
Osaka Mathematical journal
Vol. 6, No. 2, December, 1954.

The Fundamental Solution of the Parabolic Equation
in a Differentiable Manifold, II

By Seizό Iτό

§ 0. Introduction (and supplements to the previous paper). Recently
we have shown the existence of the fundamental solution of parabolic
differential equations in a differentiable manifold (under some assump-
tions) in a previous paper1' which will be quoted here as [FS]. We
have set no boundary condition in [FS], while we shall here show
the existence of the fundamental solution of parabolic differential
equations with some boundary conditions in a compact subdomain of
a differentiable manifold.

We shall first add the following supplements 1°) and 2°) to [FS],
as we shall quote not only the results obtained in the paper but also
the procedures used in it:

1°) CORRECTIONS. Throughout the paper [FS]

for exp (M^t — s)?} , read exp (M^t — s)}
for exp {2M1(t—s)%} , read exp (2M1(t — s)} .

In the inequality (3. 4),

for (ΐ-s)-(^), read (t-s)~^

2°) The proof of Theorem 4 in [FS, §4] is available only for
the case: tQ=oo. Instead of completing the proof, we are enough to
establish a slightly ameliorated theorem as follows:

Theorem 4. i) The function u (t, x s, y) is non-negative, and
fMu(t, x s,y)day<^exp (\(t — s)} where λ = supf, .„£(*, x) ii) if especially
c ( t , x ) = Q, then SMu(t, x s,y)day = 1.

We see that Iλl^jffi^ 0 0) by virtue of the assumption II) in
[FS, p. 76]. To prove this theorem, we consider the functions

(0.1) /f(ί, x) = Sxu(t, x s, y)f(y)day

and

1) S. Itδ: The fundamental solution of the parabolic equation in a differentiable mani-
fold, Osaka Math. J. 5 (1953) 75-92.
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(0.2) gϊ"«\t , x) = fs(t , x) exp { - (^f?)"
C \τ o/

where f ( x ) is an arbitrary function continuous on M, with a compact
support C^M and satisfying 0 <;/(#) <ll, and w is a natural number
:> 2 and 5 <^ r <^ t0 . Then gγ'w)(/, #) is continuous in [s, £0) x M and

(0. 3) £t'w)(s, *) =/(*) , consequently 0 ̂  £t'n)(s, x} <l .

By virtue of [TS, (3.10)] and the correction 1°) stated just above, we
have

(0.4) !/,(*,*) I ̂ Mexp{M(f-s)}

for a suitable constant ΛΓ>0.

Lemma A. // c(t,x)<Lϋ, then the function gir'n)(/, x) takes neither
positive maximum nor negative minimum at any point in (s, ΐ0) x M.

The proof may be achieved by the well known method and so
will be omitted.

Lemma B. // c(ty #)<Lθ, then u(t, x s,:v);>0 and S^u(ty x s,y)day<,l.

PROOF. By virtue of the continuity of u(t, x] s,y) (see [FS,
Theorem 1]), it is sufficient to prove that 0 <Lfs(t, x)<,l for any func-
tion f ( x ) satisfying the above stated conditions (see (0. 1)).

Suppose that /9ί(t19x1)^>l for some t1^>sί and xιu Then, if we
take T and T' such that ^<CT<CT/<C^o an(i sufficiently large n, we have

and

\g%"»(tl9xί)\>\g%»'>(t,x)\ for any t>r' and xeM

by virtue of (0. 2) and (0. 4). From this fact and (0. 3), it follows that
g^>n^(ty x) takes the positive maximum at some point in (s, ί 0 ) x Λ f ;

this contradicts Lemma A. Hence we have fg(t, x)<^l.

Similar argument shows that, if ftί(t19 x.X^O for some tl<^s1 and
xί9 there exist T and n such that g^n^(ty x) takes the negative minimum
at some point in (s, t 0 ) x M contradictly to Lemma A. Hence we get
Λ(f,*)^0, q.e.d.

PROOF OF THEOREM 4. Let u(t,x; s,y) be the fundamental solution
of the equation L/— 0. Then we may easily prove that the function

«λ(Λ x\s,y) = <rA(t-°a(f, x;s,y)
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is the fundamental solution of the equation (L— λ)/=0. Since c(t, x)
— λ<Ό, we have

wλ(f, x syy) ^ 0 and !^ux(ty x s,y)day < 1

by Lemma B, and hence

u(t, x s,y) ̂  0 and JMw(f, * s,y)day ^ £λcf~5) .

Finally, if c(t, #) = 0, we may apply Theorem 2 in [FS] to the function
f(ty x) = l and we get

JΛ-w(ί, * s9y)day = 1 , q.e.d.

§ 1. Fundametal notions and main results. We shall say, by de-
finition, that a function f ( x ) defined on a subset E of the Euclidean
m-space Rm satisfies the generalized Lipschitz condition in E if, for any
x^E, there exist positive numbers N9 8 and γ (each of them may
depend on x) such that \f(x)—f(y)\^N^i\xi—yi\y whenever yζE
and |#*--jy*| <Lδ(ί" = l, ... , w), where (x*) and (jj*) denote the coordinates
of x and y respectively2^

A function f ( x ) defined on a domain Gζ^R™ is said to be of CΊC>L-
class if f ( x ) is of Cfc-class in the usual sense and each partial deriva-
tive of fe-th order of f ( x ) satisfies the generalized Lipschitz condition
in G. A manifold of Ck'L-class, a hyper surf ace of C*fL-class, etc. should
be understood analogously.

Let M be an m-dimensional manifold of C4>£-class, and G be a

domain in M such that the closure G is compact and the boundary

β=G — G consists of a finite number of hypersurfaces of m-ί dimen-
sion and of C4>z-class.

Under a canonical coordinate around x e Λf, we understand any local
coordinate which maps a neighbourhood of x onto the interier of the
unit sphere in R™ and especially transforms x to the centre of the
sphere. For each x e M and any fixed canonical coordinate around x,
we denote by Uζ(x) the neighbourhood of x of the form

We understand the partial derivatives of a function f ( x ) (defined

on G) at I: G B as follows : 'df(ξ)/dxl = ai (ξ e B), i = 1, ... , m, means that

f(x)^f(ξ) + ai(xί-ξi) + o(^i\xi-ξt\) for any x

where U(ξ) is a coordinate neighbourhood of ξ.

2) Cf. Footnote 1) in [FS].
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We fix s0 and t0 such that — °° <C 5o <C ^o <C °° and consider the
parabolic differential operator L :

(1. 1) L = Ltx = Atx-^ , (x e G, s0 < f < *0)

where

(1. 2) 4 EEE Atx = a»(t,

and || aίj(ty x) \\ is a strictly positive-definite symmetric matrix for each

< t, x > G (SQ , ΐ0) x G αίj(ί, #) and £*(/, x) are transformed between any
two local coordinates by means of (1. 3) and (1. 4) in [FS]. We
assume that

(A. 1) the functions

(ί i h k j - Λ m}( )Jy "'KΊ — ̂  ''™)

and c(ty x)

satisfy the generalized Lίpschitz condition in [s0,/0]xG.
We define the partial derivative df(ξ)/dntξ to the outer transversal

direction ntξ as follows: when B is represented by ψ(x) = ψ(x\ ... , χm)
= 0 with respect to a local coordinate around ξ and ψ(x)^>Q in G,
we set

this notion is independent of the special choice of the local coordinate
around ξ by virtue of the transformation rule for aίj(t, x) (see [FS.
(1. 3)]). If we take a local coordinate with respect to which aij(t, ξ) = δίj

i.e. aί3(t,ξ}^^=Laplacian at the point <M:> (fixed), then d f ( ξ ) / d n t ξ

means the partial derivative to the outer normal direction to B. We
consider the boundary condition :

σ t ξ

for each ί, where a(t,ξ) is a function on [s0 , ί0] x β, of C'-class in t
and of C2'7-class in | and 0^α(ί, f)^l. We shall say that a function

f ( t , x ) on (s0,t0)xG satisfies the boundary condition (βj if it satisfies
(βα(0) for any te(sQ,t0).

We define the metric tensor atj(x), as stated in [F§, p. 79], and

consider the measure dax = Va(x)dxί dxm( a(x) = d e t \ \ a i j ( x ) \ \ ) and de-
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fine the adjoint operator L* resp. A* of L resp. A with respect to this
measure. If M is an orientable Riemannian manifold with a metric
tensor gij(x) a priori, then it is natural to take the measure dgx =

Vg(x)dxl ••• dx™ (g(x) = det \\gij(x) ||) in place of dax; in this case, it is
sufficient only to replace a(x) by g(x) throughout the course of the
present paper, while a^x) should not be replaced by g i j ( x ) .

We assume further that :

(A. 2) the following relations hold on the set

(1.4) ί, ξ) =

(1.5) _

Under the above stated conditions (A.I) and (A. 2), we shall con-
sider the parabolic differential equations L/=0 and L*/* — 0 in the
domain G with the boundary condition (BΛ).

By definition, a function w(ί, Λ: s,y), s0<^s<^t<^t0 #,;y e G, is
called a fundamental solution of the parabolic equation Lf=Q with the
boundary condition (Ba) if, for any 5 and any function f ( x ) which is

continuous in G and satisfies the condition (/?Λ(β)), the function

(1. 6) /(ί, x) = SGu(t, x s,y)f(y)day

satisfies the conditions^ :

ί/(ί, x) is of C^-class in t and of C2-class in x, and satisfies the
(equation L/=0 as well as the boundary condition (J5J

and

(1.8) limf(t,x)=f(x) uniformly on G.

A function u*(s,y;t,x), sQ<^s<^t<^t0; x,y^Gy is called a fundamental
solution of the adjoint equation L*/*~0 (of the equation L/=0) M;/^
ίfe^ boundary condition (BΛ) if, for any £ and any continuous function

3) It is true that "daϊJfdnt depends on the local coodinate, but the condition (1.4) is

independent of it, because, if || aίJ \\ is changed into || άlJ \\ by means of the coodinate trans-
dά*3 dx* dxJ da*1

formation (#*)-*(**)» then we get -g— = fajκm-jfaϊ'~fa~ b^ virtue of [FS, (1.3)].

4), 5) Cf. [FS, Definition 2]. The conditions corresponding to (1.9) and (1.9*) in [FS]
follow from (1.7) and (1.7*) respectively in the case where G is compact.
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f ( x ) on G, the function

(1. 6*) /*(*, y) = JGw*(s, y ty x)f(x)dax (s < /)

satisfies the conditions5' :

( f * ( s y y ) is of C^-class in 5 and of C2-class in y, and satisfies
1 the equation L*/* = 0 as well as the boundary condition (BΛ)

and

(1.8*) lim/*(s,jO=/00β*t
pointwisely in G and also strongly in Ll(G).

The purpose of the present paper is to prove the following
theorems, which are literally the same as those in [FS]6) except the
statements concerning the boundary condition.

Theorem 1. There exists a function u(tyxysyy) of Cl -class in t and

s(So<C5<^Όo) and of C2 -class in x and y (xyy€G)y with the following
properties :

i) u(ty x\ s y y ) is a fundamental solution of the equation Lf=Q with
the boundary condition (BΛ)y

ii) u*(sy y t, x) = u(ty x syy) is a fundamental solution of the adjoint
equation L*f* = 0 with the boundary condition (Ba),

iii) Ltxu(t,x\ s,y) = Q, L*yu(ty x\ s,y) = Q and u(t,x\s,y) satisfies
the boundary condition (BΛ) as a function of <^t,x^> and also as a
function of < s,y > ,

iv) SGu(tyx>ryz)u(ryz\ s,y)daz = u(t,x; s,y), 5<

Theorem 2. Let u(tyx\ s,y) and u*(syy\ t y x ) be the functions stated
in Theorem 1.

i) // a function f ( t y x) on (s,t0)xG satisfies (1.7) and (1.8) where

f ( x ) is continuous in G and satisfies (BΛ)y then it is expressible by (1. 6).

ii) // a function f*(s,y) on (s0,ΐ)xG satisfies (1.7*) and (1.8*)

where f ( x ) is a continuous function on G, then it is expressible by (1. 6*).

Theorem 3. // a function υ(tyx\syy) is continuous in the region:

sQ<^s<^t<^t0 x,y£ G, and fatisfies the condition i) or ii) in Theorem 1,
then it is identical with u(tyx\ syy) stated in Theorem 1.

Theorem 4. i) u(ty x\ syy)^Q and $Gu(tyx\ syy)day <Leλ^~s^ where

6) As for Theorem 4, see the supplement to [FS] in §0 of the present paper.
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λ = sup t,xc(ty x) ii) if c(t,x}=Ξ$ in the differential operator Atx and if
a(t,ξ) = l in the boundary condition (BΛ)y then $Gu(t, x s,y)day~l.

We shall show, in another paper7), the existence of the funda-
mental solution of the parabolic differential equation with a boundary
condition considered in a domain whose closure is not compact.

§ 2. Preliminaries. The following lemma may be proved by means
of Lebesgue's convergence theorem, and will be useful throughout the
present paper:

Lemma 1. Let (X, μ) be a measure space, and assume that

i) /(/,%) is measurable in XeX for each te(tlftz),
ii) f ( t y %) is differ entiable in t for a.a. % € X and

iii) there exists a measurable function φ(X) such that

dt

Then

<φ(X) in ( t 1 9 t z ) and { φ(X)dμ(Xχ
J x

Now let G, B and Atx be as stated in § 1 and z be any fixed point in
B. Then, for any canonical coordinate (see §1) around z.Bf^U^z) is
represented by means of Y(XI , ... , Λ;77"1) — 0 where ψ is a function of
C4>z:-class. Hence, considering a suitable coordinate transformation in
U^z), we may show that

Lemma 2. There exists a canonical coordinate (x1) around z such
that B\JU^(z) is expressible by xl = Q and that xl^>Q in GfrU^z).

Next we shall prove that

Lemma 3. Let (x1) be a canonical coordinate as stated in Lemma 2,
and consider the coordinate transformation: (xί)->(x\}1 for each t(sQ<,t
<:/0), defined by

(2'l) ixJ-v'tt x} — - - - ;-2 m
IXt - φ (I, X) = ry < all(t ξ ) ' - '" ?

7) See the author's paper: Fundamental solutions of parabolic differential equations
and eigenfunction expensions for elliptic differential equations, forthcoming to Nagoya
Mathematical Journal.
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where ξx= <0, x2, ... , *m>( e β) /or Λ^O1 , ... , *w>€ C/Λ*) 0»rf 7
i5 # suitable positive constant. Then there exists 8 = 8a^>0 such that

i) tfβ(*)Ctfί(*)Ctfι(*) *»<* U^(z)dϋ[^(z) for any t, ii) β is rβ^rβ-
sented by x} = 0 /« t^ί(^) tf^rf iii) (/" #ϋ(ί, #) is changed into aφj(t, x) by
means of this transformation (i,j = l, ... , w), /few

(2.2) ay(t,ξ) = a'φ
l(t,ξ) = Q and al5(t, f) = «J1(ί,f) = 0 , j = 2,...,m,

for any ξ£Bf\Ui(z)9 where Ut(x)= {yzM\J&(y\-xW <e] and
\\ a*j(t, x} \\ = \\ aV(t, x) H-1. Tfe niβ^iif f ^(^) = <^1(/, ^), ... , φ™(ty x)>
of U8(z) into U{(z)is one-to-one and of C3>L-class in x, and a l

φ

j ( t y x ) , i,j =
1, ... , m, are of C1-class in t and of C2fL-class in x.

PROOF. We notice that «n(ί, Λr)>0 in U^(z)9 and consider the co-
ordinate transformation (2. 1) around z. Then x} = 0 if and only if
^ = 0, and we have for any ξ = <0, x2, ... , xm> £ B f\U ^z)

(2.3)

for l<Lj<m and 2<Lj<m. Hence the Jacobian

is bounded away from zero in f/8l(^) for suitable £x (O^θj^l) which
may be chosen independently of / by virtue of the continuity of

atj(t,x) on the compact set [s0,f0]x Uβ(z) for any 6 (0<^£<^1), and
hence the transformation (2. 1) is well defined in Ueι(z). Considering

the continuity of aίj(t, x) on [s0, ί0] x U 9 ί ( z ) again, we may determine

7 and S>0 so that Us(z)^U{(z)(^ U,(z) and U8/3(z) C Uί/3(z) for any /.
By virtue of the transformation rule for aiό (see £FS, (1. 3)]), we have,

for any <f,f>e[s0,/0]x(BΛtfί(*)) and for

«l

u(/,f) = 0 (see (2.3)),

and consequently we get (2.2). The last part of Lemma 3 is also
evident by means of the above arguments.
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§ 3. Local construction of a quasi-parametrix. Let G, B and Atx be
as before, let z be any fixed point in β, and let (x*) and (x\) (s0<Lt <,t0)
be canonical coordinates around z as stated in Lemma 3. Then we
have

for any function f ( x ) of C^-class, and hence the assumption (1.4)
implies that

(3.2) = on

Now we put for s0; and X,

exp -
(3.3)

and define for
Lemma 3)

(3. 4)

<5<;ί^ί0 and x,yeUs(z)f\G (8 = 8, as stated in

V(t, x; s,y)= V0(aΐs(t, x) t, φt(x) s, φ,(y)) (see Lemma 3)

V(t, x;s,y)= V0(aφ

ί}(t, x) t, φt(x) s, φ,(y))

V(t,x)=V<>(aφ

{)(t,x))

where φ,(y) = <i — φ1(s,y), φ2(s,y), ... ,φm(s,y)^>. Further we put

(p(t,x;s,y)
___ 2(t-s) a(t,ξt.)
2(t-i)a(t, ξ,.) + φl(s,y)[I-a(t, ξ ,.) exp { - \ φl(t, x)

q(t,x; s,y)
φ*(s,y)[l-a(t, ξtx) exp {1- I φ\t, x) |2}]

(3.5)

2(t - s)a(t, ξtx) + φ\s, y){l - a(t, ξtx) exp { - | φ\t, x ) \ 2 } ^

where ξex is the point ( 6 B) defined by the equations :

φ\t, ξtx) = 0 , φ

}(t, ξtx) = φ>(t, x) for j ^ 2

such ξtx is uniquely determined for any x 6 f/δ(2) and any / by virtue
of Lemma 3.

Applying (3. 1), (3. 2), Lemma 1 and Lemma 3 to (3. 3), (3. 4) and
(3. 5), and making use of the fact that 3//3wcξ is independent of the
local coordinate, we obtain
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(36)
dntί

and

(3. 7) = -al\t, ξ) -aW, ξ ) . ι v ( t , ξ *, y)

for </,!> such that ξeBf\Us(z) and a(t,ξ)Φl, and we get also

t, ξ ; s , y ) _ _ d g ( t , ξ ; s , y ) _ 0

and

(3.9)

for any ξ£ Bf~\Us(z). We define

(3.10) W,*; J,Λ

V(t,.

where

(3.11.) /.(,, = i (Jacobian).

Then we may prove from (3. 6—9) and by simple calculation that

(3.12) Λ(f,£)TΓ.(^;5,;y) + {l-rt^^

for ξeUδ(z)r\B,

that is, Wz(t,x\ s,y) satisfies the boundary condition (BΛ) as a function
of <Ύ, Λ:> G [50 , £0] x £7β(Λτ). Since

(3. 13) f Λor, V(ί, ̂  s,y)J.(y)dy+ f ^or, 7(/, * s,y}Js(y)dyj t/δθ)nG J t/δ(^)ΠG

^ ST?- yo«j('» *> ^ ̂ w s> Y)dY= V(t, x)
(dy = dyl ... dy" , dY= dY1 - dYm)

and since the denominators and numerators in the right-hand side of
(3.5) are positive for any x,y£ U8(z)f\G, we get
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<3 14) tr,^f,\W.(t>* >s>y)\dy£>1. for any xeUs(z)f\G.
J U&{z)[ |C*

Now we have the following

Lemma 4. // f(x) is continuous in G and vanishes outside U8(z),
then

(3. 15) lim LV(t>x>s'$(+ϊ(t>χ >s'y)f(y)L(y)dy =f(X)t±s JG V (I, X)

uniformly in Us(z)f\G.

PROOF. By virtue of (3. 3) and the uniform continuity of φ*(t, x)

on [s0 , t0~] x Us(z)y we may show that

.
uniformly in Us(z)f\G

for any continuous function F ( Y ) with a compact support; and

hence, if especially F(Ϋ) = F ( Y ) where F=<- F1, Y\ ... , FΛ1> for

i m f
,s jΛ*(yι>o)

lim X/, ̂ ) /, φt(χ) ^ Ϋ)

uniformly in U8(z)f\G .

Putting

I 0 if not

in the above relation, and considering (3. 4) and (3. 11), we obtain (3. 15).

Lemma 5. // f(x) is such a function as stated in Lemma 3 and if
D is an open set containing B^~ (ξ^B\ a(s, £) = !}, where s is any
fixed real number (s0<^s<^tQ)y then

lim f W.(t, x s,y)f(y)dy =f(x) uniformly in U9(z)f\G-D .
t±s JO-

PROOF. Let 6 be an arbitrary positive number. Then, by virtue
of Lemma 4, there exists Δ^O such that

for any x£U$(z)f\G whenever s<^t<^s + ̂ . On the other hand, by
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virtue of (3. 13) and (3.14), there exists ^j>0 such that

(317)( } V(t,χ) <r^
^ 4

and that

(3.18) I f gΐF.Of,*; s,y)f(y)dy ^-^

Since !—<*(/, f ίa,)exp {— ^x(/, Λ:) |2}>0 for any ί and any xeUs(z)f\

G-J5CS), there exists ^2>0 such that

-l^ίf,*)!*}^ (see (3.5))

for any t and any xe Us(z)f\G—D. Hence φ1(s,y)'ϊ>η1 implies that

I l-q(t, x s,y) \ = \p(t, x s,y)| ̂  (t-s)/wt

for any t^>s and any x^UK(z)f\G—D, and hence it follows from
(3.10) and (3.13) that there exists Δ2>0 such that

Λt'X' S'y)

y (*.*'•*. L{y)] f(y)dy

(3.18)

for any xeUs(z)f\G-D whenever s<ί<> + Δ2. Since f ( y ) = Q for

yεG-U^z), it follows from (3.16—19) that

I Jβ W.(t, x s, y}f(y)dy -f(x) |< 6 for any x e £7β(«) A G- Z>

whenever 5<^/<^s+min{Δ1, Δ2}. Thus we obtain Lemma 5.

Lemma 6. Assume that f ( x ) is continuous in G, vanishes outside
Us(z) and satisfies the boundary condition (Baω). Then

lim Jff W.(t, x s, y)f(y)dy =f(x) uniformly in Us(z) A G.
t IrS

PROOF. Let 8 be an arbitrary positive number, and put

where x = <-ΛTI, x\ ... , *m> for x •= <^, x\ ... , Λ:m> . Then, by
virtue of the assumption of this lemma, D is an open set containing
B<s)={ξeB; a(s,ξ)=l} and hence, by Lemma 5, there exists Δ>0
such that
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(3.20) \!G WΛ(t,x\s,y)f(y)dy-f(x)\<6 for any xeU8(z)f\G-D

whenever s<^t<^s + Δ. On the other hand, by Lemma 4, there exists
Δ'>0 such that

f V(t,x; s,y) + V(t,x;s,y)} f { v ) \ r { v } d v ^2
J G V(t,χ) \f(y)\J (y)<*y<^ 5

 6

for any x e Uδ(z) f\Gf\D

whenever 5 <^ t <^ s + Δ'. Hence, considering the non-negativity of

V(t, x s, y), V(t, x; s, y) and J s ( y ) (see the proof of Lemma 3) and
using the facts : 0 <1 p(ty x s, y) <: 1 and 0 <: q(t, x s, y) <1 1, we obtain
from (3.10) that

\\GW.(t,x;s,y)f(y)dy
4 8 for any x e U8(z)

and accordingly

(3.21) \SGW,(t,x;s,y)f(y)dy-f(x)K6 for any xe U8(z) f\ G f\D

whenever 5 < t < 5 + Δ7. From (3. 20) and (3. 21) we get

\SGW.(t,x;s,y)f(y)dy-f(x)\<6 for any xeU8(z)f\G

whenever s<^t <^s-fmin{Δ, Δ'}. Thus we obtain Lemma 6.

Next, let /(T, y) be a continuous function on (s, t0) x G which
vanishes outside U^(z) and satisfies the condition: fiSG\f(r,y)\dydr
<^ oo, and put

, *, T) = SG W.(t, x T, y)f(r, y) dy, t>r*>s,

Then we have

Lemma 7. i) /(f, x, T) tfwd F(ί, Λ:) satisfy the boundary condition
(BΛ) in Uδ(z)f\B; ii) for any 5/(ί0>5/>s)

lim Jc/(τ, Λ:) W.(τ, Λ s*, y)dx =/(^, ̂ ) in G A W
T ψ β /

iii) (/" /(T, .y) satisfies the generalized Lipschitz condition in (s, t 0 ) x G,
then
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OUTLINE OF THE PROOF. The proposition i) may be shown by means
of (3. 12) and Lemma 1, and the proposition ii) may be proved similarly
to [FS, Lemma 2]. The proposition iii) is proved as follows. Con-
sidering the fact that the mapping φt(x) is one-to-one and of C2'E-class
for any t (see Lemma 3), using the same idea as in [FS, Lemmas 1
and 3] and applying Lemma 1 ( § 1), we may show that

. y)dy ,

a*/(f, X, r) _~~ _ (
J

and

lim f(t,x,t')=f(r,x)

and that there exist M^> 0 and γ = γ(ί, x) ^> 0 such that

^ξ ίί-l) ̂  M(t-s)'σ' ^ whenever 5 < r < t ̂  t'
at

further we have

Γ
J s

and Γ
Js

Hence we may prove the proposition iii) by the same manner as in
[FS, Lemma 4].

Lemma 8. // ω(ty x} is a function of Cl-class in t and of C2-class
in x, and vanishes outside U8(z), then there exists a constant M0 ^> 0
such that

ff x)W.(t,

This may be proved similarly to [FS, Lemma 5].
Finally we define a quasi-parametrix Wz(t, x\ s, y) around any

inner point z of G as follows. We fix a canonical coordinate (x*)
around z satisfying U^z) C G and put

/«.=!
[x* = φ*(t, x) = x*, i = 1, ... ,m, for any /
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(consequently φt(x) = <^x\ . . . x^'^ and a%j(t,'x) = atj(t, x)—cf. Lemma 3).
Using this local coordinate, we define V(t, x s, y) and V(t, x) by means
of (3. 3) and (3. 4), and put

Then we may easily prove that Lemmas 6, 8 and Lemma 7 ii), iii) hold
for W,(t, x s, y) defined here. (See Lemmas 2, 4 and 5 in [FS].)

§4. Gloval construction of a quasi-parametrix and a fundamental

solution. For each £G G(= G + J3), we fix canonical coordinates (x*)
and \x\) around z as stated in §2, and put

U(z, 6) ={*e M; Σ(Λ«-*«)2 <£} (£> 0) .

Since G is compact, there exists a finite sequence { z 1 9 ... ,
such that

(4.1) G C W U(zv, δv/3) where δv = δ*v (see § 2),

and then, since

(4. 2) *v e G implies Z7(*v, δv) C G (see § 2),

we have

/ Λ Q\ ϊ? /^**" \ / TΊί>y 5̂  / Q \(4. ό) -O C^ \y c/(/£v, o v / ό ) .

Let ω(λ) be a function of C2'z-class in 0^λ<^oo such that ω(λ) — 1
or 0 if 0 < λ < 1/3 or λ 2> 2/3 respectively and that 0 ̂  ω(λ) ̂  1 for
any λ, and put for each v

O for *eG

Then ωv(ί, x), v = 1, ... , ,/V, are of C^class in / and of C2>z-class in

x e G, and

(4.4) 3 g ==0 for any <^^>^C^o^o]xβ;

this may be proved by considering the local coordinate (jej) around 2V

for each ί since the operator d/3nt is independent of the special
choice of the local coordinate.



182 S. Iτό

Now let a^(x) be the restriction of a(x) = det || ai3(x) \\ (see §1) to
U(zv , δv) with the local coordinate (x*) around z stated above, and put,

for s0OΌΌo,

I Wz,(ty x;s,y) (as stated in § 3) if x, y e E7(*v, δv) A G
=

We define a quasi-parametrix :

v. c *Λ _ Σv <»*(*> *)ωv(

Then Z(t, x; s, y) is of C^-class in t and s, and of C2'7-class in x and
y, and it follows from (3. 12), (4. 2), (4. 3) and (4. 4) that

(4.5) a(t,

that is, Z(ty x s, y) satisfies the boundary condition (BΛ) as a function
of <^t, x^> . Further, by virtue of Lemmas 6, 7 and 8, we obtain
the following three lemmas.

Lemma 9. i) If f ( x ) is continuous in G, then

limίs Z(t, X] s,y)f(y)day=f(x) in G;
t ±8

if especially f ( x ) satisfies the boundary condition (Baω)9 then the above

convergence is uniform in G.

ii) if f ( t y x) is continuous in [sf / 0 )xG, then

lim SGf(t> x)Z(t, x s, y)dax =f(s, y) in G ,

Lemma 10. // /(T, y) is continuous in (s, tQ)xG and satisfies the
condition : ί* SG \ /(T, y) \ d&ydτ <^ oo, then

f(t, x, T) - Jc Z(t, x\τ,y) /(T, y)da y (t < T < s)

and

F(ty x) = Jί/(ί, x, τ)dτ

satisfy the boundary condition (BΛ)\ if further /(T, y) satis fies the gener-

alized Lipschitz condition in (s, t 0 ) x G, then

AtxF(t, x) = Sc

s Jβ At.Z(t, x r, y ) f ( τ , y)daydτ .
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Lemma 11. Z(ty x\ sy y) satisfies all inequalities stated in [FS,
Lemma 8] for a suitable constant M^> 0.

Thus we see that Z(ty x s, y) has all properties stated in [FS, § 2].
Hence, starting from this quasi-parametrix Z(t, x s, y)y we may con-
struct u(t, x; s, y) in the entirely same way as in [FS, § 3]. We may
also construct u*(ty x\ s, y) in the similar manner for the adjoint
equation L*f* — Q with the same boundary condition (B J. The func-
tions u(ty x s, y) and u*(t, x s, y) defined here have the properties stated
in [FS, § 3] where the manifold M should be replaced by the compact

domain G and the uniformity of the convergence in [FS, (3. 13)] may
be proved if and only if f ( x ) is the limit of a uniformly convergent
sequence of functions satisfying the the boundary condition (Baω)8).
Moreover u(t, x; s,y) and u*(t, x\ s, y) satisfy the boundary condition
(BΛ) as functions of <^t, x^> — see Lemma 10 and the procedure of
the construction of u(t, x; s, y) (in [FS, §3]).

§5. Proof of Theorems.

Lemma 12. If f ( x ) and h(x) are functions of C2 -class on G satisfy-
ing the boundary condition (BΛω) (t : fixed), then

ϊ c f ( x ) - Atji(x)da* = IG Λfxf(x) - h(x)dax .

PROOF. By partial integration, we obtain the Green's formula :

Atjh(x)dax - SG A*x f ( x ) - h(x)dax

where dξ = dξ1 , ... , dξm~1 is the hypersurface area on B and ψ (x) is
such function that ty(x) = 0 determines B and that ψ (Λτ) > 0 in G. But
the right-hand side equals zero by virtue of the boundary condition
(Ba(t>) and the assumption (1. 5). Hence we obtain Lemma 12.

From this lemma we obtain the following (see [FS, Lemma 11])

Lemma 13. If a function f*(s, y) on ( s 0 , / ) x G satisfies (1.7*) and
(Ba), then

8) This assumption for /(#) is equivalent to the following one : /(£) =0 on
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fc/*(τ> x)u(r, x s, y)dax = /*(s, y) /or 0»y r e (s, t) .

Therefore, we may see that :

PROOF OF THEOREMS 1, 2 AND 3 may be performed in the same way
as the proof of the corresponding theorems in [FS] (see [FS, pp. 89-90]).
It seems not to be necessary to repeat the entirely same argument.
The propositions concerning the boundary condition which are not includ-
ed in [FS] may i)e easily proved from properties of u(t, x \ s, y) and
u*(t, x 5, y) stated in § 4 of the present paper.

In order to prove Theorem 4, we consider, as in § 0, the functions

(5. 1) /f(ί, x) = SG u(t, x s, y)f(y)day

and

(5. 2) g(t, x) =gγ*»\t, x) =/.(/, x) exp -

where f(x) is an arbitrary continuous function on G such that 0 <1
f ( x ) ^ 1 and the support off(x) is a compact set contained in the domain
G, and T and n are as stated in § 0. Then g^n\t9 x) is continuous in

(5, / 0 ) x G and satisfies (0.3), (0. 4) and the boundary condition (BΛ).

Lemma 14. // c(ty x) <1 0, then the function g(t, x) takes neither

positive maximum nor negative minimum at any point in (s, £ 0 )xG (for
any fixed r, n and s).

PROOF. It is easily proved by the well known method that g(t, x)
takes neither positive maximum nor negative minimum at any point
in the open set (sy ί0) x G.

Suppose that :

(5. 3) g(t, x) takes the positive maximum at <^ tl9 ξ1 ^> G (s, t 0 ) x B .

fβ(t, x) satisfies Lf= 0 in (s, £ 0 ) x G as may be seen from the properties
of u(ty x sy y), where the partial derivatives at any ξ e B should be
understood as defined in § 1, and g(ty x) satisfies the boundary condition
(BΛ) as well as /t(ί, x). We adopt a canonical coordinate around ξί

as stated in Lemma 3. Then we obtain from (5. 3), (3. 1) and (Ba)
that 3g(t19 ξjfdx} <, 0 and that

Since ^(ί1,?1)>0 and 41(ί1,f1)>0, it follows that a(t19^) should be



The Fundamental Solution of the Parabolic Equation in a Differentiable Manifold, II 185

zero, consequently dg(t19 ξj/dx] — 0, and accordingly
<I 0 by virtue of (5.3). Moreover, since <^ι>£ι^> may be considered
as the maximising point of g ( t , ξ ) restricted to (s, t0)xB, we have

V1 "*}(+ £ \ °2£(tι> ^i) <^ Π onH / ) « / / t \ °&(t\y Si) —2-j

where we use the following facts: ^4 j(Λ> ?ι) = ̂ 1(Ί> f i ) = 0 f°r '̂
(see Lemma 3) and accordingly H^j(^, ξl)\\i9j=29...ym is a positive-definite
symmetric matrix. Thus we get Ag(t19 ξj <LQ, and hence

-i / / 0 \ n
(T — S)

that is a contradiction. Hence the function g(t, x) on (s,t0)xG does
not take the positive maximum at any point in (s, f 0 )xJ3. Similarly
it does not take the negative minimum at any point in (s, tQ)xB.

PROOF OF THEOREM 4 may be performed by means of the entirely
same manner as in § 0 by making use of Lemma 14 in place of Lemma A
in § 0. We omit to repeat heie the argument in § 0.
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