (ii)  $p_0$  lies on one of the sides of  $\Delta p_0$ .
- (iii)  $p_0$  is a vertex of  $\Delta_{p_0}$ .

We can associate the local parameters as follows, corresponding to the above three cases.

- (i) We associate the function  $z = \tau_{\Delta_{P_0}}(p)$  as a local parameter to  $p_0$ .
- (ii) There exists the two neighboring triangles  $\Delta_j$  and  $\Delta_k$  such that the point  $p_0$  is contained in the common side of  $\Delta_j$  and  $\Delta_k$ . We can transform  $\Delta_j$  and  $\Delta_k$  onto the rectilinear ones  $S_j$  and  $S_k$  by the transformation  $z = \tau_{d_j}(p)$  and  $z = \tau_{d_k}(p)$  respectively. We can also map  $S_j$  and  $S_k$  onto the triangles  $R_j$  and  $R_k$  lying on the upper and the lower half-plane with common side of the interval  $0 \le x \le 1$  by two linear transformations resepctively. Any point on the common side of  $\Delta_j$  and  $\Delta_k$  is mapped on the different points on the side of  $S_j$  and  $S_k$  respectively. Since these two points lie on the same level-curve parallel to the x-axis, it is clear that these are mapped on the same point on the interval  $0 \le x \le 1$  by the two linear transformations. Thus we can map the curvilinear quadrilateral  $\Delta_j \cup \Delta_k$  onto the rectilinear quadrilateral  $R_j \cup R_k$  topologically and the common side of  $\Delta_j$  and  $\Delta_k$  can be mapped onto the interval  $0 \le x \le 1$ . Let this transformation be  $z = \tau_{d_j, d_k}(p)$ . We associate this function to  $p_0$  as a local parameter of  $p_0$ .
- (iii) Let  $\Delta_{i_1}$ ,  $\Delta_{i_2}$ ,  $\cdots \Delta_{i_n}$  be the triangles with the common vertex  $p_0$ . Each  $\Delta_{i_k}$   $(k=1, 2 \cdots n)$  is mapped onto a rectilinear one  $S_{i_k}$   $(k=1, 2, \cdots, n)$  and  $p_0$  goes into  $z_{i_k}$  by the transformation  $z = T_{d_{i_k}}(p)$ . Let the vertical angle of  $z_{i_k}$  of  $S_{i_k}$  be  $\alpha_{i_k}$ . The triangle  $S_{i_k}$  is mapped onto  $S'_{i_k}$

and  $z_{i_k}$  goes into  $w_{i_k}$  by the transformation  $w = z^{2\pi/(\alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_n})}$ . Let the vertical angle of  $w_{i_k}$  of  $S'_{i_k}$  be  $\beta_{i_k}$ . Then  $\sum_{k=1}^n \beta_{i_k} = 2\pi$ . Accordingly, we can map  $S'_{i_k}$  and  $S'_{i_{k+1}}$  onto  $S''_{i_k}$  and  $S''_{i_{k+1}}$  by linear transformations respectively such that  $w_{i_k}$  and  $w_{i_{k+1}}$  go into  $\zeta = 0$  and the common side of the two neighboring triangles  $\Delta_{i_k}$  and  $\Delta_{i_{k+1}}$  goes into the common side of  $S''_{i_k}$  and  $S''_{i_{k+1}}$ . Thus the polygonal domain composed of  $\Delta_{i_k}$   $(k=1,2\cdots n)$  is mapped onto the polygonal domain consisting of  $S''_{i_k}$  $(k=1, 2 \cdots n)$  in the  $\zeta$ -plane. Let this mapping be  $\zeta = \tau_{A_{i_1}, A_{i_2} \cdots A_{i_n}}(p)$ .



We associate the function  $\zeta = \tau_{d_{i_1}, \dots, d_{i_n}}(p)$  to  $p_0$  as a local parameter. These local parameters  $\tau_{\Delta}(p)$ ,  $\tau_{\Delta_i, \Delta_i}(p)$  and  $\tau_{\Delta_{i, 1}, \ldots, \Delta_{i, n}}(p)$  satisfy the conformal neighboring relation and u(p) is harmonic on F with respect to them.

**Corollary.** Let u(p) be a pseudo-harmonic function on F. Then there exists always a conjugate pseudo-harmonic function to u(p) on F.

Proof. We can assume that the function u(p) is harmonic on F with respect to the suitably chosen local parameters by the theorem. Then there exists always a conjugate harmonic function to u(p) on The corollary follows at once. This conjugate pseudo-harmonic function v(p) is multiple-valued on F in general.

(Received April 1, 1955)