On a Theorem of Gaschütz

By Masatoshi Ikeda

In his paper " Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen ",' W. Gaschütz studied two types of G - Ω-modules, named $M_{u^{-}}$and $M_{0^{-}}$-modules, where G and Ω are a finite group and an arbitrary domain of G-endomorphisms of the modules respectively. There he obtained a criterion for a $G-\Omega$-module to be an $M_{u^{-}}$or M_{0}-module, which is a generalization of the well-known theorem of I. Schur that every representation of a finite group of order g in a field with characteristic $p(\nsucc g)$ is completely reducible.

In the present note we take, instead of G and Ω, a Frobenius algebra A over a commutative ring R and a ring P which contains R in its centre respectively, and derive a criterion for an $A-P$-module to be an $M_{u^{-}}$or M_{0}-module, which is essentially a generalization of Gaschütz's result.

Let R be a commutative ring with the unit element 1.
Definition. A is called an algebra over R if A is an associative ring as well as a two-sided R-module with a right linearly independent R-basis $\left\{u_{i}\right\}$ which satisfies $u_{i} \omega=\omega u_{i}$ and $u_{i} 1=1 u_{i}=u_{i}$ for every $\omega \in R^{\prime}$ and i.

Now let $\left\{u_{i}\right\}(i=1, \cdots, n)$ be an R-basis of A and $u_{i} u_{j}=\sum_{k} \alpha_{i, j}^{k} u_{k}$ $\left(\alpha_{i, j}^{k} \in R\right)$; then we obtain the right and left regular representations with respect to $\left\{u_{i}\right\}$ in the usual manner.

Definition. An algebra A over R is called a Frobenius algebra if A has a unit element and its right and left regular representations with respect to an R-basis are equivalent.

Definition. Let $\left\{u_{i}\right\}(i=1, \cdots, n)$ be an R-basis of an algebra A over R and $u_{i} u_{j}=\sum_{k} \alpha_{i, j}^{k} u_{k}$. Then the matrix $\left(\sum_{k} \alpha_{i, j}^{k} \lambda_{k}\right)_{i, j}$ is called a parastrophic matrix belonging to the basis $\left\{u_{i}\right\}$ and the parameters $\lambda_{i} \in R(i=1, \cdots, n)$.

[^0]Then we have
Lemma. ${ }^{2)}$ An algebra A over R is a Frobenius algebra if and only if A has a non-singular parastrophic matrix. Moreover if A is a Frobenius algebra over R, then every matrix intertwining right and left regular representations is expressed as a parastrophic matrix belonging to suitable parameters.

If A is a Frobenius algebra over R then, for every R-basis $\left\{u_{i}\right\}$, there exists an R-basis $\left\{v_{i}\right\}$ such that the right regular representation with respect to $\left\{v_{i}\right\}$ coincides with the left regular representation with respect to $\left\{u_{i}\right\}$. We say that $\left\{v_{i}\right\}$ is dual to $\left\{u_{i}\right\}$.

Definition. Let A be an algebra over R and P a ring whose centre contains R.
i) A module \mathfrak{m} is called an $A-P$-module if \mathfrak{m} is a left A-module as well as a right P-module and satisfies

$$
(a \omega) m=(a m) \omega, \quad(a m) \rho=a(m \rho)
$$

for every $a \in A, m \in \mathfrak{m}, \omega \in R$ and $\rho \in P$.
ii) An $A-P$-module m on which the unit element of A acts as the identity operator is called an M_{u}-module if, for every $A-P$-module \mathfrak{n} containing \mathfrak{m}, a direct decomposition $\mathfrak{n}=\mathfrak{m}+\mathfrak{m}^{\prime}$ as a P-module implies a direct decomposition $\mathfrak{n}=\mathfrak{m}+\mathfrak{m}^{\prime \prime}$ as an $A-P$-module.
iii) An A - P-module m on which the unit element of A acts as the identity operator is called an M_{0}-module if, for every $A-P$-module \mathfrak{n} which contains an $A-P$-submodule \mathfrak{n}^{\prime} such that $\mathfrak{n} / \mathfrak{n}^{\prime} \cong \mathfrak{m}$, a direct decomposition $\mathfrak{n}=\mathfrak{n}^{\prime}+\mathfrak{m}^{\prime}$ as a P-module implies a direct decomposition $\mathfrak{n}=\mathfrak{n}^{\prime}+\mathfrak{m}^{\prime \prime}$ as an $A-P$-module.

Theorem. Let A be a Frodenius algebra over a commutaitive ring R with an R-basis containing the unit element of A and P a ring whose centre contains R. Then an $A-P$-module m is an $M_{u^{-}}$or M_{0}-module if and only if there exists a P-endomorphism β of \mathfrak{m} such that $\sum_{i} u_{i} \beta v_{i}$ is the identity endomorphism of \mathfrak{m} for every R-basis $\left\{u_{i}\right\}$ of A and its dual basis $\left\{v_{i}\right\}$.

Proof. 1) Proof of sufficiency. Let \mathfrak{n} be an $A-P$-module which contains \mathfrak{m} and $\mathfrak{n}=\mathfrak{m}+\mathfrak{m}^{\prime}$ as a P-module. By our assumption, there exists a P-endomorphism β of m . Let β^{*} be a P-endomorphism which

[^1]coincides with β on \mathfrak{m} and $\beta^{*} \mathfrak{m}^{\prime}=0$. Then $\sum_{i} \dot{u}_{i} \beta^{*} v_{i}=\varepsilon$ is a P-endomorphism and $\varepsilon m=\left(\sum_{i} u_{i} \beta^{*} v_{i}\right) m=\sum_{i} u_{i} \beta^{*}\left(v_{i} m\right)=\sum_{i} u_{i} \beta\left(v_{i} m\right)$ $=\left(\sum_{i} u_{i} \beta v_{i}\right) m=m$ for every $m \in \mathfrak{m}$, by our assumption. Moreover it can easily be seen that $\varepsilon \mathfrak{n}=\mathfrak{m}$. Therefore $\varepsilon^{2}=\varepsilon$. Now we show that ε is an $A-P$-endomorphism. Let n be an arbitrary element of \mathfrak{n} and a an arbitrary element of A. Since $\left\{v_{i}\right\}$ is dual to $\left\{u_{i}\right\}$, if $a\left(u_{1}, \cdots, u_{n}\right)$
\[

$$
\begin{aligned}
& =\left(u_{1}, \cdots, u_{n}\right)\left(\alpha_{i}, j\right) \text { then }\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) a=\left(\alpha_{i}, j\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) . \text { Then } \\
& \quad(a \varepsilon) n=\left(a \sum_{i} u_{i} \beta^{*} v_{i}\right) n=\sum_{i} a u_{i}\left(\beta^{*} v_{i} n\right)=\sum_{i, k}\left(u_{k} \alpha_{k, i}\right)\left(\beta^{*} v_{i} n\right) .
\end{aligned}
$$
\]

By the definition of $A-P$-modules and the fact that β^{*} is a P-endomorphism,

$$
\left(u_{k} \alpha_{k, i}\right)\left(\beta^{*} v_{i} n\right)=u_{k}\left(\left(\beta^{*} v_{i} n\right) \alpha_{k, i}\right)=u_{k}\left(\beta^{*}\left(\left(v_{i} n\right) \alpha_{k, i}\right)\right)=\left(u_{k} \beta^{*}\left(v_{i} \alpha_{k, i}\right)\right) n
$$

Therefore

$$
(a \varepsilon) n=\sum_{i, k}\left(u_{k} \beta^{*}\left(v_{i} \alpha_{k ; i}\right)\right) n=\left(\sum_{k} u_{k} \beta^{*}\left(\sum_{i} v_{i} \alpha_{k, i}\right)\right) n .
$$

On the other hand

$$
(\varepsilon a) n=\left(\sum_{k} u_{k} \beta^{*}\left(v_{k} a\right)\right) n=\left(\sum_{k} u_{k} \beta^{*}\left(\sum_{i} v_{i} \alpha_{k, i}\right)\right) n
$$

Thus $a \varepsilon=\varepsilon a$ and consequently ε is an $A-P$-endomorphism. Therefore we have the direct decomposition of $\mathfrak{n}: \mathfrak{n}=\mathfrak{m}+(1-\varepsilon) \mathfrak{n}$, where 1 is the identity endomorphism of \mathfrak{n}. This shows that \mathfrak{m} is an M_{u}-module.

Next we show that \mathfrak{m} is also an M_{0}-module. Let \mathfrak{n} be an $A-P-$ module which contains an $A-P$-submodule \mathfrak{n}^{\prime} such that $\mathfrak{n} / \mathfrak{n}^{\prime} \cong \mathfrak{m}$ and $\mathfrak{n}=\mathfrak{n}^{\prime}+\mathfrak{m}^{\prime}$ as a P-module. Since $\mathfrak{m}^{\prime} \cong \mathfrak{m}$ as a P-module, we can see β as a P-endomorphism of \mathfrak{m}^{\prime}. Let β^{*} be a P-endomorphism of \mathfrak{n} which coincides with β on \mathfrak{m}^{\prime} and $\beta^{*} \mathfrak{n}^{\prime}=0$. From our assumption, $\left(\sum_{i} u_{i} \beta^{*} v_{i}\right) n \equiv n\left(\bmod \mathfrak{n}^{\prime}\right)$ for $n \in \mathfrak{n}$. In the same way as above, we see that the P-endomorphism $\sum_{i} u_{i} \beta^{*} v_{i}=\varepsilon$ is an A - P-endomorphism and $\varepsilon^{2}=\varepsilon$. Therefore $\varepsilon^{\prime}=1-\varepsilon$ is also an A-P-endomorphism and $\varepsilon^{\prime 2}=\varepsilon^{\prime}$. Moreover it is easy to see that $\varepsilon^{\prime} \mathfrak{n}=\mathfrak{n}^{\prime}$. Consequently we have that $\mathfrak{n}=\mathfrak{n}^{\prime}+\varepsilon \mathfrak{n}$ and \mathfrak{m} is an M_{0}-module.
2. Proof of necessity. Let M_{A} be a module satisfying the following conditions:
(i) M_{A} is a module of linear forms $\sum_{i} x_{u_{i}} a_{u_{i}}\left(a_{u_{i}} \in \mathfrak{m}\right)$.
(ii) $\sum_{i} x_{u_{i}}{ }^{a} \boldsymbol{u}_{i}+\sum_{i} x_{u_{i}} b_{u_{i}}=\sum_{i} x_{u_{i}}\left(a_{u_{i}}+b_{u_{i}}\right)$.
(iii) $\left(\sum_{i} x_{u_{i}} a_{u_{i}}\right) \rho=\sum_{i} x_{u_{i}}\left(a_{u_{i}} \rho\right)$ for $\rho \in P$.
(iv) $u_{j}\left(\sum_{i} x_{u_{i}} a_{u_{i}}\right)=\sum_{i} x_{u_{i}}\left(\sum_{k} a_{u_{k}} \alpha_{i, j}^{k}\right), \quad$ if $\quad u_{i} u_{j}=\sum_{k} u_{k} \alpha_{i, j}^{k}$.
(v) $a\left(\sum_{i} x_{u_{i}}{ }^{a}{ }_{u_{i}}\right)=\sum_{j}\left(u_{j}\left(\sum_{i} x_{u_{i}} a_{u_{i}}\right)\right) \alpha_{j}$, if $\quad a=\sum_{j} u_{j} \alpha_{j}$.

Then it is not hard to verify that M_{A} is an $A-P$-module.
Now, since $\left\{v_{i}\right\}$ is dual to $\left\{u_{i}\right\},\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)=P^{-1}\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right)$, where $P=\left(\sum_{k} \alpha_{i, j}^{k} \lambda_{k}\right)_{i, j}$ is a non-singular parastrophic matrix belonging to $\left\{u_{i}\right\}$ and $\left\{\lambda_{i}\right\}$. We write $P=\left(p_{i, j}\right)_{i, j}$ and $P^{-1}=\left(p_{i, i}^{*}\right)_{i, j}$. We assume that $\sum_{i} u_{i} \eta_{i}=1$, the unit element of A. Then the mapping $\beta: \sum_{i} x_{u_{i}} a_{u_{i}}$ $\rightarrow \sum_{i} x_{u_{i}}\left(\sum_{j} a_{u_{j}} \eta_{j}\right) \lambda_{i}$ satisfies our condition, that is, β is a $\stackrel{i}{P}$-endomorphism and $\sum_{i} u_{i} \beta v_{i}$ is the identity endomorphism of M_{A}. Since β is obviously a P-endomorphism, we are only to prove that $\sum_{i} u_{i} \beta v_{i}$ is the identity endomorphism.

$$
\begin{aligned}
& \left(\sum_{j} u_{j} \beta v_{j}\right)\left(\sum_{i} x_{\boldsymbol{u}_{i}} a_{u_{i}}\right)=\sum_{j} u_{j} \beta\left(v_{j} \sum_{i} x_{u_{i}}{ }_{u_{i}}\right)=\sum_{j} u_{j} \beta\left(\left(\sum_{k} u_{k} p_{j, k}^{*}\right)\left(\sum_{i} x_{u_{i}} a_{u_{i}}\right)\right) \\
& =\sum_{j} u_{j} \beta\left(\sum_{i} x_{u_{i}}\left(\sum_{h, k} a_{u_{h}} \alpha_{i, k}^{n} p_{j, k}^{*}\right)\right)=\sum_{j} u_{j}\left(\sum_{i} x_{u_{i}}\left(\sum_{h, k_{k} l} a_{u_{h}} p_{j, k}^{*} \alpha_{l, k}^{n} \eta_{\eta}\right) \lambda_{i}\right) .
\end{aligned}
$$

Since $\sum_{l} u_{\imath} \eta_{l}=1, \sum_{l} \alpha_{l, k}^{h} \eta_{l}=\delta_{k, h}$ and consequently

$$
\begin{gathered}
\left(\sum_{j} u_{j} \beta v_{j}\right)\left(\sum_{i} x_{\boldsymbol{u}_{i}} a_{\boldsymbol{u}_{i}}\right)=\sum_{j} u_{j}\left(\sum_{i} x_{\boldsymbol{u}_{i}}\left(\sum_{k} a_{\boldsymbol{u}_{k}} p_{j, k}^{*} \lambda_{i}\right)\right)=\sum_{i, j} x_{\boldsymbol{u}_{i}}\left(\sum_{m}\left(\sum_{k} a_{\boldsymbol{u}_{k}} p_{j, k}^{*} \lambda_{m}\right) \alpha_{i, j}^{m}\right) \\
\quad=\sum_{i, j} x_{\boldsymbol{u}_{i}}\left(\sum_{k} a_{\boldsymbol{u}_{k}} p_{j, k}^{*}\left(\sum_{m} \lambda_{m} \alpha_{i, j}^{m,}\right)\right)=\sum_{i, j} x_{\boldsymbol{u}_{i}}\left(\sum_{i=} a_{\boldsymbol{u}_{k}} p_{j, k}^{*} p_{i, j}\right) \\
\quad=\sum_{i} x_{\boldsymbol{u}_{i}}\left(\sum_{k} a_{\boldsymbol{u}_{k}}\left(\sum_{j} p_{i, j} p_{j, k}^{*}\right)\right)=\sum_{i} x_{\boldsymbol{u}_{i}}\left(\sum_{k} a_{\boldsymbol{u}_{k}} \delta_{i, k}\right)=\sum_{i} x_{\boldsymbol{u}_{i}} a_{\boldsymbol{u}_{i}} .
\end{gathered}
$$

Thus β satisfies our condition.
Next we show that M_{A} contains $A-P$-modules M and N such that $M \cong \mathrm{~m}$ and $M_{A} / N \cong \mathrm{~m}$. The module $M=\left\{\sum_{i} x_{u_{i}}\left(u_{i} a\right) \mid a \in \mathfrak{m}\right\}$ is P-isomorphic to \mathfrak{m} by the correspondence $\mathfrak{m} \ni a \leftrightarrow \sum_{i} x_{u_{i}}\left(u_{i} a\right) \in M$. For, if $\sum_{i} x_{u_{i}}\left(u_{i} a\right)=0$ then $u_{i} a=0$ for all i and consequently $a=1$ $a=\left(\sum_{i} u_{i} \eta_{i}\right) a=\sum_{i}\left(u_{i} a\right)_{\eta_{i}}=0$. Therefore this correspondence is one-toone and obviously P-isomorphism. Moreover this correspondence is A-isomorphism. For $u_{j}\left(\sum_{i} x_{u_{i}}\left(u_{i} a\right)\right)=\sum_{i} x_{u_{i}}\left(\sum_{k}\left(u_{k} a\right) \alpha_{i, j}^{k}\right)=\sum_{i} x_{u_{i}}$ $\left(\left(\sum_{k} u_{k} \alpha_{i, j}^{k}\right) a\right)=\sum_{i} x_{u_{i}}\left(u_{i}\left(u_{j} a\right)\right)$, that is, $u_{j} a$ corresponds to $u_{j}\left(\sum_{i} x_{u_{i}}\left(u_{i} a\right)\right)$. Therefore M is $A-P$-isomorphic to m . Since A has an R-basis containing 1 , say $w_{1}=1, w_{2}, \cdots, w_{n}$, we can construct the module M_{A}^{\prime} satisfying (i), $\cdots,(\mathrm{v})$ with respect to $\left\{w_{i}\right\}$. Let Q be a non-singular matrix such that $\left(u_{i}\right)=\left(w_{i}\right) Q^{\prime}$. Then it is not hard to see that M_{A}^{\prime}
and M_{A} are $A-P$-isomorphic by the correspondence $\varphi: M_{A}^{\prime} \ni \sum_{i} x_{w_{i}}{ }^{a_{w_{i}}}$ $\rightarrow \sum_{i} x_{u_{i}} b_{u_{i}}$, where $\left(b_{u_{1}}, \cdots, b_{u_{n}}\right)=\left(a_{w_{1}}, \cdots, a_{w_{n}}\right) Q^{\prime}$. By φ, M corresponds to $M^{\prime}=\left\{\sum_{i} x_{w_{i}}\left(w_{i} a_{0} \mid a \in \mathfrak{m}\right\}\right.$. It is obvious that $M_{A}^{\prime}=M^{\prime}+M^{\prime \prime}$ as a P-module, where $M^{\prime \prime}=\left\{\sum_{i} x_{w_{i}}{ }^{a} w_{i} \mid a_{w_{1}}=0\right\}$. Therefore we have that $M_{A}=M+\varphi M^{\prime \prime}$ as a P-module and consequently $M_{A}=M+M^{\prime \prime \prime}$ as an $A-P$-module if m is an M_{u}-module. Next we consider the mapping $\psi: M_{A} \ni \sum_{i} x_{u_{i}} a_{u_{i}} \rightarrow \sum_{i} u_{i}\left(\sum_{j} a_{u_{j}} p_{i, j}^{*}\right) \in \mathfrak{m}$. Since $\left(p_{i, j}^{*}\right)=P^{-1}$ is non-singular, the linear equation $\sum_{i} x_{j} p_{i, j}^{*}=a_{\eta_{i}}(a \in \mathrm{~m}, i=1, \cdots, n)$ have a unique solution $\left\{a_{j}\right\}$ in m . Then $\sum_{i} x_{u_{i}} a_{i}$ corresponds to $\sum_{i} u_{i}\left(a_{\eta_{i}}\right)$ $=\left(\sum_{i} u_{i} \eta_{i}\right) a=1 \quad a=a$. This shows that ψ is an "onto" mapping. Furthermore it is easy to see that ψ is a P-homomorphism. We show that ψ is an $A-P$-homomorphism.

$$
\begin{aligned}
& \psi\left(u_{j}\left(\sum_{i} x_{u_{i}} a_{\boldsymbol{u}_{i}}\right)\right)=\psi\left(\sum_{i} x_{\boldsymbol{u}_{i}}\left(\sum_{k} a_{\boldsymbol{u}_{k}} \alpha_{i, j}^{k}\right)\right)=\sum_{i} u_{i}\left(\sum_{m}\left(\sum_{k} a_{\boldsymbol{u}_{k}} \alpha_{m, j}^{k}\right) p_{i, m}^{*}\right) \\
& \quad=\sum_{i} u_{i}\left(\sum_{k} a_{\boldsymbol{u}_{k}}\left(\sum_{m} \alpha_{m, j}^{k} p_{i, m}^{*}\right)\right) .
\end{aligned}
$$

Since $P=\left(p_{v}, j\right)$ interwines right and left regular representations, we have $\sum p_{i, m}^{*} \alpha_{m, j}^{k}=\sum \alpha_{j, m}^{i} p_{m, k}^{*}$ and consequently

$$
\begin{aligned}
& \psi\left(u_{j}\left(\sum_{i} x_{u_{\imath}} a_{u_{i}}\right)\right)=\sum_{i} u_{i}\left(\sum_{k} a_{u_{k}}\left(\sum_{m} \alpha_{j, m}^{i} p_{m, k}^{*}\right)\right)=\sum_{k, m}\left(\sum_{i} u_{i} \alpha_{j, m}^{i}\right) a_{u_{k}} p_{m, k}^{*} \\
& \quad=u_{j}\left(\sum_{m} u_{m}\left(\sum_{k} a_{\boldsymbol{u}_{k}} p_{m, k}^{*}\right)\right)=u_{j} \psi\left(\sum_{i} x_{u_{i}}{ }^{a}{ }_{u_{i}}\right) .
\end{aligned}
$$

This shows that ψ is an $A-P$-homomorphism and consequently M_{A} contains an A - P-submodule N auch that $M_{A} / N \cong \mathfrak{m}$. Moreover, as was shown above, the P-submodule $N^{\prime}=\left\{\sum_{i} x_{u_{i}} a_{u_{i}} \mid \sum_{i} a_{u_{i}} p_{i}^{*}, j=a \eta_{i}\right.$, $a \in \mathfrak{m}\}$ is mapped onto \mathfrak{m} by ψ. Therefore $M_{A}=N+N^{\prime}$ as a P-module and consequently $M_{A}=N+N^{\prime \prime}$ as an $A-P$-module if \mathfrak{m} is an M_{0}-module. Thus we have that M_{A} is directly decomposable into \mathfrak{m} and an $A-P$ module. Since M_{A} has a P-endomorphism β satisfying our condition, we can easily construct a P-endomorphism satisfying our condition for m.

Next we show that our result is essentially a generalization of Gaschütz's result. Let \mathfrak{m} be a G-module, where $G=\left\{g_{i} \mid i=1, \cdots, n\right\}$ is a finite group and Ω an arbitrary domain of G-endomorphisms of m. Let P be the ring of endomorphisms generated by Ω and the identity endomorphism of m , and C the centre of P. Then the group ring $G(C)$ of G over C is a Frobenius algebra with a C-basis containing the unit element of G. Furthermore $\left\{g_{i}^{-1}\right\}$ is a dual basis to $\left\{g_{i}\right\}$. Considering m as $G(C)-P$-module in the natural way, we have

Theorem. (Gaschütz). Let $G=\left\{g_{i} \mid i=1, \cdots, n\right\}, \mathfrak{m}$ and Ω be a finite group, a G-module and an arbitrary domain of G-endomorphisms of m respectively. Then G - Ω-module m is an $M_{u^{-}}$or $M_{0^{-}}$module if and only if \mathfrak{m} has an Ω-endomorphism β such that $\sum g_{i} \beta g_{i}^{-1}$ is the identity endomorphism of m.
(Received March 9, 1953)

[^0]: 1) W. Gaschütz, Math. Zeitschr. 56, 1952.
[^1]: 2) The proof of this lemma is quite similar to that of footnotes 6) and 7) in Nakayama \& Nesbitt: Note on symmetric algebras, Annals of Math. 39, 1938.
