On a Certain Type of Matrices with an Application to Experimental Design

By Masashi Окамото

Summary. In the first two sections there are stated some basic properties concerning the direct sum decomposition of matrices. They are preliminary to Section 3 which together with Section 5 constitutes the main part of the paper. There is introduced the notion of the "type D" in Section 3. Section 4 is supplemental and devoted to other results related to the preceding section. In the last section we deal with an application to the 2 -way classification design with unequal number of replications. It is shown that every block and treatment comparison can be estimated if and only if the replication matrix is mixing, i.e., that the experiment does not split into more than one scheme.

1. Direct sum decomposition of matrices. Let us say that a matrix A is decomposed into the direct sum of components $A_{1}, A_{2}, \cdots, A_{p}$ and write

$$
A \approx A_{1} \dot{+} A_{2} \dot{+} \cdots+A_{p}
$$

whenever A can be transformed into the form

$$
\left(\begin{array}{lllll}
A_{1} & & & & 0 \\
& A_{1} & & & \\
& & \ddots & & \\
0 & & & \ddots & \\
0 & & & A_{p}
\end{array}\right)
$$

by the appropriate permutations, if necessary, between rows and between columns. A is called mixing when it cannot be decomposed into the direct sum of more than one component.

We shall investigate the method to decompose a matrix $A=\left(a_{i j}\right)$, $i=1, \cdots, m, j=1, \cdots, n$. Put

$$
\begin{align*}
M & =\{1,2, \cdots, m\}, \quad N=\{1,2, \cdots, n\} \tag{1.1}\\
R & =\left\{i: a_{i j} \neq 0 \text { for some } j \in N\right\} \\
C & =\left\{j: a_{i j} \neq 0 \text { for some } i \in M\right\}
\end{align*}
$$

If R is null, then C is also null and $a_{i j}=0$ for every i, j, which case is trivial. Otherwise, take any element i_{0} of R. Let

$$
\begin{aligned}
& I_{0}=\left\{i_{0}\right\}, \quad J_{0}=\left\{j: a_{i_{0} j} \neq 0\right\} \\
& I_{k}=\left\{i: a_{i j} \neq 0 \text { for some } j \in J_{k-1}\right\}, \\
& J_{k}=\left\{j: a_{i j} \neq 0 \text { for some } i \in I_{k}\right\}, \quad k=1,2, \cdots .
\end{aligned}
$$

The sequence $\left\{I_{k}, J_{k}\right\}, k=0,1,2, \cdots$, will be called the I, J-sequence starting from i_{0} (-th row) (with respect to the matrix A). It is easily seen that

$$
I_{0} \subset I_{1} \subset I_{2} \subset \cdots \subset R, \quad J_{0} \subset J_{1} \subset J_{2} \subset \cdots \subset C
$$

Since R and C are finite sets, these two sequences cannot increase indefinitely and hence there is a subscript r such that

$$
\begin{equation*}
I_{r}=I_{r+1}=\cdots=I(\text { say }), \quad J_{r}=J_{r+1}=\cdots=J(\text { say }) \tag{1.2}
\end{equation*}
$$

I, J is called the limit of the I, J-sequence starting from i_{0} and is sometimes written as $I\left(i_{0}\right), J\left(i_{0}\right)$. Clearly $I=R$ if and only if $J=C$, and

$$
\begin{align*}
& I=\left\{i: a_{i j} \neq 0 \quad \text { for some } \quad j \in J\right\} \\
& J=\left\{j: a_{i j} \neq 0 \quad \text { for some } \quad i \in I\right\} \tag{1.3}
\end{align*}
$$

Lemma 1. For any $i^{\prime} \in I\left(i_{0}\right)$ it holds that

$$
I\left(i^{\prime}\right)=I\left(i_{0}\right), \quad J\left(i^{\prime}\right)=J\left(i_{0}\right)
$$

Proof. Let $\left\{I_{k^{\prime}}{ }^{\prime}, J_{k^{\prime}}{ }^{\prime}\right\}$ be the I, J-sequence starting from i^{\prime}. Since $i^{\prime} \in I\left(i_{0}\right)$, it follows from (1.3) by the mathematical induction that

$$
I_{k^{\prime}} \subset I\left(i_{0}\right), \quad J_{k^{\prime}} \subset J\left(i_{0}\right), \quad k=0,1,2, \cdots
$$

Hence $I\left(i^{\prime}\right) \subset I\left(i_{0}\right), J\left(i^{\prime}\right) \subset J\left(i_{0}\right)$.
Next we shall prove the inverse inclusion relation. Since $i^{\prime} \in I\left(i_{0}\right)$, there exist by means of (1.2) $i_{k} \in I_{k i}, k=1, \cdots, r-1$, and $j_{k} \in J_{k}$, $k=0,1, \cdots, r-1$, such as

$$
a_{i_{k} j_{k}} \neq 0, \quad a_{i_{k+1} j_{k}} \neq 0, \quad k=0,1, \cdots, r-1
$$

where $i_{r}=i^{\prime}$. This implies that $i_{0} \in I_{r}^{\prime} \subset I\left\langle i^{\prime}\right)$. Again referring to (1.3), we have

$$
I_{k} \subset I\left(i^{\prime}\right), \quad J_{k} \subset J\left(i^{\prime}\right), \quad k=0,1,2, \cdots
$$

Thus $I\left(i_{0}\right) \subset I\left(i^{\prime}\right), J\left(i_{0}\right) \subset J\left(i^{\prime}\right)$.

The I, J-sequence $\left\{I_{k}, J_{k}\right\}$ starting from the j_{0}-th column (with respect to A) is defined as follows:

$$
\begin{aligned}
J_{0} & =\left\{j_{0}\right\}, \quad I_{0}=\left\{i: a_{i j 0} \neq 0\right\} \\
J_{k} & =\left\{j: a_{i j} \neq 0 \text { for some } i \in I_{k-1}\right\}, \\
I_{k} & =\left\{i: a_{i j} \neq 0 \text { for some } j \in J_{k}\right\}, \quad k=1,2, \cdots .
\end{aligned}
$$

Its limit which exists as before is denoted by $I\left[j_{0}\right], J\left[j_{0}\right]$. We have, quite similarly to Lemma 1 ,

Lemma 2. For any $j_{0} \in J\left(i_{0}\right)$ it holds that

$$
I\left[j_{0}\right]=I\left(i_{0}\right), \quad J\left[j_{0}\right]=J\left(i_{0}\right)
$$

For an arbitrary $i_{1} \in R$ let I_{1}, J_{1} be the limit of the I, J-sequence starting from i_{1}. If $I_{1}=R$, then it is a happy end. Otherwise, for an arbitrary $i_{2} \in R-I_{1}$ let $I_{2}=I\left(i_{2}\right)$ and $J_{2}=J\left(i_{2}\right)$. Provided that I_{1} and I_{2} together do not exhaust R, we start again from an $i_{3} \in R$ $-\left(I_{1} \cup I_{2}\right)$ to get I_{3}, J_{3} and so on. Finally we shall have I_{1}, \cdots, I_{p} which together exhaust R and have corresponding J_{1}, \cdots, J_{p}.

Lemma 3. If $k \neq l$, then I_{k} and I_{l} are disjoint as well as J_{k} and J_{l}.
Proof. Suppose that I_{k} and I_{l} intersect and $k<l$. Take an $i \in I_{k} \cap I_{l}$. By Lemma 1 we have $I_{k}=I(i)=I_{i} \ni i_{l}$ which contradicts the fact that $\imath_{l} \in R-\left(I_{1} \cup \cdots \bigvee I_{l-1}\right)$.

Thus we have

$$
\begin{align*}
& R=I_{1}+I_{2}+\cdots+I_{p} \tag{1.4}\\
& C=J_{1}+J_{2}+\cdots+J_{p}
\end{align*}
$$

Denoting by $A_{k}, k=1, \cdots, p$, the matrix corresponding to rows I_{k} and columns J_{k} and by A_{0} the (zero) matrix corresponding to rows $M-R$ and columns $N-C\left(A_{0}\right.$ vanishes when $R=M$ and $\left.C=N\right)$, we get the direct sum decomposition of A :

$$
\begin{equation*}
A \approx A_{1} \dot{+} A_{2} \dot{+} \cdots \dot{+} A_{p} \dot{+} A_{0} \tag{1.5}
\end{equation*}
$$

It is readily seen that $A_{k}, k=1, \cdots, p$, cannot be decomposed further and hence is mixing after our definition. Denoting by $r(X)$ the rank of the matrix X, we have

Lemma 4. If (1.5) holds, then $r(A)=\sum_{k=1}^{n} r\left(A_{k}\right)$.
2. Symmetric matrices. Our aim is the direct sum decomposition of matrices of type D. For that purpose we shall first consider the
symmetric matrix $A=\left(a_{i j}\right), i, j=1, \cdots, n$. In order to let the zerocomponent A_{0} in (1.5) vanish we assume

$$
\begin{equation*}
R=C=N \tag{2.1}
\end{equation*}
$$

R, C and N being defined in (1.1). This means that for any $i \in N$ there exists a $j \in N$ such that $a_{i j} \neq 0$ or in other words that every row has at least one non-zero element.

Lemma 5. If A is symmetric, then in the decomposition (1.4) of R and C it holds that $I_{k}=J_{k}$ or $I_{k} \cap J_{k}=0, k=1, \cdots, p$.

Proof. We shall show that $I_{k} \cap J_{k} \neq 0$ implies $I_{k}=J_{k}$. Take arbitrarily $i \in I_{k} \cap J_{k}$. Since $i \in J_{k}$, it follows from Lemma 2 that the I, J-sequence starting from the i-th column has the limit $I[i]=I_{k}$, $J[i]=J_{k}$. Because of the symmetry of A the I, J-sequence starting from the i-th row has the limit $I(i)=J_{k}, J(i)=I_{k}$. On the other hand $i \in I_{k}$ implies by Lemma 1 that $I(i)=I_{k}$. Therefore $I_{k}=J_{k}$. This proves the lemma.

For a subscript k such as $I_{k} \cap J_{k}=0$ there exists another subscript k^{\prime} which satisfies

$$
\begin{equation*}
I_{k^{\prime}}=J_{k}, \quad J_{k^{\prime}}=I_{k} \tag{2.2}
\end{equation*}
$$

To see this we need only choose such k^{\prime} as $I_{k^{\prime}}$ and J_{k} intersect. Thus, redenoting if necessary the subscripts of I, J 's in (1.4), we have

$$
\begin{align*}
& R=I_{1}+\cdots+I_{m}+I_{m+1}+\cdots+I_{m+2 l} \tag{2.3}\\
& C=J_{1}+\cdots+J_{m}+J_{m+1}+\cdots+J_{m+2 l}
\end{align*}
$$

where

$$
\begin{array}{cl}
I_{k}=J_{k}, & k=1, \cdots, m \\
I_{m+2 k-1}=J_{m+2 k}, \quad I_{m+2 k}=J_{m+2 k-1}, & k=1, \cdots l
\end{array}
$$

Let $A_{k}, k=1, \cdots, m$, be the matrix corresponding to rows I_{k} and columns J_{k} and let $P_{k}, k=1, \cdots, l$, be the matrix with rows $I_{m+2 k-1}$ and columns $J_{m+2 k-1}$. Then the matrix with rows $I_{m+2 k}$ and columns $J_{m+2 k}$ is $P_{k}{ }^{\prime}$, transposed matrix of P_{k}. Putting $A_{m+k}=\left(\begin{array}{cc}0 & P_{k} \\ P_{k}{ }^{\prime} & 0\end{array}\right)$, $k=1, \cdots, l$, we obtain the direct sum decomposition of A :

$$
\begin{equation*}
A \approx A_{1} \dot{+} \cdots \dot{+} A_{m} \dot{+} A_{m+1} \dot{+} \cdots \dot{+} A_{m+l} . \tag{2.4}
\end{equation*}
$$

Clearly all A 's in the right hand side are symmetric, $A_{k}, k=1, \cdots, m$, are mixing but $A_{m+k}, k=1, \cdots, l$, are not.
3. Matrices of type \boldsymbol{D}. Various notions will be introduced here. Square matrix $A=\left(a_{i j}\right), i, j=1, \cdots, n$, is called of Type D whenever
(i) it is symmetric;
(ii) $a_{i j} \geq 0$ for every $i, j=1, \cdots, n$;
(iii) $a_{i i}=\sum_{j \neq i} a_{i j}>0$ for $i=1, \cdots, n$.

We postulate the condition $a_{i i}>0$ in (iii) only to exclude the zerocomponent in the decomposition of A as we have done by (2.1) in the preceding section and hence this restriction is not essential.

Denote by $A^{*}=\left(a_{i j}^{*}\right)$ the matrix obtained by substituting zeroes in the principal diagonal of A and call it the kernel of A. The matrix of type D which is mixing will be called of type D_{1} if its kernel is also mixing and of type D_{2} if not.

Theorem 1. Any matrix of type D is semi-difinite positive.
Proof. Let $A=\left(a_{i j}\right), i, j=1, \cdots, n$, be of type D. Given any real vector $\left(x_{1} \cdots, x_{n}\right)$, we consider the quadratic form

$$
\begin{aligned}
Q & =\sum_{i} \sum_{j} a_{i j} x_{i} x_{j}=\sum_{i} \sum_{j \neq i} a_{i j} x_{i} x_{j}+\sum_{i} a_{i i} x_{i}^{2} \\
& =2 \sum_{i} \sum_{j=i} a_{i j} x_{i} x_{j}+\sum_{i} x_{i}^{2} \sum_{j \neq i} a_{i j}=\sum_{i} \sum_{j>i} a_{i j}\left(x_{i}+x_{j}\right)^{2} \geq 0 .
\end{aligned}
$$

Thus A is semi-definite.
Let A be of type D. Since the kernel A^{*} is symmetric and satisfies (2.1) as well as A does, it is decomposed as in (2.4):

$$
\begin{equation*}
A^{*} \approx A_{1}^{*} \dot{+} \cdots \dot{+} A_{m}^{*} \dot{+} A_{m+1}^{*} \dot{+} \cdots \dot{+} A_{m+\iota}^{*} \tag{3.1}
\end{equation*}
$$

where $A_{k}^{*}, k=1, \cdots, m$, are mixing and
(3.2) $\quad A_{m+k}^{*}=\left(\begin{array}{cc}0 & P_{k} \\ P_{k_{k}}^{\prime} & 0\end{array}\right), P_{l u}$ being mixing, $\quad k=1, \cdots, l$,
and all $A_{k}^{*}, k=1, \cdots, m+l$, are symmetric. Denote by $A_{k}, k=1, \cdots$, $m+l$, the matrix obtained by performing the inverse operation upon A_{k}^{*} as taking the kernel. Thus every A_{k} is of type D and its kernel is A_{k}^{*}. Corresponding to (3.1), we have the decomposition of A :

$$
\begin{equation*}
A \approx A_{1} \dot{+} \cdots+A_{m} \dot{+} A_{m+1} \dot{+} \cdots \dot{+} A_{m+l} \tag{3.3}
\end{equation*}
$$

Lemma 6. A necessary and sufficient condition that a matrix A of type D be of type D_{2} is that the kernel A^{*} satisfies

$$
A^{*} \approx\left(\begin{array}{cc}
0 & P \tag{3.4}\\
P^{\prime} & 0
\end{array}\right), P \text { being mixing. }
$$

Proof. Necessity. Suppose A is of type D_{2}. Since A is mixing, there remains only one term in the right hand side of (3.3). Consider the corresponding relation (3.1). Because of the assumption that A^{*} is not mixing the unique term in the right side of (3.1) must be of the form (3.2). Hence follows (3.4).

Sufficiency. We have only to prove that A is mixing. Because the mixingness is invariant under permutations between rows and between columns, we may assume that the equality holds instead of \approx in (3.4). Let r be the number of rows in P. Put $I_{1}=J_{1}=\{1, \cdots, r\}$ and $I_{2}=J_{2}=\{r+1, \cdots, n\}$. Since P is mixing, I_{1}, J_{2} is the limit of the I, J-sequence starting from the first row with respect to A^{*}. Let I, J be the limit with respect to A. To $a_{i j}^{*} \neq 0$ corresponds $a_{i j} \neq 0$, so that $I \supset I_{1}$, and $J \supset J_{2}$.

Now by means of (1.3)

$$
I=\left\{i: a_{i j} \neq 0 \text { for some } J \in J\right\} \supset\left\{i: a_{i j} \neq 0 \text { for some } j \in J_{2}\right\} \supset I_{2}
$$

where the last inclusion follows from the fact that $a_{i i} \neq 0$ for $i \in I_{2}=J_{2}$. Hence $I=N$. This shows that A is mixing and completes the proof.

We can see thus that in the decomposition (3.3) A_{1}, \cdots, A_{m} are of type D_{1} and A_{m+1}, \cdots, A_{m+l} are of type D_{2}.

Theorem 2. (a) Any matrix of type D_{1} is definite positive. (b) The rank of a matrix of type D_{2} is smaller than its order by one.

Proof. (a) Let $A=\left(a_{i j}\right), i, j=1, \cdots, n$, be of type D_{1}. From the proof of Theorem 1

$$
Q=\sum_{i} \sum_{j} a_{i j} x_{i} x_{j}=\sum_{i} \sum_{j>i} a_{i j}\left(x_{i}+x_{j}\right)^{2} \geq 0
$$

We have to prove that $Q=0$ implies $x_{i}=0, i=1, \cdots, n$. Suppose $Q=0$. Then

$$
a_{i j} \neq 0 \quad \text { implies } \quad x_{i}+x_{j}=0, \quad i, j=1, \cdots, n(i<j) .
$$

This is equivalent to the statement

$$
\begin{equation*}
a_{i j}^{*} \neq 0 \quad \text { implies } \quad x_{i}+x_{j}=0, \quad i, j=1, \cdots, n \tag{3.5}
\end{equation*}
$$

Let $\left\{I_{k}, J_{k}\right\}$ be the I, J-sequence starting from $i=1$ with respect to A^{*}. If $j \in J_{0}$, then $a_{1 j}^{*} \neq 0$ and by $(3.5) x_{1}+x_{j}=0$. Therefore

$$
x_{j}=-x_{1} \quad \text { for } \quad j \in J_{0}
$$

For any $i \in I_{1}$ there exists a $j \in J_{0}$ such as $a_{i j}^{*} \neq 0$. Hence $x_{i}+x_{j}=0$ and

$$
x_{i}=-x_{j}=x_{1} \quad \text { for } \quad i \in I_{1} .
$$

By the induction it holds that

$$
\begin{array}{ll}
x_{i}=x_{1} & \text { for } \quad i \in I_{k}, \tag{3.6}\\
x_{i}=-x_{1} & \text { for } \quad \imath \in J_{k}, \quad k=0,1,2, \cdots .
\end{array}
$$

Since A^{*} is mixing, there is a subscript r such as

$$
\begin{equation*}
I_{r}=J_{r}=N \tag{3.7}
\end{equation*}
$$

(3.6) and (3.7) imply $x_{1}=-x_{1}$ and $x_{1}=0$. This in turn implies with (3.6), (3.7) that $x_{i}=0$ for all i.
(b) Let A be of type D_{2}. By Lemma $6 A^{*}$ is written as (3.4). Because of the invariance of the rank under permutations between rows and columns we may replace \approx in (3.4) by the equality. Let r be the number of rows in P. Put $I=\{1, \cdots, r\}$ and $J=\{r+1, \cdots, n\}$.

The rank of A is k if and only if the equation $Q=\sum_{i} \sum_{j} a_{i j} x_{i} x_{j}$ $=0$ is equivalent to a set of k independent linear relations in x_{1}, \cdots, x_{n}. Assume $Q=0$. As in the proof of (a) we have

$$
\begin{array}{ll}
x_{i}=x_{1} & \text { for } \quad i \in I, \\
x_{i}=-x_{1} & \text { for } \quad i \in J, \tag{3.8}
\end{array}
$$

for I, J is the limit of the I, J-seqnence starting from $i=1$ with respect to A^{*}. $n-1$ linear equations in (3.8) excluding the trivial one $x_{1}=x_{1}$ are linearly independent.

Conversely (3.8) implies $Q=0$. This proves the theorem.
Theorem 3. The rank of a matrix of type D is smaller than its order by the number of components (in the direct sum decomposition) of type D_{2}.

Theorem follows readily from Lemma 5 and Theorem 2.
4. Further results and generalization. Every property stated in the preceding section has its analogue with respect to another type of matrices defined as follows: matrix $A=\left(a_{i j}\right), i, j=1, \cdots, n$, is called of type D^{\prime} when
(i) it is symmetric;
(ii^{\prime}) $\quad a_{i j} \leq 0$ for $i, j=1, \cdots, n(i \neq j)$;
(iii') $\quad a_{i i}=\sum_{j \neq i}\left|a_{i j}\right|>0$.
Definitions of the kernel A^{*}, type $D_{1}{ }^{\prime}, D_{2}{ }^{\prime}$ are quite the same as
before. That is $A^{*}=\left(a_{i j}-a_{i i} \delta_{i j}\right)$ and the mixing matrix of type D^{\prime} is of type D_{1}^{\prime} if its kernel is mixing and of type D_{2}^{\prime} if not.

The analogues to Theorems 1 and 2 (b) hold unaltered but it is not the case with $2(\mathrm{a})$, because the rank of a matrix of type $D_{1}{ }^{\prime}$ is smaller than its order by one just as well as in the case of $D_{2}{ }^{\prime}$. These two types are thus dealt with together in Theorem 2^{\prime}. Thereby Theorem 3^{\prime} also slightly differs from the corresponding Theorem 3.

Theorem 1'. Any matrix of type D^{\prime} is semi-definite positive.
Theorem 2'. The rank of a matrix which is mixing and of type D^{\prime} is smaller than its order by one.

Theorem 3'. The rank of a matrix of type D^{\prime} is smaller than its order by the number of mixing components in the direct sum decomposition.

Results stated in the preceding and the present sections can be generalized in some respects. In the first we can adopt the condition

$$
a_{i i} \geq \sum_{j \neq i}\left|a_{i j}\right|>0
$$

in place of either (iii) in the case of type D or (iii') in D^{\prime}. As the second generalization we may postulate only (i) and (iii"), omitting (ii) or (ii'). While the denotation is wide enough to contain both the types D and D^{\prime}, the general theory will be somewhat complicated, at least in the second generalization.
5. Application to the experimental design. Some little explanation concerning the experimental design will be needed to justify the application of the results obtained above. For details references are to be made to O. Kempthorne [1]. Let the model be

$$
y_{\alpha}=\sum_{i=1}^{p} x_{\alpha i} \beta_{i}+e_{\alpha} . \quad \alpha=1, \cdots, n(\geq p)
$$

where $x_{\alpha i}$ are known coefficients, β_{i} unknown parameters and e_{α} are random variables independently distributed according to $N\left(0, \sigma^{2}\right), \sigma^{2}$ being unknown. In the matrix notation we write

$$
y=X \beta+e,
$$

where y, X, β and e are $n \times 1, n \times p, p \times 1$ and $n \times 1$ matrices, respectively. Put $S=X^{\prime} X, X^{\prime}$ being the transposed matrix of X. A linear form in β_{i} which admits the best linear unbiased estimate is called estimable. The number of linearly independent estimable functions is $r(S)$, the rank of the matrix S.

The model of the 2 -way classification with unequal number of replications is

$$
y_{i j k}=\mu+b_{i}+t_{j}+e_{i j k}
$$

$i=1, \cdots, r ; j=1, \cdots, s ; k=1, \cdots, n_{i j}$. Putting

$$
\begin{gathered}
\beta=\left(\mu, b_{1}, \cdots, b_{r}, t_{1}, \cdots, t_{s}\right)^{\prime} \\
N_{i .}=\sum_{j=1}^{s} n_{i j}, \quad N_{\cdot j}=\sum_{i=1}^{r} n_{i j}, \quad N . .=\sum_{i=1}^{r} \sum_{j=1}^{s} n_{i j}
\end{gathered}
$$

we have

$$
S=\left(\begin{array}{ccccccc}
N_{. .} & N_{1 .} & \cdots & N_{r .} & N_{\bullet_{1}} & \cdots & N_{\cdot s} \\
N_{1 .} & N_{1 .} & & 0 & n_{11} & \cdots & n_{1 s} \\
\vdots & & \ddots & & \vdots & & \vdots \\
N_{r .} & 0 & & N_{r} & n_{r_{1}} & \cdots & n_{r s} \\
N_{\cdot 1} & n_{11} & \cdots & n_{r 1} & N_{\bullet_{1}} & & 0 \\
\vdots & \vdots & & \vdots & & \ddots & \\
\dot{N}_{\cdot s} & n_{1 s} & \cdots & n_{r s} & 0 & & N_{\cdot s}
\end{array}\right)
$$

Let S_{0} be the matrix obtained by deleting the first row and the first column of S. Since in S the first row is equal to the sum of r rows from the second to the $(r+1)$-th, we have $r(S)=r\left(S_{0}\right)$.

It is easily seen that S_{0} is of type D. The restriction $a_{i t}>0$ in (iii) in the definition of the type D means here $N_{i .}>0, N_{. j}>0$ for all i, j, which we shall be permitted to assume from the practical meaning of the experiment. The kernel S_{0}^{*} of S_{0} is $\left(\begin{array}{cc}0 & N \\ N^{\prime} & 0\end{array}\right)$, where $N=\left(n_{i j}\right), i=1, \cdots, r ; j=1, \cdots, s$, which will be called the replication matrix. Whenever N is decomposed into exactly m components, S_{0} is decomposed into m components of type D_{2} and by Theorem 3 we have $r\left(S_{0}\right)=r+s-m$. Therefore a necessary and sufficient condition that $r(S)=r+s-1$ is that N is mixing. In this case every block comparison $b_{i}-b_{i}$, and every treatment comparison $t_{j}-t_{j}$, are estimable. That the replication matrix is not mixing means that the set $\mathfrak{B}=\left\{B_{1}, \cdots, B_{r}\right\}$ of blocks and the set $\mathfrak{I}=\left\{T_{1}, \cdots, T_{s}\right\}$ of treatments split into two sets $\mathfrak{B}_{1}, \mathfrak{B}_{2}$ and $\mathfrak{I}_{1}, \mathfrak{I}_{2}$ respectively such that any variate corresponding to a $B \in \mathfrak{B}_{1}$ and a $T \in \mathfrak{I}_{2}$ or to a $B \in \mathfrak{B}_{2}$ and a $T \in \mathfrak{I}_{1}$ is not observed. To this effect our result will be plausible.

In order that N is mixing, the total number N.. of plots must be larger than or equal to $r+s-1$. This minimum is always attainable by putting, for instance,

$$
\begin{array}{ll}
n_{i j}=1, & \text { if } i=1 \text { or } j=1 \\
n_{i j}=0, & \text { otherwise } .
\end{array}
$$

In the analysis of variance, however, the degrees of freedom of the error term is $N . .-(r+s-1)$ and it vanishes, to our regret, under the most economical design above, which makes it unable to test the significance of any comparison. Thus, at least $r+s$ plots are required to perform the significance test. This gives the simplest type of the incomplete block design.
(Received February 26, 1954)

Reference

[1] O. Kempthorne, The Design and Analysis of Experiments, New York, 1952.

