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On a Certain Type of Matrices with an Application
to Experimental Design

By Masashi OKAMOTO

Summary. In the first two sections there are stated some basic
properties concerning the direct sum decomposition of matrices.
They are preliminary to Section 3 which together with Section 5
constitutes the main part of the paper. There is introduced the
notion of the "type D" in Section 3. Section 4 is supplemental and
devoted to other results related to the preceding section. In the last
section we deal with an application to the 2- way classification design
with unequal number of replications. It is shown that every block
and treatment comparison can be estimated if and only if the repli-
cation matrix is mixing, i.e., that the experiment does not split into
more than one scheme.

1. Direct sum decomposition of matrices. Let us say that a matrix
A is decomposed into the direct sum of components A19A2y'",Ap

and write

whenever A can be transformed into the form

•A, 0

( 0

by the appropriate permutations, if necessary, between rows and
between columns. A is called mixing when it cannot be decomposed
into the direct sum of more than one component.

We shall investigate the method to decompose a matrix A = (aiJ)9

i = 1, ••• , m , j = 1, ••• , n . Put

(1.1) M = {1,2, ... ,w} , N= (1,2, ...,*} ,

R = (i : atj =[= 0 for some j e N} ,

C = {j : atj Φ 0 for some i € M} .
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If R is null, then C is also null and tf^ — 0 for every i, jy which case
is trivial. Otherwise, take any element ι0 of R. Let

I0= { **<>} > Λ = { y : f f * o ; = N O } >
7 ] e ={ί :0 u Φθ for some . / G A ^ } ,

Λ = (y •' ̂  =t= 0 for some ί G 7fc} , * = 1, 2, ••• .

The sequence {7fc , /fc}, k = 0, 1, 2, ••• , will be called the 7, /-sequence
starting from i0 (-th row) (with respect to the matrix A). It is easily
seen that

Since J? and C are finite sets, these two sequences cannot increase
indefinitely and hence there is a subscript r such that

(1.2) /r = /r+1 = ...=/ (say), /r=/r+1 =...=/ (say).

7, / is called the limit of the 7, /-sequence starting from ί0 and is
sometimes written as 7(i0), /(/0). Clearly 7=7? if and only if /=C,
and

7 = { / : Λ < < f Φ θ for some

/ = {j : atj φ 0 for some i e 7} .

Lemma 1. F0r α^j / / 67(/ 0 ) /Y

Proof. Let {7fc

r, //} be the 7, /-sequence starting from /v. Since
l(iQ], it follows from (1.3) by the mathematical induction that

Hence 7(ιv) C /(ί0) , /(i7)
Next we shall prove the inverse inclusion relation. Since ί '€7(/0) ,

there exist by means of (1.2) ί s G 7 f c , fe = 1, ••• , r — 1 , and y f c e/ f c ,
^ == 0, 1, ••• , r— 1 , such as

where ir = i'. This implies that ί'0 6//C^ /(«'). Again referring to
(1. 3), we have

) , fe = 0,1,2,-.

Thus I(i»}<I(ϊ), J(it
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The /, /-sequence {7 f c,/ f c} starting from the /0-th column (with
respect to A] is defined as follows :

/0= {/0} , 70= {i:atjQφQ} ,

Λ = { y : ^ = t = 0 for some i e 7 f c _ 1 } ,

Ijc = {i : ̂  Φ 0 for some j e/fc} , & — 1, 2, -•• .

Its limit which exists as before is denoted by 7[j0], /C./ΌII We have,
quite similarly to Lemma 1,

Lemma 2. .F r̂ any jQ G/(/ 0 ) zV /z0Ws that

For an arbitrary i±£R let 7X , /x be the limit of the 7, /-sequence
starting from ί\ . If ^ = R, then it is a happy end. Otherwise, for
an arbitrary i2eR—I1 let I2 = I(i2] and /2=/(ί"2). Provided that II

and 72 together do not exhaust R, we start again from an ί3 e .R
— (71\J72) to get 73 , /3 and so on. Finally we shall have 71, ,71,
which together exhaust jR and have corresponding Λ , ••• ,Λ

Lemma 3. 7/ & Φ /, //^ 77, ^^ J 7Z ^r^ disjoint as well as /fc

Proof. Suppose that 7fc and 7Z intersect and k <^l . Take an
i £ l τ ΰ f \ I ι By Lemma 1 we have 7fc = 7(i) = 7, 3 il which contradicts

the fact that ίzel?-(71 \J ••• W Λ - ι )
Thus we have

1 4 !? =

c=

Denoting by A f c , & — 1, •••,/>, the matrix corresponding to rows 7fc

and columns /fc and by Λ0 the (zero) matrix corresponding to rows
M— R and columns N— C (A0 vanishes when R = M and C = N)9 we
get the direct sum decomposition of A :

(1.5) A**Al + A2+ •- +AP + A0.

It is readily seen that A^ , k = 1, ••• ,p, cannot be decomposed further
and hence is mixing after our definition. Denoting by r(X) the rank
of the matrix X, we have

ϊ>

Lemma 4. If (1. 5) holds, then r(A) = ̂  r(A*} .

2. Symmetric matrices. Our aim is the direct sum decomposition
of matrices of type D. For that purpose we shall first consider the
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symmetric matrix A = (atj), i, j = 1, ••• , n . In order to let the zero-
component A0 in (1. 5) vanish we assume

(2.1) R = C = N,

R,C and TV being defined in (1.1). This means that for any ί e J V
there exists a j e N such that aυ φ 0 or in other words that every
row has at least one non-zero element.

Lemma 5. // A is symmetric, then in the decomposition (1.4) of R
and C it holds that 7fc = /fc or I*Γ\J* = Q> k — 1, ••• , p .

Proof. We shall show that 7 f c / ~ \ Λ Φ θ implies /fc = / f c. Take
arbitrarily / 6 / a / Λ Λ Since / G / f c , it follows from Lemma 2 that the
I> /-sequence starting from the /-th column has the limit 7|j J = 7fc ,
/[Y] — /fc . Because of the symmetry of A the 7, /-sequence starting
from the ί-th row has the limit /( i )=/ f c , /(/) = 7fc . On the other
hand / G / f c implies by Lemma 1 that /(/') = 7fc . Therefore 7fc = / f c.
This proves the lemma.

For a subscript k such as 7fc /~\ /fc = 0 there exists another sub-
script &' which satisfies

(2.2) / * / = Λ , /*/ = /*•

To see this we need only choose such k' as 7fc/ and /fc intersect.
Thus, redenoting if necessary the subscripts of 7, /'s in (1.4), we have

,o o^ R = I1+ '

C — Jι+ '

where

•Lm+2lc-ι ~~"~ y m + 2 f c > *m+2fc ~":::: Jtn+2Jc-ι > ™ -"" -*•> '" ^

Let A* , fe = 1, ••• , w , be the matrix corresponding to rows 7fc and
columns /fc and let Pfc , ^ = !,••-,/, be the matrix with rows 7w + 2 f c_1

and columns Jm+2κ-\ Then the matrix with rows 7m+2fe and columns

/w+2fc is P/, transposed matrix of Pfc . Putting An+jB = (p^ Q

fc j ,

k = 1, •••,/, we obtain the direct sum decomposition of A :

(2.4) ^L^^-ί- ••• 4 A» + A»+ι+ ••• +^+z.

Clearly all Λ's in the right hand side are symmetric, A*, k = !>••• ,m,
are mixing but Am_{ fc , fe = 1, •••,/, are not.
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3. Matrices of type D. Various notions will be introduced here.
Square matrix A = (aio}, i,j = 1, ••• ,n, is called of Type D whenever

( i ) it is symmetric
( i i ) #^>0 for every /,./" = 1, • • - , w ;

(iii) att=^atJ^>Q for ί = 1, •••,«.
j^*

We postulate the condition 0M ]> 0 in (iii) only to exclude the zero-
component in the decomposition of A as we have done by (2. 1) in
the preceding section and hence this restriction is not essential.

Denote by A* = (afj) the matrix obtained by substituting zeroes
in the principal diagonal of A and call it the kernel of A. The matrix
of type D which is mixing will be called of type Dl if its kernel is
also mixing and of type D2 if not.

Theorem ί. Any matrix of type D is semi-di finite positive.

Proof. Let A = (atj), i,j — 1, ••• , n , be of type D. Given any
real vector (xl ••• , x n ) , we consider the quadratic form

Q = Σ Σ atjχtχj = Σ Σ atjWj + Σ #«*?
i j i j^pi ί

= 2 Σ Σ βi,*««, + Σ *? Σ βu = Σ Σ ati(xt+x}γ > o .

Thus ^4 is semi-definite.

Let A be of type D. Since the keinel A* is symmetric and
satisfies (2. 1) as well as A does, it is decomposed as in (2. 4) :

(3.1) A*~Af+ .- +4

where Af, £ = 1, ••• , m, are mixing and

(3. 2) 4*4fc -
 fc , P, being mixing, k = 1, •••,/,

and all A$, k = 1, ••• , m + /, are symmetric. Denote by A^ , k = 1, • •• ,
m + l, the matrix obtained by performing the inverse operation upon
Af as taking the kernel. Thus every Ak is of type D and its kernel
is A£. Corresponding to (3.1), we have the decomposition of A:

Lemma 6. A necessary and sufficient condition that a matrix A of
type D be of type D2 is that the kernel A* satisfies

ί 0 P\(3. 4) A* f& ( p, Q J , P being mixing.
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Proof. Necessity. Suppose A is of type D2 . Since A is mixing,
there remains only one term in the right hand side of (3. 3). Consider
the corresponding relation (3. 1). Because of the assumption that A*
is not mixing the unique term in the right side of (3. 1) must be of
the form (3.2). Hence follows (3.4).

Sufficiency. We have only to prove that A is mixing. Because
the mixingness is invariant under permutations between rows and
between columns, we may assume that the equality holds instead of ̂
in (3.4). Let r be the number of rows in P. Put ^ = ̂  = {1, ... 9 r }
and 72 = /2 = {^ + 1> ••• , n}. Since P is mixing, I1 , J2 is the limit of
the /, /-sequence starting from the first row with respect to A*. Let
7, / be the limit with respect to A. To afj φ 0 corresponds atj φ 0 ,
so that -O/j , and J^>J2 .

Now by means of (1. 3)

/— {i:atJΦθ for some /€/} ̂ ) {/ : atj φ 0 for some j£j2}^I2y

where the last inclusion follows from the fact that tf^φO for i e/2=/2.
Hence I=N. This shows that A is mixing and completes the proof.

We can see thus that in the decomposition (3.3) A19 9Am are
of type Dl and Am+1 , ••• , Am+l are of type D2'2.

Theorem 2. (a) Any matrix of type D1 is definite positive, (b) The
rank of a matrix of type D2 is smaller than its order by one.

Proof, (a) Let A=(atJ)9 i,j = l, ,n9 be of type D1 . From the
proof of Theorem 1

Q = Σ Σ an**** = Σ Σ <*ij(χi+χj)2 > 0 .
i j i 3>i

We have to prove that Q = 0 implies xt = 0 , i = 1, ••• , n . Suppose
Q = 0 . Then

atj φ 0 implies xt + Xj = 0 , ij = 1, ••• , n (I

This is equivalent to the statement

(3.5) aft Φ 0 implies

Let {/ fc ,/ f c } be the /, /-sequence starting from / = ! with respect
to A*. If ye/o , then β* Φ 0 and by (3. 5) xλ+Xj = 0. Therefore

^= -x, for j€ / 0 .

For any i^Iλ there exists a 7"e/0 such as άf3 Φ 0. Hence ^ + ̂  = 0
and
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Xi = —Xj — x1 for i G /!.

By the induction it holds that

/ Q β. *i = *ι for / 6 / f c ,
(o. b)

Xi= — x1 for z e / f c , fe = 0,1, 2, ••• .

Since ^4* is mixing, there is a subscript r such as

(3.7) Ir=Jr = N.

(3.6) and (3.7) imply x1 = —x1 and *, = (). This in turn implies with
(3.6), (3.7) that *4 = 0 for all ί.

(b) Let A be of type D 2 . By Lemma 6 A* is written as (3.4).
Because of the invariance of the rank under permutations between
rows and columns we may replace « in (3.4) by the equality. Let r
be the number of rows in P. Put /={!, •••, r } and /= {r + 1, ••• , n}.

The rank of A is k if and only if the equation Q = Σ Σ βij*iχj

— 0 is equivalent to a set of k independent linear relations in
xl, ••• , xn . Assume Q = 0. As in the proof of (a) we have

*, = *, for * e / ,
(ό o) .

#i= —*, for i e/,

for 7, / is the limit of the /, /-sequence starting from i = 1 with
respect to Λ*. « —1 linear equations in (3.8) excluding the trivial
one Λ J = #, are linearly independent.

Conversely (3. 8) implies Q = 0. This proves the theorem.

Theorem 3. The rank of a matrix of type D is smaller than its
order by the number of components (in the direct sum decomposition] of
type D2.

Theorem follows readily from Lemma 5 and Theorem 2.

4. Further results and generalization. Every property stated in
the preceding section has its analogue with respect to another type
of matrices defined as follows : matrix A = (atj), i, j — 1, ••• , n, is
called of type D' when

( i ) it is symmetric

( \ \ f } atj<0 for ij = l,. .,n (i φ j)
(in') *M = ΣI««, l>o.

j^<
Definitions of the kernel A*y type Z?/, D2' are quite the same as
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before. That is A* — (a^ — a^j) and the mixing matrix of type D/ is
of type Z3/ if its kernel is mixing and of type D2' if not.

The analogues to Theorems 1 and 2 (b) hold unaltered but it is
not the case with 2 (a), because the rank of a matrix of type D/
is smaller than its order by one just as well as in the case of D2

f.
These two types are thus dealt with together in Theorem 2'. Thereby
Theorem 3' also slightly differs from the corresponding Theorem 3.

Theorem V. Any matrix of type D' is semi-definite positive.

Theorem 2'. The rank of a matrix which is mixing and of type D'
is smaller than its order by one.

Theorem 3'. The rank of a matrix of type Df is smaller than its
order by the number of mixing components in the direct sum decomposition.

Results stated in the preceding and the present sections can be
generalized in some respects. In the first we can adopt the condition

(ϋi") ««>Σ \<*tj\>Q
j*i

in place of either (iii) in the case of type D or (iii7) in D'. As the
second generalization we may postulate only (i) and (Hi"), omitting
(ii) or (ii'). While the denotation is wide enough to contain both the
types D and D'y the general theory will be somewhat complicated, at
least in the second generalization.

5. Application to the experimental design. Some little explanation
concerning the experimental design will be needed to justify the
application of the results obtained above. For details references are
to be made to O. Kempthorne [1]. Let the model be

J^=Σ ***& + ** a = l,. ,n (>p) ,
i = ι

where xtti are known coefficients, βt unknown parameters and eΛ are
random variables independently distributed according to N(o, σ 2), σ2

being unknown. In the matrix notation we write

where y, X, β and e are w x l , nxp,pxl and nxl matrices, respec-
tively. Put S = X'Xy X' being the transposed matrix of X. A linear
form in βt which admits the best linear unbiased estimate is called
estimable. The number of linearly independent estimable functions
is r(S), the rank of the matrix S.
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The model of the 2-way classification with unequal number of
replications is

i = 1, ... , r j = 1, ... , 5 k = 1, ••• , ntj . Putting

we have

S=

Nlm Nr.

N,. 0

Γr. 0

Nmί 0

0 N.s

Let S0 be the matrix obtained by deleting the first row and the first
column of S. Since in S the first row is equal to the sum of r rows
from the second to the (r-fl)-th, we have r(S) = r(SQ).

It is easily seen that S0 is of type D. The restriction att > 0 in
(iii) in the definition of the type D means here Nίf ^> 0 , NβJ > 0 for
all 2, j, which we shall be permitted to assume from the practical

meaning of the experiment. The kernel S$ of S0 is ί *r, Q j, where

N— (ntj), i = 1, ••• , r j = 1, ••• , s, which will be called the replication
matrix. Whenever N is decomposed into exactly m components, S0

is decomposed into m components of type D2 and by Theorem 3 we
have r(S0) = r + s—m. Therefore a necessary and sufficient condition
that r(S) = r + s — 1 is that N is mixing. In this case every block
comparison bi—bif and every treatment comparison tj — t j f are estim-
able. That the replication matrix is not mixing means that the set
33 = {B1 , ••• , Br} of blocks and the set % = {T19 ••• , T,} of treatments
split into two sets <^81 , 332 and X1 , Z2 respectively such that any
variate corresponding to a Be<^3ί and a Te£2 or to a .Se232 and a
TeίEi is not observed. To this effect our result will be plausible.

In order that TV is mixing, the total number N.. of plots must be
larger than or equal to r + s — \. This minimum is always attainable
by putting, for instance,

= 0 ,

if i — 1 or j = 1,

otherwise.
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In the analysis of variance, however, the degrees of freedom of the
error term is N.. — (r + s — l) and it vanishes, to our regret, under the
most economical design above, which makes it unable to test the
significance of any comparison. Thus, at least r + s plots are required
to perform the significance test. This gives the simplest type of the
incomplete block design.

(Received February 26, 1954)
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