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The Fundamental Solution of the Parabolic Equation
in a Differentiable Manifold, I1

By Seizo ITO

§0. Introduction (and supplements to the previous paper). Recently
we have shown the existence of the fundamental solution of parabolic
differential equations in a differentiable manifold (under some assump-
tions) in a previous paper” which will be quoted here as [FS]. We
have set no boundary condition in [FS], while we shall here show
the existence of the fundamental solution of parabolic differential
equations with some boundary conditions in a compact subdomain of
a differentiable manifold.

We shall first add the following supplements 1°) and 2°) to [FS],
as we shall quote not only the results obtained in the paper but also
the procedures used in it:

1°) CorrecTIONS. Throughout the paper [FS]

for exp {M,(t—s)3}, read exp {M,(t—s)};
for exp {2M,({—s)3}, read exp {(2M,(t—s)).

In the inequality (3. 4),

m+1

for (t—s)~(z+1), read (t—s)"z

2°) The proof of Theorem 4 in [FS, §4] is available only for
the case: f,—=co. Instead of completing the proof, we are enough to
establish a slightly ameliorated theorem as follows :

Theovrem 4. i) The function wu(t, x; s, y) is non-negative, and
Sath(t, x5 8, 9)doy<exp {Mt—s)} where N=sup,, c(t, x); ii) if especially
c(t, x)==0, then Syu(t,x; s,y)d,y=1.

We see that |A < K(< ) by virtue of the assumption II) in
[FS, p.76]. To prove this theorem, we consider the functions

(0.1) fo(t, x) = Tyu(t, x5 $,9) f(¥)day

and

1) S. Ito: The fundamental solution of the parabolic equation in a differentiable mani-
fold, Osaka Math. J. 5 (1953) 75-92.
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0.2) g5t %) = f,(t, %) exp { ~ (:}SY}

N

where f(x) is an arbitrary function continuous on M, with a compact
support < M and satisfying 0< f(x¥)<1, and » is a natural number
>2 and s <7 <t,. Then g{"™(¢, x) is continuous in [s,?,) x M and

(0. 3) g™(s, x) =f(x), consequently 0 < gi™(s,x) < 1.

By virtue of [FS, (3.10)] and the correction 1°) stated just above, we
have

(0.4) | fo(2, )| < Mexp {M(t—s)}
for a suitable constant M _>0.

Lemma A. If c(t,x)<0, then the function g\"™(¢, x) takes meither
positive maximum nor negative minimum at any point in (s,t,) x M.

The proof may be achieved by the well known method and so
will be omitted.

Lemma B. If c(¢, x)<0, then u(t, x;s,9)=>0 and [yu(t, x;s,y)d.y<1.

PrROOF. By virtue of the continuity of u(f, x; s,5) (see [FS,
Theorem 17), it is sufficient to prove that 0 < f (¢, x)<1 for any func-
tion f(x) satisfying the above stated conditions (see (0.1)).

Suppose that fs,(¢,,x,) >1 for some ¢, >s, and x,. Then, if we
take 7 and 7’ such that ¢ < =< +'<¢, and sufficiently large #, we have

g, x,) > 1
and
lg&™(ty, x,) | > g™, x) | for any £>+" and xe M

by virtue of (0.2) and (0.4). From this fact and (0. 3), it follows that
g‘;l””(t, x) takes the positive maximum at some point in (s,?,) x M;
this contradicts Lemma A. Hence we have f,(¢, x)<1.

Similar argument shows that, if f;,(¢,, x,)</0 for some ¢ < s, and
x,, there exist = and # such that ggz’”)(t, x) takes the negative minimum
at some point in (s,#,) x M contradictly to Lemma A. Hence we get
fo(t, x)=0, q.ed.

PrROOF OF THEOREM 4. Let u(¢, x; s,»y) be the fundamental solution
of the equation Lf=0. Then we may easily prove that the function

u\(t, x5 8,9) =e 2 Out,x;s,y)
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is the fundamental solution of the equation (L—\)f=0. Since c(f, x)
—Ax0, we have

ur(t, x5 8,9) =0 and [rpu(t, x;8,9)d,y <1
by Lemma B, and hence
u(t,x;5,9) =0 and [yu(t,x; s,y)dy <X,

Finally, if ¢(#, x)=0, we may apply Theorem 2 in [FS] to the function
f(t, x)=1 and we get

Inu(t, x5 8,9)d.y =1, q.ed.

§ 1. Fundametal notions and main results. We shall say, by de-
finition, that a function f(x) defined on a subset E of the Euclidean
m-space R™ satisfies the generalized Lipschitz condition in E if, for any
x € E, there exist positive numbers N, § and y (each of them may
depend on x) such that |f(x)—f(MIZNIL|2*—3*|Y whenever yc E
and |x*—y*| <8(i=1, ..., m), where (x*) and (»%) denote the coordinates
of x and y respectively®.

A function f(x) defined on a domain G R™is said to be of C%’-
class if f(x) is of C*-class in the usual sense and each partial deriva-
tive of k-th order of f(x) satisfies the generalized Lipschitz condition
in G. A manifold of C**-class, a hypersurface of C**-class, etc. should
be understood analogously.

Let M be an m-dimensional manifold of C**-class, and G be a

domain in M such that the closure G is compact and the boundary

B=G—G consists of a finite number of hypersurfaces of m-1 dimen-
sion and of C**-class.

Under a canonical coordinate around x € M, we understand any local
coordinate which maps a neighbourhood of x onto the interier of the
unit sphere in K™ and especially transforms x to the centre of the
sphere. For each xe M and any fixed canonical coordinate around x,
we denote by U,(x) the neighbourhood of x of the form
{(yeM; X (y*—at)*< &} where 0<e<1.

We understand the partial derivatives of a function f(x) (defined

on G) at £¢ B as follows: 9f(€)/0x*=a, (E€ B), i=1, ..., m, means that
F®) =fE) +ay(x*—E)+0 (2 |2*~E) for any xcUE NG

where U(£) is a coordinate neighbourhood of &.

2) Cf. Footnote 1) in [FS].
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We fix s, and ¢, such that — co <7s,< #,< o and consider the
parabolic differential operator L :

(1.1) L=L.=A.~5, (1€G, s, <t<1)
where
1.2) A= A,, = a"(t, x) ?8 ~—5+b(¢, x) X -+c(t x)

and || a¥(¢, x) || is a strictly positive-definite symmetric matrix for each
<t,x>e(so,to)><é; a¥(t, x) and b(¢, x) are transformed between any
two local coordinates by means of (1.3) and (1.4) in [FS]. We
assume that

(A.1) the functions

tJ 3 1 (3
Qaa_g’_x), %‘f{a%;.g;i, fi’%i;cx) G i bk l=1,..,m
and c(t, x)
satisfy the gemeralized Lipschitz condition in [s,,t,]xG.

We define the partial derivative Of(E)/On. to the outer transversal
direction n,; as follows: when B is represented by r(x)=+r(x?, ..., x™)
—0 with respect to a local coordinate around & and (x)>>0 in G,
we set

(1.3) g0 Y. a8,

this notion is independent of the special choice of the local coordinate
around £ by virtue of the transformation rule for (¢, x) (see [FS.
1.3)7]. If we take a local coordinate with respect to which a¥/(¢, £)= 6%
ie. a¥(t, E)a o =Laplacian at the point < ¢,£_> (fixed), then 9 f(€)/on,,

means the partial derivative to the outer normal direction to B. We
consider the boundary condition :

(Boc) alt, §)FE) + (1—a(t, £) a-f € _0 ¢eB

N,

for each ¢, where «a(t, &) is a function on [s,,#,] x B, of C'-class in ¢
and of C*"—class in & and 0<Z«(f, £)<1. We shall say that a function
f(t, x) on (s,,?,)xG satisfies the boundary condition (B,) if it satisfies
(B, for any te(s,,t,).

We define the metric tensor a,;(x), as stated in [FS, p. 79], and
consider the measure d,x=+/a(x)dx'---dx"( a(x)=det || a;;(x) ||) and de-
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fine the adjoint operator L* resp. A* of L resp. A with respect to this
measure. If M is an orientable Riemannian manifold with a metric
tensor g,;(x) a priori, then it is natural to take the measure d,x=
Vg(x)dx' - dx™ (g(x)=det || gs(x) ||) in place of d,x; in this case, it is
sufficient only to replace a(x) by g(x) throughout the course of the
present paper, while a,;;(x) should not be replaced by g;;(x).

We assume further that:

(A.2) the following relations hold on the set
{(<HE>; alt, &) == 1) (T [s,,t,1xB):
oav(t, &) _n» ;i
1.4) W—O (5,j=1,...,m) and
1 .2
Va(E) ox
Under the above stated conditions (A.1) and (A.2), we shall con-

sider the parabolic differential equations Lf=0 and L*f*=0 in the
domain G with the boundary condition (B,).

By definition, a function u(t,x;s,y), s,< s<t<t,; x,9€G, is
called a fundamental solution of the parabolic equation Lf=0 with the
boundary condition (B,) if, for any s and any function f(x) which is

continuous in G and satisfies the condition (B,,), the function
(1.6) F(&x) = Jeult, x5 $,9)f(day (£<5)

satisfies the condit_ions“’:

(1.5) bi(t, &) = S IVa@)a(t, 6] =1,...,m).

1.7 f(t, x) is of C'—class in ¢ and of C*-class in x, and satisfies the
(1.7 {equation Lf=0 as well as the boundary condition (B,)

and
(1.8) lim f(¢,x) =f(x)  uniformly on G.
ty s
A function u*(s,y; ¢, x), s,<s<t<t,; x,yeé, is called a fundamental

solution of the adjoint equation L*f*=0 (of the equation Lf=0) with
the boundary condition (B,) if, for any ¢ and any continuous function

3) It is true that 0a?//0n; depends on the local coodinate, but the condition (1.4) is
independent of it, because, if ||a?/| is changed into || &%/ || by means of the coodinate trans-
formation (x?)—(x?), then we get 2% _ Ot 0% dakt by virtue of [FS, (1.3)]

’ On; Oxk Oxl Omy P AT

4), 5) Cf. [FS, Definition 2]. The conditions corresponding to (1.9) and (1.9%) in [FS]

follow from (1.7) and (1.7*%) respectively in the case where G is compact.
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f(x) on G, the function

(1. 6%) X(s,9) = Jau*(s,5; t, ) f(®)dax (s < 1)
satisfies the conditions® :

(1. 7%) {f*(s,y) is of C'-class in s and of C?-class in y, and satisfies
’ the equation L*f*=0 as well as the boundary condition (B,)

and
(1. 8%) 1131 f¥(s,9)=f()

pointwisely in G and also strongly in LY(G).

The purpose of the present paper is to prove the following
theorems, which are literally the same as those in [FS]® except the
statements concerning the boundary condition.

Theorem 1. There exists a function u(t, x,s,y) of C'-class in t and
s(s,<s<t<t,) and of C*~class in x and y (x,y € G), with the following
properties :

i) wu(t, x;s,9) is a fundamental solution of the equation Lf =0 with
the boundary condition (B,),

il) wX(s,y;t, x)=u(t,x;s,y) is a fundamental solution of the adjoint
equation L*f* =0 with the boundary condition (B,),

iii) L,u(t, x;s,9) =0, LYu(t,x;s,9)=0 and wu(t,x;s,y) satisfies
the boundary condition (B,) as a function of < t,x"> and also as a
Sfunction of < s,y >,

iv) JSeu(t,x, 7, 2)u(r,2; s,¥)d.2=u(t,x;s,y), s<r<t.

Theorem 2. Let u(t, x; s,y) and u*(s,y;t,x) be the functions stated
in Theorem 1.

i) If a function f(t,x) on (s,t,) x G satisfies (1.7) and (1.8) where
f(x) is continuous in G and satisfies (B,), then it is expressible by (1.6).

i)y If a function f*(s,y) on (s,,t)xG satisfies (1.7*) and (1.8%)
where f(x) is a continuous function on G, then it is expressible by (1. 6*).

Theorem 3. If a function v(t, x; s,y) is continuous in the region:

S < s<t<4,; %,y € G, and fatisfies the condition i) or ii) in Theorem 1,
then it is identical with u(t,x; s,y) stated in Theorem 1.

Theorem 4. 1) #(f,x; 5,9)=0 and Squ(t,x; s,9)d,y <" where

6) As for Theorem 4, see the supplement to [FS] in §0 of the present paper.
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A=sup,,c(t, x); ii) if c(¢, x)=0 in the differential operator A,, and if
a(t,E)=1 in the boundary condition (B,), then Scu(t,x; s,y)d.y=1.

We shall show, in another paper”, the existence of the funda-
mental solution of the parabolic differential equation with a boundary
condition considered in a domain whose closure is not compact.

§ 2. Preliminaries. The following lemma may be proved by means
of Lebesgue’s convergence theorem, and will be useful throughout the
present paper :

Lemma 1. Let (X, ) be a measure space, and assume that
1) f(t,X) is measurable in X € X for each t € (t,,t,),

i) f(¢, X) is differentiable in t for a.a. X€ X and

iii) there exists a measurable function ¢(X) such that

PLE0| < o) in (1) and | p(0du(X) < .

Then
d( [ aft,X)
L r0du = LT""(X’ .

Now let G, B and A,, be as stated in §1 and z be any fixed point in
B. Then, for any canonical coordinate (see § 1) around z, BN\ U,(?) is
represented by means of (x',...,2")=0 where 4 is a function of
C*’—class. Hence, considering a suitable coordinate transformation in
U,(z), we may show that

Lemma 2. There exists a canonical coordinate (x*) around z such
that B\ JU,(z) is expressible by x'=0 and that x* >0 in G\ U, ().
Next we shall prove that

Lemma 3. Let (a%) be a canonical coordinate as stated in Lemma 2,
and consider the coordinate transformation: (x*)—(xi), for each t(s,<t
<t,), defined by

(x‘ P(t, X) = 9%’
(2.1)

(x{_ Pt x)=1q aug"g;x +x’} j=2 ...,m,

7) See the author’s paper: Fundamental solutions of parabolic differential equations
and eigenfunction expensions for elliptic differential equations, forthcoming to Nagoya
Mathematical Journal.
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where E,=<0,x%...,x" >(€B) for x=<x",...,2" >€cU\(2) and v
is a suitable positive constant. Then there exists §=38,>0 such that
i) Uyz)CUi(x)CU(2) and Uy, () Ui;5(2) for any t, ii) B is repre-
sented by x;=0 in Ui(2) and iil) if a*(t, x) is changed into al’(t, x) by
means Of this transformation (i,j=1, ... ,m), then

(2.2) ay’(t,&)=al'(t,&)=0 and al/(t,&)=af(t, =0, j=2,..,m,

Sor any E€ BN\ Ui(z), where Uix)= {ye M ; S (yi—x)*< &} and

| @?y(t, x) ||=|| ai’(t, x) || . The mapping ¢ (x)=<p'(t, %), ..., p"(t, x) >
of Ug(z) into Ui(2)is one-to-ome and of C**~class in x, and ai'(t, x), i,j=
1,...,m, are of C'—class in t and of C**-class in x.

ProoF. We notice that a''(f,x) >0 in U,(2), and consider the co-
ordinate transformation (2.1) around z. Then x!=0 if and only if
x'=0, and we have for any £=<0,x% ...,2" >ec BN\ U,(?)

ox!}
(é}',%)z——& = 78%

8x{> — {_a"(t,é) 1 ;} 5. ,
(a—x’“ b Y m8k+8,c (8{: Kronecker’s delta)

(2.3)

for 1<j<m and 2<j<m. Hence the Jacobian

oxt, ..., a7
o(xt, ..., x™)

is bounded away from zero in U.,(2) for suitable &, (0< &< 1) which
may be chosen independently of ¢ by virtue of the continuity of
a*(¢, x) on the compact set [s,,#,]xU,z) for any & (0< &< 1), and
hence the transformation (2.1) is well defined in U.,(z). Considering
the continuity of a*(¢,x) on [s,,,]x Ue(2) again, we may determine
v and 6>0 so that Uy2)CUi(2) CU,(2) and Uy, (2) Ui 5(2) for any ¢.
By virtue of the transformation rule for &% (see [FS, (1.3)]), we have,
for any <¢,E>€ls,, t, 1 x(BNUi2)) and for j=2,

1
avit,6) = (55) +(55) e
=~y S AL By ) =0 (see (2.3),

and consequently we get (2.2). The last part of Lemma 3 is also
evident by means of the above arguments.
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§3. Local construction of a quasi-parametrix. Let G, B and A,, be
as before, let z be any fixed point in B, and let (x%) and (x%) (s, <¢<1%,)
be canonical coordinates around z as stated in Lemma 3. Then we
have

a1 LO= 05 = —apt, 5% €< B)

on, oxt

for any function f(x) of C'-class, and hence the assumption (1.4)
implies that

3.2) aﬁ‘fé%@:o on {<t,E>; alt, £) =4=1},

Now we put for s, <s<t<t, and X, Ye R”

. . m A (Xt =YX —YY)
V(A 6, X;s,Y)=(t—s)"z exp | —Z¥
(3.3) [ 4(t—s) ]

Vi(Aiy) = SR"‘ exp[——%i”] dy*..dyn,

and define for s,<s<t<t, and x,yc Uy2)\G (§=3$, as stated in
Lemma 3)

Vit, x; s,9) =V(ait, x); t, p(x); s, p(¥)) (see Lemma 3)
(B.4) Vit x5 5,9 =V, @t %) t, 2) ;5 s, §o(¥))
V(t, x) =V,(a?,(t, x))

where ¢,(y)=<_—9'(s,3), 9*(s,9), ..., "(s,¥)>. Further we put

bt x58,3)
- 2t—s)alt Ey)
T2t —s)alt, EL) + (s, ) 1—alt, &,,) exp {— |@'(t, x) )]
q(t,x;8,9)
_ P (s, M 1—at, &) exp{1— ', %) |*}]
2t —s)a(t, &)+ @'(s, [ 1—al(t, &.) exp { — | p'(t, x) |*} ]

(3.5)

where &,, is the point (€ B) defined by the equations:
Pt €L =0, @'t &) = @'(t,x)  for j=2;

such &,, is uniquely determined for any x € Uy 2) and any ¢ by virtue
of Lemma 3.

Applying (3.1), (3.2), Lemma 1 and Lemma 3 to (3.3), (3.4) and
(3.5), and making use of the fact that of /om,, is independent of the
local coordinate, we obtain
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oV &) _
(3' 6) _a—ntg‘"'" - 0

and

oV(t, €589 _ _ A .= P(s,9) .
@.7) PVEELS) — _api )| a5 5 Vit ;s )

— — P8y :
—_Z(t_s) V(t’é: ’ S,J’)

for <¢,£>> such that £e€ B/\Uy2) and «(t, £)=-1, and we get also

op(t,&; 8,y _oq(t, &8,y
(3.8) on,¢ - on,¢ =0
and _ ‘
(3.9) Vit €589 =V(E;s )

for any £e€ B\ Us(2). We define
Vit,2;59)=V({E,x55,9)

(3.10) W, x; s,9) =p(, x; 5,9) ()

V(t, x)
+q(t, x5 5,9 J9) Vit %5 S’%,’)(;' }C/)(t’ 259
where
(3.11) Ty = L2 90 o, PSS IT (1acobian).

aly, ..., ™)

Then we may prove from (3.6—9) and by simple calculation that

(B.12)  alt, W E; 5,9+ {1—al, &) TDLESN — g

for £e Uyz)N\B,
that is, W,(¢, x; s,») satisfies the boundary condition (B,) as a function

of <t,x>¢€ls,,t,]xUsx). Since

(3.13)

Vit x; s,y)]s(y)dy+j Vit, x; 5,9, (3 dy

jUs(z)ﬂG Us(2)NG
< (V@i 05t g s, VAY = Vit 2)
(dy=dy*---dy", dY=dY'..-dY™)

and since the denominators and numerators in the right-hand side of
(3.5) are positive for any x,y € Uy2) \G, we get
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(3.14) [ Wit,x;5,9|dy <1 for any xeUi2)N\G.

SUB(Z)HG

Now we have the following

Lemma 4. If f(x) is continuous in G and vanishes outside Uy(2),
then

- Vit, 25890+ V(t, x5 s,9) _
(3.15) lim SG VD FNT(9)dy =f(x)

uniformly in Uy 2)N\G.
ProOOF. By virtue of (3.3) and the uniform continuity of ¢’(¢, x)

on [s,,%,]x Us(z), we may show that

- Vo(aiyt, %) ; ¢, (%) ; s, Y) -
tim { FNav=Trig.)

uniformly in Uy 2)N\G

for any continuous function F(Y) with a compact support; and

hence, if especially F(Y)=F(Y) where i’=<—Y‘, Y? ..., Y"> for
Y=<Y',Y?%.., Y">, then

i Vo(afj(t’ %)t p(x); 8, Y)+ Vo(df,(t, x); ¢, p(x); s, Y)
]:715? SR’"(Y1>0) V(@ x)) F(Y)dY

= F(p,(x)) uniformly in Uy2)N\G.
Putting '

flp () if 20(Y)y <1

F(Y):F(f’):{o if not

in the above relation, and considering (3. 4) and (3. 11), we obtain (3. 15).

Lemma 5. If f(x) is such a function as stated in Lemma 3 and if
D is an open set containing B®={£c B; a(s,£)=1}, where s is any
fixed real number (s,<s<t,), then

lifn sG W.t,x; s,9)f(3)dy =f(x) wuniformly in Us(z)[\é——D .

Proor. Let & be an arbitrary positive number. Then, by virtue
of Lemma 4, there exists A, >0 such that

(3.16)

Vit, x5 5,9+ Vt, %5 5,9) B .
ISUS(Z)ﬂé V@, x) T fdy—f)| <-4

for any x¢ Uy2)\G whenever s< t< s+A,. On the other hand, by
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virtue of (3.13) and (3. 14), there exists 5, >0 such that

Vit,%,; 5,9+ V(%559 ‘ &
31D | [ mnng V{E, %) SN[y
and that

N &
(-18) ‘ S U5 yy<ninG b B3 SN () ‘ <y

Since 1—af(t, &,,)exp {— |p'(t, x)|?} >0 for any ¢ and any xe Uy2)/\
G—B®, there exists 5, >0 such that

1—a(t, &) exp {—|p'(t, 0)|*} =7,  (see (3.5))
for any ¢ and any x € Uy2)\G—D. Hence ¢'(s,y)=>», implies that
|1—q(t, x; 5, 9) =1, %5 $,9) | < (£=5)/n.m,
for any ¢>s and any x¢ Uy2)/\G—D, and hence it follows from
(3.10) and (3.13) that there exists A, >0 such that

(3.18) Wit x; s,9)—

‘ 5 Us()N{@'(s, )=} NG {

_V, x50+ V(x5 5,9) .
V¢, x) fs(y)}f(y)dy ‘ <3

for any xe Uy2)\G—D whenever s<t<s+A,. Since f(y)=0 for
ye G—Ui(z), it follows from (3.16—19) that

|Je W.t, x5 5, 9) f(9)dy—f(x)|< & for any xe Uyz) N\ G—D
whenever s <t < s+min{A, A,}. Thus we obtain Lemma 5.

Lemma 6. Assume that f(x) is continuous in G, vanishes outside
Us(2) and satisfies the boundary condition (B,,). Then

lim §4 W,(2, x5 s, ) f(9)dy =f(x) uniformly in Uy2) N\ G.

tys

Proor. Let & be an arbitrary positive number, and put
D={x; xeG,| f(0)|<&/5\J{Z; x€ G,| f(x)|< &[5}

where %= <—x', %% ..., 2™ > for x=<a", 4% ...,2">. Then, by
virtue of the assumption of this lemma, D is an open set containing
B® ={£c B; «fs,£) =1} and hence, by Lemma 5, there exists A >0
such that ’
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(3.20) |fg W.t, x5 5,9 f(y)dy—f(x)|< & for any x¢ Uyz) N\ G—D

whenever s<t<_s+A. On the other hand, by Lemma 4, there exists
A’ 0 such that

( Vit, x; 8,9+ V(t, x55,9)
G

2
V(z, x) | fONT)dy <€

for any x€ Uyz) NG N\ D

whenever s< t< s+ A’. Hence, considering the non-negativity of

Vi, x; s,9), Vi, x; s,y) and J,(»y) (see the proof of Lemma 3) and
using the facts: 0 < p(f, x; s,9)<1 and 0 < q(¢, x; s,y) <1, we obtain
from (3.10) that

(Wit x50 f(ndy|< e for any xe U) NGN\D

and accordingly
3.21) |fo W.lt, %5 5,9 f(9)dy—Ff(x)|< & for any xe Us2) NG N\ D
whenever s <t < s+A’. From (3.20) and (3.21) we get

|Je W.(t, x5 5, ) f(3)dy—f(2x)|< & for any xe Uy2) \ G
whenever s <t < s+min{A, A’}. Thus we obtain Lemma 6.

Next, let f(r,y) be a continuous function on (s, ¢#,)xG which
vanishes outside Ugz) and satisfies the condition: §:§¢|f(r,y)|dydr
< o0, and put

ft,x,7)="5¢ W,(t, x; 7,9 f(r,y)dy, t >r>s,
Fit, x)=1Jf(t, x, ) dr.

Then we have

Lemma 7. i) f(, x,7) and F(t, x) satisfy the boundary condition
(B,) in Us(z) N\ B; ii) for any s'(t, > s">>5s)

lim fgf(r, x) W(r, x5 8, 9)dx =f(s,9) in G\ Us(2);
T8

iii) if f(r,y) satisfies the gemeralized Lipschitz condition in (s, t,)xG,
then

() ¢f o ;
FOD — i, 2+ [ 2PE0 D e, yyayar,

ALF(t, x)=1iJg AW (L, x; 7, 9) f(r, y)dydr.
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QUTLINE OF THE PROOF. The proposition i) may be shown by means
of (3.12) and Lemma 1, and the proposition ii) may be proved similarly
to [FS, Lemma 27]. The proposition iii) is proved as follows. Con-
sidering the fact that the mapping ¢,(x) is one-to-one and of C*"-class
for any ¢ (see Lemma 3), using the same idea as in [FS, Lemmas 1
and 3] and applying Lemma 1 (§1), we may show that

of(t, x,7) j WL, 57, 9) £(r y)dy
G ’

of o
oft, x, 1) _ 8W(l‘ xX;7,9)
e = [ e s,
o f(t, x, ) _ ( O°W(t, x;7,9)
Toxoxt S ¢ oxop Ty

and
lim £, x, ¢) = f (7, %)

it
and that there exist M >0 and y = (¢, x) >0 such that

’ Y
@f(tazl,&i) < M(t—s)"%" 2> whenever s<+<t<t;

further we have

)

Hence we may prove the proposition iii) by the same manner as in
[FS, Lemma 4].

af(t %, T)
8x"

o? f(t x, 7)
oxtox’

dr < oo

dr < oo and ‘s

Lemma 8. If w(f, x) is a function of C'-class in t and of C*-class
in x, and vanishes outside Us(z), then there exists a constant M, >0
such that

Lo, W, 23 5, 9] < Myt—s)" "% exp {—M%M}
_S)
This may be proved similarly to [FS, Lemma 5].
Finally we define a quasi-parametrix W.,(¢, x; s, ¥) around any
inner point 2z of G as follows. We fix a canonical coordinate (x%)
around z satisfying U,(2) C G and put

]52 =1
lat = Pit, x) =25 i=1,...,m, for any ¢
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(consequently g (x)=<_x",...2" > and a{,(t, x)=a,;(t, x)—cf. Lemma 3).
Using this local coordinate, we define V(¢, x; s, y) and V(¢ x) by means
of (3.3) and (3.4), and put

Wit 255, = VEES (s, Cs <t <t x e Ue).

Then we may easily prove that Lemmas 6, 8 and Lemma 7 ii), iii) hold
for W, (¢, x; s, y) defined here. (See Lemmas 2, 4 and 5 in [FS].)

§4. Gloval construction of a quasi-parametrix and a fundamental

solution. For each ze G(= G+B), we fix canonical coordinates (x%)
and (x%) around z as stated in § 2, and put

Uiz, &) ={xe M, Et}(x‘—-z‘)2 < &} E>0).

Since G is compact, there exists a finite sequence {2,y .., 251G
such that
4.1) G( \_12 U(z,, 8,/3) where 8, = oz, (see §2),
and then, since
4. 2) z, € G implies U(z,, §,) C G (see §2),
we have
(4.3) B \J Uz, $8,/3).
ZvEB

Let o(\) be a function of C**—class in 0 <A< o such that o(A) =1
or 0 if 0 <X <1/3 or A == 2/3 respectively and that 0 < w(M) <1 for
any A, and put for each v

jo(Sxt—(2)1]) for xe G N\ Uz, 3,

W2, = =

@, %) 10 for xe G — U(z,,4,).

Then w,(¢, x), v=1,..., N, are of C'-class in # and of C?*‘’-class in
xe@, and

. 4) 9‘%%;_@ —0  for any < 4 E>>€[s,, t,]xB;

this may be proved by considering the local coordinate (x¢) around z,
for each ¢ since the operator 9/9m, is independent of the special
choice of the local coordinate.
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Now let a,(x) be the restriction of a(x) = det || a;5(x)|| (see §1) to
U(z,, §,) with the local coordinate (xf) around z stated above, and put,

for s, <s<t<t,,
| Wa,(t, x5 5, ) (as stated in §3) if x,5€ Uz, 8,) G

Wv(t; x; 8,9 = io if not.

We define a quasi-parametrix :

_ 2ot D)oy (s, )Wt x5 s, 9) <So s <t fo)
vav(t x) \/av(y) x,¥yc G

Then Z(¢, x; s, ») is of C'-class in ¢ and s, and of C*”"—class in x and
y, and it follows from (3. 12), (4.2), (4.3) and (4.4) that

Z(t, x; 8,Y)=

4.5)  alt, HZ( E; 5,9)+ (1—alt, 5) 2L %) 90 (e B),

that is, Z(¢, x; s, y) satisfies the boundary condition (B,) as a function
of <t, x”>. Further, by virtue of Lemmas 6, 7 and 8, we obtain
the following three lemmas.

Lemma 9. i) If f(x) is continuous in G, then

lim fg Z(¢, x5 8, 9) f(»)day =f(x) in G;

tys
if especially f(x) satisfies the boundary condition (B,y,), then the above
convergence 1S uniform in G.
il) if f(¢, %) is continuous in [s, to)x(_;, then

lim S f(¢, )Z(t, x5 5, y)dax = f(5,9) in G,

Lemma 10. If f(r, y) is continuous in (s, t,)x G and satisfies the
condition: §¢§g| f(r, y)|daydr < oo, then

f(t)x)'T):-rGZ(tfx;'T’y)f(q',y)day (t<T<S)
and

F(t) x) == Igf(t) X, 'T)d‘T

satisfy the boundary condition (B,); if further f(v,y) satisfies the gener-
alized Lipschitz condition in (s, to)xG, then
| A,,Fa, B o A2t 53 y)f(fr, »d,ydr.
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Lemma 11. Z({, x; s, y) satisfies all inequalities stated in [FS,
Lemma 8] for a suitable constant M > 0.

Thus we see that Z(¢, x; s, ») has all properties stated in [FS, §2].
Hence, starting from this quasi-parametrix Z(¢, x; s, ), we may con-
struct #(¢, x; s, ) in the entirely same way as in [FS, §3]. We may
also construct u*(¢, x; s, ) in the similar manner for the adjoint
equation L* f* =0 with the same boundary condition (B,). The func-
tions u(¢, x ; s, y) and u*(¢, x; s, y) defined here have the properties stated
in [FS, § 3] where the manifold M should be replaced by the compact

domain G and the uniformity of the convergence in [FS, (3.13)] may
be proved if and only if f(x) is the limit of a uniformly convergent
sequence of functions satisfying the the boundary condition (B,,)”.
Moreover u(¢, x; s,y) and w*(¢, x; s, y) satisfy the boundary condition
(B,) as functions of <'#, x > — see Lemma 10 and the procedure of
the construction of u(¢, x; s, ») (in [FS, §37]).

§5. Proof of Theorems.

Lemma 12. If f(x) and k(x) are functions of C?-class on G satisfy-
ing the boundary condition (B,y,) (t: fixed), then

Jef(x)+ Aih(2)dux = [ AL f (%) (x)dox% .
ProOF. By partial integration, we obtain the Green’s formula :
Jaf (%) Ay h(x)dx— S g A¥, f (%) h(x)dox
— oné) _ 2f() 5
= [, {re %8 07O p )}
o) _

+j5 {'a}cj [VaE)a(t &)]—
—Va@ b(t, ) feonnd

where JE =d§&',...,dE™ " is the hypersurface area on B and +(x) is
such function that y»(x) = 0 determines B and that 4(x) >0 in G. But
the right-hand side equals zero by virtue of the boundary condition
(B.») and the assumption (1.5). Hence we obtain Lemma 12.

From this lemma we obtain the following (see [FS, Lemma 117)

Lemma 13. If a function f*(s,y) on (s,, t)x G satisfies (1.7*) and
(B,), then

8) This assumption for f(x) is equivalent to the following one: f(¢) =0 on B® =
{¢eB; a(s, £)=1}
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Se f¥(r, )u(r, x5 8, y)dax = f*(s,y) for any T €(s, t).
Therefore, we may see that:

PROOF OF THEOREMS 1, 2 AND 3 may be performed in the same way
as the proof of the corrvesponding theovems in [FS] (see [FS, pp. 89-907).
It seems not to be necessary to repeat the entirely same argument.
The propositions concerning the boundary condition which are not includ-
ed in [FS] may be easily proved from properties of u(t, x; s, y) and
u*(t, x; s,y) stated in §4 of the present paper.

In order to prove Theorem 4, we consider, as in §0, the functions

5.1) Filt 1) = Soult, %5 5,9) F(9)du3
and
.2) gtt, 1) =gt v) = £i(t, ) exp { (1 =2)]

where f(x) is an arbitrary continuous function on G such that 0 <
f(x) <1 and the support of f(x) is a compact set contained in the domain
G, and + and # are as stated in § 0. Then g{"™(¢, x) is continuous in

(s, t0)><G_ and satisfies (0. 3), (0. 4) and the boundary condition (B,).

Lemma 14. If c(t,x) <0, then the function g(t, x) takes neither

positive maximum nor negative minimum at any point in (s, t,)x G ( for
any fixed v, n and s).

Proor. It is easily proved by the well known method that g(, x)
takes neither positive maximum nor negative minimum at any point
in the open set (s, t,) xG.

Suppose that:

(5.3) g(t, x) takes the positive maximum at <t , & >€(s, t,)xB.

fi(t, x) satisfies Lf =0 in (s, t,) x G as may be seen from the properties
of u(t, x; s, y), where the partial derivatives at any & e B should be
understood as defined in § 1, and g(¢, x) satisfies the boundary condition
(B,) as well as f(¢, ). We adopt a canonical coordinate around §&,
as stated in Lemma 3. Then we obtain from (5.3), (3.1) and (B,)
that og(¢,, £,)/9x; < 0 and that

alt,, £)glt,, £)— (1—alt,, £))ad(t, &) 28l ) = o,

Since g(¢,, &) >0 and aj'(f,, &) >0, it follows that «(¢,, £,) should be
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zero, consequently 9g(¢,, £,)/9x; = 0, and accordingly 9%¢(¢,, &,)/(9x})*
< 0 by virtue of (5.3). Moreover, since <_¢,, £, > may be considered
as the maximising point of g(¢, &) restricted to (s, £,) x B, we have

azg(t7g) N I3 ag(t»‘_{.:)

%) 1 1 “81\71 51/

1%2‘1‘/’ (tw 51) W g 0 and b‘P(tl’ 61) 8x§ 0

where we use the following facts: a}/(f,, &) =al'(¢,, £&,) =0 for j =2
(see Lemma 3) and accordingly ||@é(£,, E)lless_2»...,m 1S @ positive-definite
symmetric matrix. Thus we get Ag(¢,, &) <0, and hence

0=28Eu 8 agr,, £) MBS g ) <0

that is a contradiction. Hence the function g(¢, ) on (s, £,)xG does
not take the positive maximum at any point in (s, #,) x B. Similarly
it does not take the negative minimum at any point in (s, ) x B.

PrOOF OF THEOREM 4 may be performed by means of the entirely
same manner as in § 0 by making use of Lemma 14 in place of Lemma A
in §0. We omit to repeat here the argument in §0.
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