On the Pseudo-Harmonic Functions By Yukinari Tôki and Kôichi TARUMOTO **Introduction.** Let F be an orientable surface. Let u(p) be a real-valued function in a neighborhood N_{p_0} of p_0 on F where N_{p_0} corresponds to the unit circular disc in the complex plane by the topological mapping $z = T_{p_0}(p)$, z = x + iy. Set $$u(p) = u(T_{p_0}(p)) = U(z).$$ Then u(p) is termed *pseudo-harmonic* at p_0 , if U(z) is harmonic and not identically constant in |z| < 1. A real-valued function on F is termed *pseudo-harmonic* if it is pseudo-harmonic on each point of F. In this paper we will prove that there exist the local parameters such that F is a Riemann surface with respect to them and u(p) is harmonic on F. ## 1. Terminologies and notations. Let u(p) be a pseudo-harmonic function on F. By the level-curve of u(p) with the height c, we mean the locus of the equation u(p) = c. It is well known that with each point $p_0 \in F$, there exists a suitably chosen neighborhood N_{p_0} of p_0 and a topological mapping $z = T_{p_0}(p)$ of N_{p_0} onto |z| < |1 under which p_0 goes into p_0 and the level-curves of p_0 in p_0 go into the level-curves of p_0 and the level-curves of p_0 in p_0 a canonical neighborhood of p_0 . When p_0 is shall call p_0 a regular point and p_0 a simple canonical neighborhood. When p_0 we shall call p_0 a saddle-point of order p_0 . A real-valued function p_0 on p_0 is called "pseudo-conjugate to a pseudo-harmonic function p_0 ", if it satisfies the following condition. There exists a topological mapping $z = T_{p_0}(p)$ by which N_{p_0} corresponds to |z| < 1, and $U(z) = u(T_{p_0}(p))$ is conjugate-harmonic to $V(z) = v(T_{p_0}(p))$ in |z| < 1. ¹⁾ Y. Tôki, A topological characterization of pseudo-harmonic functions, Osaka Mathematical J. 3 (1951), 101–122. See also J. Jenkins and M. Morse, Topological methods on Riemann surface, pseudoharmonic function. Contributions to the theory of Riemann surfaces 1953 p. 114. ## 2. The triangulation of a surface. Let F be an orientable surface and u(p) be a pseudo-harmonic function on it. In the first place, we can easily triangulate the surface F such that each saddle-point of u(p) is a vertex of a triangle and each triangle of F is contained in a canonical neighborhood, especially any triangle without the saddle-points is contained in a simple canonical neighborhood. We shall prove the following lemmas on this triangulation. **Lemma 1.** We can triangulate the surface F such that each side of any triangle of F intersects every one of the level-curves of u(p) at most at the finite number of points. Proof. Let Δ be any triangle on F and a, b, c, be the three vertices of it. Let L_i $(i=1,2\cdots n)$ and M_j $(j=1,2\cdots m)$ be the sides of the triangles with the common vertex a and b respectively: especially L_1 denotes the arc \widehat{ab} , M_1 denotes the arc \widehat{ba} . There exists a canonical neighborhood N_A $(N_A \supset \Delta)$ and a topological mapping $z=T_A(p)$ under which Δ is mapped onto a curvilinear triangle Δ' in |z| < 1. Let the points a', b', c', be the three vertices of Δ' and L_i' $(i=1, 2\cdots n)$ and M_j' $(j=1, 2\cdots m)$ the mapped images of the arc L_i $(i=1, 2\cdots n)$ and M_j $(i=1, \cdots m)$ in N_A . Let $C_{a'}$ and $C_{b'}$ be the sufficiently small circles with the center a', b' and contained in |z| < 1 respectively. Let a_i' $(i=1, 2, \cdots n)$ be the points at which the arc L_i' cut the circle $C_{a'}$ for the last time. We can choose the points b_j' $(j=1, 2\cdots m)$ on $C_{b'}$ similarly. We can connect a_1' and a_1' by a polygon without intersecting a_1' a_1' a_2' a_1' a_2' a_1' a_2' a_1' a_1' a_2' a_1' a_1' a_2' a_1' a_1' a_2' a_1' Fig. 2. $C_{a'}$ and $C_{b'}$. We also connect $a_{j'}$ and a' by the radius in the circle $C_{a'}$. We connect $b_{j'}$ and b' similarly. We repeat this deformation with respect to every side of the traingles on F. In this repetition, each side of the triangles are varied in finite times: for instance, side \widehat{ab} varies in (m+n-1)-times. When some part of a side of a triangle lies on a level-curve, then we can deform slightly it such that each one of sides of the deformed triangle cut the level-curves at most once. Therefore we have after a finite number of time the desired triangulation. A point p on the sides of a triangles is termed a critical point when the side through the point p is on one side of the level-curve u(p) except to the point p in the neighborhood of p from now. **Lemma 2.** We can triangulate the surface F such that each side of any triangle of F intersects every one of the level-curves of u(p) at most at one point. Proof. Let Δ be any triangle of F such that each side of it intersects every one of the level-curves of u(p) at most at a finite number of points. When Δ have ciritical points or saddle-points on its boundary. Let us subdivide Δ into triangles and polygonal domains by the level-curves through the critical points and the saddle-point. Let one of these polygonal domains be Σ . The polygonal domain Σ can be mapped onto a rectangle Σ^* by the topological mapping $z = S_{\Sigma}(p)$ under which the level-lines in Σ go into the lines parallel to the y-axies and the vertices of Σ go into points on the boundary of Σ^* . The polygonal domain Σ^* can be subdivided into triangles by lines connecting the center of Σ^* to the vertices. Let us subdivide Σ into triangles which are the inverse images of the triangles of Σ^* . simple-canonical neighborhood. Fig. 1. Saddle-point of order 2. Subdivide each polygonal domain of F into triangles similarly. We can easily deform the above triangulation slightly such that each side of the triangles intersect the level-lines at most once. **Theorem.** Let u(p) be pseudo-harmonic on F. We can associate the local parameters of F such that F is a Riemann surface with respect to them and u(p) is harmonic on it. Proof. By the lemma 2, we can subdivide the surface F such that each side of any triangle of F intersects every one of the level-curves of u(p) at most at one point. Therefore each triangle of $\{\Delta\}$ can be mapped onto the rectilinear one in the z-plane and at the same time the level-curves of u(p) can be mapped onto the lines parallel to the y-axis. Let these transformations be $z = \tau_{\mathcal{A}}(p)$. It is clear that the function $u(\tau_{\mathcal{A}}^{-1}(z))$ is harmonic. Let p_0 be any point on F and Δ_{p_0} be a triangle such that $\Delta_{p_0} \ni p_0$. The following three cases will arise: - (i) p_0 is contained in Δp_0 . - (ii) p_0 lies on one of the sides of Δp_0 . - (iii) p_0 is a vertex of Δ_{p_0} . We can associate the local parameters as follows, corresponding to the above three cases. - (i) We associate the function $z = \tau_{\Delta_{P_0}}(p)$ as a local parameter to p_0 . - (ii) There exists the two neighboring triangles Δ_j and Δ_k such that the point p_0 is contained in the common side of Δ_j and Δ_k . We can transform Δ_j and Δ_k onto the rectilinear ones S_j and S_k by the transformation $z = \tau_{d_j}(p)$ and $z = \tau_{d_k}(p)$ respectively. We can also map S_j and S_k onto the triangles R_j and R_k lying on the upper and the lower half-plane with common side of the interval $0 \le x \le 1$ by two linear transformations resepctively. Any point on the common side of Δ_j and Δ_k is mapped on the different points on the side of S_j and S_k respectively. Since these two points lie on the same level-curve parallel to the x-axis, it is clear that these are mapped on the same point on the interval $0 \le x \le 1$ by the two linear transformations. Thus we can map the curvilinear quadrilateral $\Delta_j \cup \Delta_k$ onto the rectilinear quadrilateral $R_j \cup R_k$ topologically and the common side of Δ_j and Δ_k can be mapped onto the interval $0 \le x \le 1$. Let this transformation be $z = \tau_{d_j, d_k}(p)$. We associate this function to p_0 as a local parameter of p_0 . - (iii) Let Δ_{i_1} , Δ_{i_2} , $\cdots \Delta_{i_n}$ be the triangles with the common vertex p_0 . Each Δ_{i_k} $(k=1, 2 \cdots n)$ is mapped onto a rectilinear one S_{i_k} $(k=1, 2, \cdots, n)$ and p_0 goes into z_{i_k} by the transformation $z = T_{d_{i_k}}(p)$. Let the vertical angle of z_{i_k} of S_{i_k} be α_{i_k} . The triangle S_{i_k} is mapped onto S'_{i_k} and z_{i_k} goes into w_{i_k} by the transformation $w = z^{2\pi/(\alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_n})}$. Let the vertical angle of w_{i_k} of S'_{i_k} be β_{i_k} . Then $\sum_{k=1}^n \beta_{i_k} = 2\pi$. Accordingly, we can map S'_{i_k} and $S'_{i_{k+1}}$ onto S''_{i_k} and $S''_{i_{k+1}}$ by linear transformations respectively such that w_{i_k} and $w_{i_{k+1}}$ go into $\zeta = 0$ and the common side of the two neighboring triangles Δ_{i_k} and $\Delta_{i_{k+1}}$ goes into the common side of S''_{i_k} and $S''_{i_{k+1}}$. Thus the polygonal domain composed of Δ_{i_k} $(k=1,2\cdots n)$ is mapped onto the polygonal domain consisting of S''_{i_k} $(k=1, 2 \cdots n)$ in the ζ -plane. Let this mapping be $\zeta = \tau_{A_{i_1}, A_{i_2} \cdots A_{i_n}}(p)$. We associate the function $\zeta = \tau_{d_{i_1}, \dots, d_{i_n}}(p)$ to p_0 as a local parameter. These local parameters $\tau_{\Delta}(p)$, $\tau_{\Delta_i, \Delta_i}(p)$ and $\tau_{\Delta_{i, 1}, \ldots, \Delta_{i, n}}(p)$ satisfy the conformal neighboring relation and u(p) is harmonic on F with respect to them. **Corollary.** Let u(p) be a pseudo-harmonic function on F. Then there exists always a conjugate pseudo-harmonic function to u(p) on F. Proof. We can assume that the function u(p) is harmonic on F with respect to the suitably chosen local parameters by the theorem. Then there exists always a conjugate harmonic function to u(p) on The corollary follows at once. This conjugate pseudo-harmonic function v(p) is multiple-valued on F in general. (Received April 1, 1955)