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On the Examples in the Classification of
Open Rίemann Surfaces (I)

By Yukinari Tόκι

In the preceding paperι:> the author has given two examples on the
classification of open Riemann surfaces, but more examples will be needed
to complete the classification.

The following notations are customary in the theory of Riemann
surfaces:

Or,

OXP

OHB

OffD

OAB

OAD

the class of Riemann surfaces without the Green's function.

the class of Riemann surfaces with-
out any non-constant single-valued

»

»

»

»

positive harmonic functions.

bounded harmonic functions.

harmonic functions of finite Diri-
chlet integrals.

bounded analytic functions.

analytic functions of finite Dirichlet
integrals.

The known inclusion-relations between them are

OΛn and

Oλ

In the present paper we shall show in § 1 that we may put d in
place of C in the above relations, and in §2 that there exists no
inclusion-relation between OAB and OHD.

§ 1. In order to prove Oσ C^ OHP it is sufficient to construct a
Riemann surface, on which the Green's function exists but not any
non-constant single-valued positive harmonic function. This surface is
almost the same as the one that the author has shown in the previous
work.

1) Y. Tόki, On the Classification of Open Riemann Surfaces, Osaka Math. J. 4,
(1952), pp. 191-201,
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We shall define a sequence fa] (̂  = 1,2,3, •••) as follows:
By the cut aμ along the positive real axis, we make out of the ring

connected domain D>.domain - - *

Let ω(>, Λμ, AO be the harmonic measure of <*μ with respect to Z>μ,
3 / 1

and let Cμ be the circle log|*l= - (

Fig. 1

Put

(1) = Min
Z£ Cμ.

= 1, 2, 3, •

Then we have a sequence {feμ}, and see easily that Jim** — °

On the other hand we shall define another sequence of positive

integers |τμ} (μ = 1, 2,3, •••) such that

T1<T2<T3< • • ' ,

and that

\ I c.tZί 7μ

where #μ is the domain enclosed by four straight lines * = -(— j ,

x — _(-LVμtl, y = 0, and y = -£-, and /9μ is the part of the boundary
\ £ I
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parallel to the imaginary axis and γμ is the part of the straight line
3 / 1 X2^*1

x = — — ί — ] contained in Rμ..
<U \ Lέ I

1

I

Fig. 2

Now we shall construct a Riemann surface with the Green's function
but without any non-constant single-valued positive harmonic function.
We consider the surface F cut along radial slits Si (μ = 1,2, ••• v = 1, 2,
• • ,21>) on the unit-circle |^|<^1, where

2vπ

By the relation μ = 2m~\2n-V)
natural numbers μ correspond one-to-
one to the pairs of two natural
numbers (m, ri). Therefore we shall
denote the slits S£ by Sϊ,,n. These
slits Si,n(ιif = l,2,...; n = l,2,-;
^ = 1, 2, •••, 2T^) are symmetric with
respect to the real axis.

Let Tλ(z) be the indirectly con-
formal mapping such that each point z corresponds to the point z. We
shall identify each two sides of slits Sϊ,n (n = 1, 2, ••• v = 1, 2, ••-, 2^)
corresponding each other 7\(2).

Let T2(z) be the mapping such that each point z corresponds to the
symmetric point z with respect to the imaginary axis. Then we shall
identify two sides of slits S\n (n = 1, 2 ••• v = 1, 2, •••, 2'1>) correspond-
ing each other by T2(z).
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Fig. 3

Fig. 4
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Let O) be the mapping such that each point z θ<arg2<~

or 7Γ < arg z < — π j corresponds to the symmetric point z with respect
Zi I

to the line y = (tan — ) x. Let Ts,2(2) be the mapping such that each

point z(— <arg2<τr or — π <arg2<2τrj corresponds to the sym-
\ £ Li I

metric point z with respect to line y = ί tan — τr\ x.

Fig. 5

Then we shall identify two sides of slits Sl,n (n — l,2, ; v = 1, 2,
2^) corresponding each other by T3)1(z) and T3,2(z).

Fig. 6



272 Y. TOKI

Next we shall define the mapping T4tl(z), T4,2(z), T4,3(», T4,4(z) as
follows.

?*4,1 (*)

the mapping such that each point z

or

corresponds to the sym-
metric point 2 with re-
spect to

H*-!)-

7-4,30)
- T T r or τr-f

or «+--

Fig. 7

Then we shall identify each sides of slits Sl,n (n = 1, 2, ••• v = 1, 2,
2v) corresponding each other by Γ4ίl(2), T4f2(z\ T4>3(z) and T4,4(2).
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Proceeding in this way we can construct a Riemann surface F.

We shall prove F is just the required Riemann surface.

Lemma 1. Let Dμ! be a simply connected domain enclosed by two

( 1 \2μ+l / 1 \ 2μ-t-2

—) , log|^|= — ί —) , and a Jordan arc α/ con-

necting the two circles.
Then 2V > kμ where V = Min ω(zy <*/, Dμ!} (μ = 1, 2, •••).

* £ C μ

Proof. Let V = ω(z0, αμ', Dμ!} at zy on Cμ. We may suppose with-
out loss of generality that ZQ is on the real axis. We shall denote by

Fig. 8

Dμ! and <V the symmetric domain and arc of Dμ. and #μ respectively
with respect to the real axis, and denote by Dμ!! the component of

Dμ!-Dμ! containing the point ZQ.
Then we have

ω(zy aj, Dμ!} + ωfo a/, Dμ!} > ω(z, aμ! + a/, Z?μ")

ω(zQ , α/, D/) =

i.e.

Now let «(*) be a non-constant single- valued positive harmonic function
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on F and let Mμ be the maximum value of u(z*) on the circle

= -(±f*\
\2)

i) When Πm^Mμ>l, there exists a sequence of positive integers
μ->oo

such that

and

Then for every μ>5 there exists a Jordan arc #μ^ connecting two circles

log 1 * 1 = - (~)2<V * and log \z \ = - (yp* * such that u(z} > A- , z e C^ .

By the Lemma 1 we have

Cμ

consequently

Min u(z) > Min Mμ ω(zy a' , Z X ) > -l-.l feμ = 1 Ji- .
«€C μ j β€cμ j

 J j j fe^ 2 J 2 feμj

Let y — > oo, then μ̂ -̂  0, lim 7ίϊ— = oo .
3 j^oo Z/?μ .

Thus u(z} must be reduced to constant infinity, which is a con-
tradiction.

ii) When lim &μMμ < 1, we can find a number Λf such that ίoΐ

We shall denote &μ, and Mμ, respectively by ^TO,W, and Mmjn, where
the pairs of two natural numbers (my n) correspond one-to-one to μ by
the relation μ = 2^\2n-l}.

Put

then HI(Z) is a single-valued harmonic function on F and vanishes on
SJU (» - 1, 2, .- v = 1, 2, -. , 2^) and KΦIrCM^.

In view of (2) we therefore obtain for μ^>N and μ = 2n— 1
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Ma Y 77 (?\ <^ M k2 ^ &3 — 91?IVldX «Ί\Z) _^ ιvj l,n κ\,n \ T^— κ\tn
 ΔK\,n

Let μ —> oo, then &ι,w—»0, and «!(£) = () on F. Therefore

( 3 ) u(z) = u(Tι(z}} on F and — = 0 ,

where — -̂ is the normal derivative with respect to the real
dn

axis or to Sf,n (n = 1, 2, ••. v = 1, 2, ••• 2T^).

1
Put u2(z') = — [#(2)—#(^2(X))], then in the same way we have the

2
next inequality

Max U2(z)<^2k2,n for μ^> N and μ = 2(2^ — 1).
IsHexp-^Γ"1

V ώ /

A

Let /A->OO, then fe2,n—*0, and w2(2:)^0 on F. Therefore

( 4 ) u(z) = u(Tz(zJ) on F and —— = 0 ,

where —^- is the normal derivative with respect to the imaginary

axis or to S2% (n = 1, 2, ... » = 1, 2, ..., 2T

Next we divide F into two components by the cuts on Sϊ,n and by
the cuts, say (7, on the real axis but not on Sμ. Let Fx be the com-
ponent on the upper half plane. Then we shall identify two sides of slits
Sϊ,n on F! corresponding by T2(2) and shall identify the cuts C' on Fx

Λ

corresponding by T2(z). Thus we have a new Riemann surface, say FX .
Λ

Let us define a function u^(z) on Fx by the value of u(z} on Fx.
Λ

Then by (3) and (4) w3(z) is harmonic on Fx.
Put

then in the same way α3(z) = u3(T2(z2y) on JF\. Therefore

( 5 ) (̂2:) is symmetric with respect to the lines y = (tan — ) x,
\ 4 /

jV = (tan —^ ) x> and — = 0,

where — -̂ is the normal derivative with respect to the lines
dn
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y = (tan ̂  x, y = (tan ^-\ *, and to Sl,n on

And next we divide F into four components by the cuts on Sϊ,n and on
SJ, n and by the cuts, say C2, on the real and imaginary axis but not

Λ / \

on Sjϋ. Let F2 be the component containing a point £ ( a r g 2 = — J.

Now we shall identify two sides of slits S ϊ,n and S2,w on F2 correspond-
ing by T2(z2) and shall identify the cuts C2 on F2 corresponding by
T2(*2).

Thus we have a new Riemann surface, say F2 . Let us define a

function u±(z) on F2 by the value of u(z} F2 . Then by (3), (4) and (5)
Λ

α4(z) is harmonic on F2.
Put

then in the same way

"**W = **(Tι(z*y)on F2.

Therefore

( 6 ) u(z} is symmetric with respect to the lines <y = ίtan — ) Λ Γ ,
\ 8 /

j» = (tan ^f)x,y = (tanA «r) *, ^ = (tan 1 *) * and |̂ - = 0,

where — is the normal derivative with respect to above four
dn

lines or to Sl,n on F2 .

In the same way we can prove that u(z} is symmetric with respect to

the lines y — f tan m~^ πj x, where n = 1, 2, ••• and m = 1, 2, ••• .
\ ^ /

Λ

Therefore u(z} must be a constant on F, which is a contradiction.
Λ 1

On the other hand let us define a function G(fi) on F by log — at

the point p corresponding to z. Then it is clear that G(p) is the Green's
Λ

function on F. Therefore the Riemann surface F is just the required one.
It is clear that the surface after extracting a point p from the

A

surface F does not belong to 0HP, but belongs to OHB.
Thus we have proved that 0G c^ OHP <C OHB .

§ 2. Now we shall construct a Riemann surface with a single- valued
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bounded analytic function, but with no harmonic function of finite Diri-
chlet integral.

We shall consider the surface FQ cut along the radial slits
Sμ (μ — 1, 2, ••• v = 1, 2, •••, 22μ) on the unit-circle |z|< 1 as follows :

/ 1 \ 2/x / 1 \ 2a j-1 O
C v . - r ιθv ί -1 \ <r̂  Inα r <T ί -1 \ Λ ^V7t

ύ μ , 2 —r^ , —1 — 1 <,AOg^<, -l-^-j , e^v -̂
N ί Λ I \ £i I £έ

Let F(K) and F(tι) (h = 1, 2, • ••) be one-sheeted covering surfaces
without any relative boundaries over the basic surface F0. We shall
denote the slits S£ by SJ,,n, where w and w are natural numbers with
the relation μ = 2ίr~1(20 —1).

We shall construct the covering surface W over the unit-circle con-

necting the surfaces \F(h}\ and {F(A)j as follows :

We shall
connect

crosswise

F(Λ-r l) and F(Λ-f-l)

and

and

and

and

and

and

and

and

and

F(23Aj-h4) and f 8)

and

and

and

and

on each slit over

where k = 0, 1, 2, ••• , n = 1, 2, 3, ...
? = 1,2, ..., 22*.

We shall show the above correspondence among \F(h}\ and \F(k)}

by diagrams:
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m = 4

F(2) F(3) F(4) F(5) F(6) F(7) F(8)
I IΛ

F(2) F(3) F(4) F(5) F(6) F(7) F(8)

F(2) F(3) F(4) F(5) F(6) F(7) F(8)

F(2) F(3) F(4) F(5) F(6)

F(2) F(3) F(4) F(5) F(6)

F(7) F(8)

F(7) F(8)

F(2) F(3) F(4) F(5) F(6) F(7) F(8)

F(2) F(3) F(4) F(5) F(6) F(7) F(8)

A Λ Λ

F(2) F(3) F(4) F(5)

Thus we can construct the Riemann surface W.

Lemma 2. Let D be two-sheeted covering surfaces over the stripe-

plane, having its all branch

lί (« = 0, ±1, ±2, •••).

domain — ̂ -
2

— 77; in the z-(=
16

points over the points -r + ̂ -i and — +
4 2 o

Consider in D all the harmonic functions u(z} that possess the zeros at

-λ. + ̂ i and — L + ̂ ι χ« = 0, ±1, ±2, -) respectively and statisfy
4 2 o 2

on the boundaries over ίt%= — — - and Λ: =
2

— ,
16

Then there

, independent of u, such thatexists a constant 0<^a

(1)
3

holds on the straight line x = ——.
16

3
Proof. If (1) were not true on the segment L : x = —— , 0 <;y <2τr,

16
there would exist a sequence \un(z)}
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A subsequence, say again [un(z}\, would converge towards a function
u(z\ harmonic and bounded, |#O)|<M, in D. The points zn where un(z)
takes its maximum on L accumulate at least to one point z0 on L. It
follows from the continuity of u(z) and the uniform convergence of
\un(z)} on L that \u(zQ}\ = M. But \u(z}\ can not be identically M, since
u(z} really has the zero-points. This contradicts the maximum principle.

"76

2J[ί

"p~/l A

πi

-XL

-i*
Fig. 9

Therefore (1) is true for L. By the transformations Tm(z) = z + 2mπi
3; x= — — 9

16
are mapped on the segment L, consequently (1) is true for the whole

3

(m = ±1, ±2, •••) the segments

straight line x = —
16

Then we shall prove that W is just the required Riemann surface.
Let u(p} be an arbitrary single- valued bounded harmonic function on
W. We may assume \u(p}\<^l without loss of generality. Let Wm,n

(m = 1, 2, ••• n = 1, 2, •••) be the covering subsurfaces of W over the
ring-domains Rm,n respectively, where

( 1
-i

2μ-l
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It is clear that each component of Wm is a two-sheeted covering surface
over Rmtn.

Let Tm(p) (m = Ir2, • ••) be the conformal mappings of W onto
itself as follows:

Tι(p) is the mapping

T2(/0

T3(/0

by which a point on
F(ki-l) over z

F(2k4-l)

F(2A5-H2)

F(22A>-fl)

F(22£-h2)

F(22β4-3)

F(22^-|-4)

corresponds to a point on
Λ

.F(£-|-l) over the same
point z

F(2βf2)

F(2£4-l)

F(2?β+-3)

F(2?A!-H)

F(22£4-l)

F(22jfe-}-2)

:

Put

Then #m(/>) are single-valued harmonic functions which vanish on the
branch points over the end-points of S^,n (n = 1, 2, ••• v = 1, 2, ••• , 22μ)

and K(/>)|<1.
Application of Lemma 2 after suitable auxiliary transformations

implies that the inequality

O / -1 V μ

holds for all points p over the circles log|*[= — — f — J (μ = 2m~\2n — 1),
TC \ <<ώ /

w = 1, 2, •••). Then we see
O / -I \ 2W-1

l#w(£)K0n for all points over the circle log |z |=— — ί — j
T: \ Δι /

Let fl->oo, then βw->0. Therefore all functions um(p) (m = 1, 2, -.-)
are identically zero on TF. So ^(/>) takes the same value on every
points on F(h} (h = 1, 2, •••) over a point z on the unit-circle. This fact
means that u(p) has no finite Dirichlet integral on W. Therefore by
Virtanen's2) theorem there is no harmonic function with finite Dirichlet
integral on W.

On the other hand if we put w(p} = z for all p over z, then w(p}
is a single-valued bounded analytic function on W.

(Received November 5, 1953)

2) K. I. Virtanen, Uber die Existenz von beschrankten harmonischen Funktionen auf
offenen Riemannschen FΓachen, Ann. Acad. Scient. Fenn., A.I. 75 1950.




