On a Theorem of Gaschütz

By Masatoshi Ikeda

In his paper "Über den Fundamentalsatz von Maschke zur Darstellungstheorie der endlichen Gruppen"," W. Gaschütz studied two types of G- Ω -modules, named M_u - and M_0 -modules, where G and Ω are a finite group and an arbitrary domain of G-endomorphisms of the modules respectively. There he obtained a criterion for a G- Ω -module to be an M_u - or M_0 -module, which is a generalization of the well-known theorem of I. Schur that every representation of a finite group of order g in a field with characteristic $p(\not|g)$ is completely reducible.

In the present note we take, instead of G and Ω , a Frobenius algebra A over a commutative ring R and a ring P which contains R in its centre respectively, and derive a criterion for an A-P-module to be an M_u - or M_0 -module, which is essentially a generalization of Gaschütz's result.

Let R be a commutative ring with the unit element 1.

DEFINITION. A is called an algebra over R if A is an associative ring as well as a two-sided R-module with a right linearly independent R-basis $\{u_i\}$ which satisfies $u_i\omega=\omega u_i$ and $u_i1=1u_i=u_i$ for every $\omega\in R$ and i.

Now let $\{u_i\}$ $(i=1,\dots,n)$ be an R-basis of A and $u_iu_j=\sum_k\alpha_{i,j}^ku_k$ $(\alpha_{i,j}^k\in R)$; then we obtain the right and left regular representations with respect to $\{u_i\}$ in the usual manner.

DEFINITION. An algebra A over R is called a *Frobenius algebra* if A has a unit element and its right and left regular representations with respect to an R-basis are equivalent.

DEFINITION. Let $\{u_i\}$ $(i=1,\cdots,n)$ be an R-basis of an algebra A over R and $u_iu_j=\sum\limits_k\alpha_{i,j}^ku_k$. Then the matrix $(\sum\limits_k\alpha_{i,j}^k\lambda_k)_{i,j}$ is called a parastrophic matrix belonging to the basis $\{u_i\}$ and the parameters $\lambda_i\in R$ $(i=1,\cdots,n)$.

¹⁾ W. Gaschütz, Math. Zeitschr. 56, 1952.

Then we have

Lemma.²⁾ An algebra A over R is a Frobenius algebra if and only if A has a non-singular parastrophic matrix. Moreover if A is a Frobenius algebra over R, then every matrix intertwining right and left regular representations is expressed as a parastrophic matrix belonging to suitable parameters.

If A is a Frobenius algebra over R then, for every R-basis $\{u_i\}$, there exists an R-basis $\{v_i\}$ such that the right regular representation with respect to $\{v_i\}$ coincides with the left regular representation with respect to $\{u_i\}$. We say that $\{v_i\}$ is dual to $\{u_i\}$.

DEFINITION. Let A be an algebra over R and P a ring whose centre contains R.

i) A module m is called an A-P-module if m is a left A-module as well as a right P-module and satisfies

$$(a\omega)m = (am)\omega$$
, $(am)\rho = a(m\rho)$

for every $a \in A$, $m \in \mathbb{M}$, $\omega \in R$ and $\rho \in P$.

- ii) An A-P-module \mathfrak{m} on which the unit element of A acts as the identity operator is called an M_n -module if, for every A-P-module \mathfrak{n} containing \mathfrak{m} , a direct decomposition $\mathfrak{n} = \mathfrak{m} + \mathfrak{m}'$ as a P-module implies a direct decomposition $\mathfrak{n} = \mathfrak{m} + \mathfrak{m}''$ as an A-P-module.
 - iii) An A-P-module $\mathfrak m$ on which the unit element of A acts as the identity operator is called an M_0 -module if, for every A-P-module $\mathfrak m$ which contains an A-P-submodule $\mathfrak m'$ such that $\mathfrak m/\mathfrak m' \cong \mathfrak m$, a direct decomposition $\mathfrak m = \mathfrak m' + \mathfrak m'$ as a P-module implies a direct decomposition $\mathfrak m = \mathfrak m' + \mathfrak m''$ as an A-P-module.

Theorem. Let A be a Frodenius algebra over a commutative ring R with an R-basis containing the unit element of A and P a ring whose centre contains R. Then an A-P-module m is an M_u - or M_0 -module if and only if there exists a P-endomorphism β of m such that $\sum_i u_i \beta v_i$ is the identity endomorphism of m for every R-basis $\{u_i\}$ of A and its dual basis $\{v_i\}$.

Proof. 1) Proof of sufficiency. Let n be an A-P-module which contains m and n = m + m' as a P-module. By our assumption, there exists a P-endomorphism β of m. Let β^* be a P-endomorphism which

²⁾ The proof of this lemma is quite similar to that of footnotes 6) and 7) in Nakayama & Nesbitt: Note on symmetric algebras, Annals of Math. 39, 1938.

coincides with β on m and $\beta^*m'=0$. Then $\sum_i u_i \beta^*v_i = \varepsilon$ is a P-endomorphism and $\varepsilon m = (\sum_i u_i \beta^*v_i) m = \sum_i u_i \beta^*(v_i m) = \sum_i u_i \beta(v_i m)$ $= (\sum_i u_i \beta v_i) m = m$ for every $m \in m$, by our assumption. Moreover it can easily be seen that $\varepsilon n = m$. Therefore $\varepsilon^2 = \varepsilon$. Now we show that ε is an A-P-endomorphism. Let n be an arbitrary element of n and a an arbitrary element of A. Since $\{v_i\}$ is dual to $\{u_i\}$, if $a(u_1, \cdots, u_n)$

$$=(u_1,\cdots,u_n)(\alpha_{i,j}), \text{ then } \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array}\right) a = (\alpha_{i,j}) \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array}\right). \text{ Then }$$

$$(a\varepsilon)n = (a\sum_i u_i\beta^*v_i)n = \sum_i au_i(\beta^*v_in) = \sum_{i,k} (u_k\alpha_{k,i})(\beta^*v_in).$$

By the definition of A-P-modules and the fact that β^* is a P-endomorphism,

$$(u_k \alpha_{k,i})(\beta^* v_i n) = u_k((\beta^* v_i n) \alpha_{k,i}) = u_k(\beta^* ((v_i n) \alpha_{k,i})) = (u_k \beta^* (v_i \alpha_{k,i})) n.$$

Therefore

$$(a\varepsilon)n = \sum_{i,k} (u_k \beta^*(v_i \alpha_{k,i}))n = (\sum_k u_k \beta^*(\sum_i v_i \alpha_{k,i}))n.$$

On the other hand

$$(\varepsilon a)n = (\sum_{k} u_k \beta^*(v_k a))n = (\sum_{k} u_k \beta^*(\sum_{i} v_i \alpha_{k,i}))n$$
.

Thus $a\varepsilon = \varepsilon a$ and consequently ε is an A-P-endomorphism. Therefore we have the direct decomposition of \mathfrak{n} : $\mathfrak{n} = \mathfrak{m} + (1-\varepsilon)\mathfrak{n}$, where 1 is the identity endomorphism of \mathfrak{n} . This shows that \mathfrak{m} is an M_u -module.

Next we show that m is also an M_0 -module. Let n be an A-P-module which contains an A-P-submodule n' such that $n/n' \cong m$ and n = n' + m' as a P-module. Since $m' \cong m$ as a P-module, we can see β as a P-endomorphism of m'. Let β^* be a P-endomorphism of n which coincides with β on m' and $\beta^*n' = 0$. From our assumption, $(\sum_i u_i \beta^* v_i) n \equiv n \pmod{n'}$ for $n \in n$. In the same way as above, we see that the P-endomorphism $\sum_i u_i \beta^* v_i = \varepsilon$ is an A-P-endomorphism and $\varepsilon^2 = \varepsilon$. Therefore $\varepsilon' = 1 - \varepsilon$ is also an A-P-endomorphism and $\varepsilon'^2 = \varepsilon'$. Moreover it is easy to see that $\varepsilon' n = n'$. Consequently we have that $n = n' + \varepsilon n$ and m is an M_0 -module.

- 2. Proof of necessity. Let M_A be a module satisfying the following conditions:
 - (i) $M_{\scriptscriptstyle A}$ is a module of linear forms $\sum_i x_{u_i} a_{u_i} (a_{u_i} \in \mathfrak{m})$.

(ii)
$$\sum_{i} x_{u_i} a_{u_i} + \sum_{i} x_{u_i} b_{u_i} = \sum_{i} x_{u_i} (a_{u_i} + b_{u_i}).$$

56 M. IKEDA

(iii)
$$(\sum_{i} x_{u_i} a_{u_i}) \rho = \sum_{i} x_{u_i} (a_{u_i} \rho)$$
 for $\rho \in P$.

(iv)
$$u_i(\sum_i x_{u_i} a_{u_i}) = \sum_i x_{u_i}(\sum_k a_{u_k} \alpha_{i,j})$$
, if $u_i u_j = \sum_k u_k \alpha_{i,j}$.

(v)
$$a(\sum_i x_{u_i} a_{u_i}) = \sum_i (u_i (\sum_i x_{u_i} a_{u_i})) \alpha_i$$
, if $a = \sum_i u_i \alpha_i$.

Then it is not hard to verify that M_A is an A-P-module.

Now, since $\{v_i\}$ is dual to $\{u_i\}$, $\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = P^{-1} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$, where $P = (\sum_k \alpha_{i,j}^k \lambda_k)_{i,j}$ is a non-singular parastrophic matrix belonging to $\{u_i\}$ and $\{\lambda_i\}$. We write $P = (p_{i,j})_{i,j}$ and $P^{-1} = (p_{i,i}^*)_{i,j}$. We assume that $\sum_i u_i \eta_i = 1$, the unit element of A. Then the mapping $\beta \colon \sum_i x_{u_i} a_{u_i} \to \sum_i x_{u_i} (\sum_j a_{u_j} \eta_j) \lambda_i$ satisfies our condition, that is, β is a P-endomorphism and $\sum_i u_i \beta v_i$ is the identity endomorphism of M_A . Since β is obviously a P-endomorphism, we are only to prove that $\sum_i u_i \beta v_i$ is the identity endomorphism.

$$\begin{split} (\sum_{\mathbf{j}} u_{\mathbf{j}} \beta v_{\mathbf{j}}) (\sum_{i} x_{\mathbf{u}_{i}} a_{\mathbf{u}_{i}}) &= \sum_{\mathbf{j}} u_{\mathbf{j}} \beta (v_{\mathbf{j}} \sum_{i} x_{\mathbf{u}_{i}} a_{\mathbf{u}_{i}}) = \sum_{\mathbf{j}} u_{\mathbf{j}} \beta ((\sum_{\mathbf{k}} u_{\mathbf{k}} p_{\mathbf{j},\mathbf{k}}^{*}) (\sum_{i} x_{\mathbf{u}_{i}} a_{\mathbf{u}_{i}})) \\ &= \sum_{\mathbf{j}} u_{\mathbf{j}} \beta (\sum_{\mathbf{k}} x_{\mathbf{u}_{i}} (\sum_{\mathbf{h},\mathbf{k}} a_{\mathbf{u}_{h}} \alpha_{\mathbf{h},\mathbf{k}}^{*} p_{\mathbf{j},\mathbf{k}}^{*})) = \sum_{\mathbf{j}} u_{\mathbf{j}} (\sum_{\mathbf{k}} x_{\mathbf{u}_{i}} \sum_{\mathbf{h},\mathbf{k},\mathbf{j}} a_{\mathbf{u}_{h}} p_{\mathbf{j},\mathbf{k}}^{*} \alpha_{\mathbf{h},\mathbf{k}}^{h} \eta_{\mathbf{j}}) \lambda_{i}). \end{split}$$

Since $\sum_{l} u_{l} \eta_{l} = 1$, $\sum_{l} \alpha_{l,k}^{h} \eta_{l} = \delta_{k,h}$ and consequently

$$\begin{split} (\sum_{\mathbf{j}} u_{\mathbf{j}} \beta v_{\mathbf{j}}) (\sum_{\mathbf{i}} x_{u_{\mathbf{i}}} a_{u_{\mathbf{i}}}) &= \sum_{\mathbf{j}} u_{\mathbf{j}} (\sum_{\mathbf{i}} x_{u_{\mathbf{i}}} (\sum_{\mathbf{k}} a_{u_{\mathbf{k}}} p_{\mathbf{j},\mathbf{k}}^{*} \lambda_{i})) = \sum_{\mathbf{i},\mathbf{j}} x_{u_{\mathbf{i}}} (\sum_{\mathbf{m}} (\sum_{\mathbf{k}} a_{u_{\mathbf{k}}} p_{\mathbf{j},\mathbf{k}}^{*} \lambda_{m}) \alpha_{i,\mathbf{j}}^{n})) \\ &= \sum_{\mathbf{i},\mathbf{j}} x_{u_{\mathbf{i}}} (\sum_{\mathbf{k}} a_{u_{\mathbf{k}}} p_{\mathbf{j},\mathbf{k}}^{*} (\sum_{\mathbf{m}} \lambda_{m} \alpha_{i,\mathbf{j}}^{m})) = \sum_{\mathbf{i},\mathbf{j}} x_{u_{\mathbf{i}}} (\sum_{\mathbf{k}} a_{u_{\mathbf{k}}} p_{\mathbf{j},\mathbf{k}}^{*} p_{i,\mathbf{j}}) \\ &= \sum_{\mathbf{i}} x_{u_{\mathbf{i}}} (\sum_{\mathbf{k}} a_{u_{\mathbf{k}}} (\sum_{\mathbf{j}} p_{i,\mathbf{j}} p_{\mathbf{j},\mathbf{k}}^{*})) = \sum_{\mathbf{i}} x_{u_{\mathbf{i}}} (\sum_{\mathbf{k}} a_{u_{\mathbf{k}}} \delta_{i,\mathbf{k}}) = \sum_{\mathbf{i}} x_{u_{\mathbf{i}}} a_{u_{\mathbf{i}}}. \end{split}$$

Thus β satisfies our condition.

Next we show that M_A contains A-P-modules M and N such that $M\cong \mathfrak{m}$ and $M_A/N\cong \mathfrak{m}$. The module $M=\{\sum_i x_{u_i}(u_ia)|a\in\mathfrak{m}\}$ is P-isomorphic to \mathfrak{m} by the correspondence $\mathfrak{m}\ni a\mapsto \sum_i x_{u_i}(u_ia)\in M$. For, if $\sum_i x_{u_i}(u_ia)=0$ then $u_ia=0$ for all i and consequently a=1 $a=(\sum_i u_i\eta_i)a=\sum_i (u_ia)\eta_i=0$. Therefore this correspondence is one-to-one and obviously P-isomorphism. Moreover this correspondence is A-isomorphism. For $u_j(\sum_i x_{u_i}(u_ia))=\sum_i x_{u_i}(\sum_k (u_ka)\alpha_{i,j}^k)=\sum_i x_{u_i}((\sum_k u_k\alpha_{i,j}^k)a)=\sum_i x_{u_i}(u_i(u_ja))$, that is, u_ja corresponds to $u_j(\sum_i x_{u_i}(u_ia))$. Therefore M is A-P-isomorphic to m. Since A has an R-basis containing 1, say $w_1=1$, w_2 , \cdots , w_n , we can construct the module M_A satisfying (i), \cdots , (v) with respect to $\{w_i\}$. Let Q be a non-singular matrix such that $(u_i)=(w_i)Q'$. Then it is not hard to see that M_A

and M_A are A-P-isomorphic by the correspondence $\varphi\colon M_A'\ni\sum_i x_{w_i}a_{w_i}$ $\to\sum_i x_{u_i}b_{u_i}$, where $(b_{u_1},\cdots,b_{u_n})=(a_{w_1},\cdots,a_{w_n})Q'$. By φ , M corresponds to $M'=\{\sum_i x_{w_i}(w_ia)|a\in\mathbb{M}\}$. It is obvious that $M_A'=M'+M''$ as a P-module, where $M''=\{\sum_i x_{w_i}a_{w_i}|a_{w_1}=0\}$. Therefore we have that $M_A=M+\varphi M''$ as a P-module and consequently $M_A=M+M'''$ as an A-P-module if \mathbb{M} is an M_u -module. Next we consider the mapping $\psi\colon M_A\ni\sum_i x_{u_i}a_{u_i}\to\sum_i u_i(\sum_j a_{u_j}p_{i,j}^*)\in\mathbb{M}$. Since $(p_{i,j}^*)=P^{-1}$ is non-singular, the linear equation $\sum_j x_jp_{i,j}^*=a_{\eta_i}(a\in\mathbb{M},i=1,\cdots,n)$ have a unique solution $\{a_j\}$ in \mathbb{M} . Then $\sum_i x_{u_i}a_i$ corresponds to $\sum_i u_i(a_{\eta_i})=(\sum_i u_i\eta_i)a=1$ a=a. This shows that ψ is an "onto" mapping. Furthermore it is easy to see that ψ is a P-homomorphism. We show that ψ is an A-P-homomorphism.

$$\begin{split} \psi(u_{\mathbf{J}}(\sum_{i} x_{u_{i}} a_{u_{i}})) &= \psi(\sum_{i} x_{u_{i}}(\sum_{k} a_{u_{k}} \alpha_{i,\mathbf{j}}^{\mathbf{k}})) = \sum_{i} u_{i}(\sum_{m} (\sum_{k} a_{u_{k}} \alpha_{m,\mathbf{j}}^{\mathbf{k}}) p_{i,m}^{\mathbf{k}}) \\ &= \sum_{i} u_{i}(\sum_{k} a_{u_{k}}(\sum_{m} \alpha_{m,\mathbf{j}}^{\mathbf{k}} p_{i,m}^{\mathbf{k}})). \end{split}$$

Since $P = (p_{i,j})$ interwines right and left regular representations, we have $\sum p_{i,m}^* \alpha_{m,j}^* = \sum \alpha_{j,m}^i p_{m,k}^*$ and consequently

$$\begin{split} \psi(u_{\mathbf{j}}(\sum_{i}x_{u_{i}}a_{u_{i}})) &= \sum_{i}u_{\mathbf{i}}(\sum_{k}a_{u_{k}}(\sum_{m}\alpha_{\mathbf{j},m}^{i}p_{m,k}^{\star})) = \sum_{k,m}(\sum_{i}u_{\mathbf{i}}\alpha_{\mathbf{j},m}^{i})a_{u_{k}}p_{m,k}^{\star}) \\ &= u_{\mathbf{j}}(\sum_{m}u_{\mathbf{m}}(\sum_{k}a_{u_{k}}p_{m,k}^{\star})) = u_{\mathbf{j}}\psi(\sum_{i}x_{u_{i}}a_{u_{i}}). \end{split}$$

This shows that ψ is an A-P-homomorphism and consequently M_A contains an A-P-submodule N auch that $M_A/N \cong \mathfrak{m}$. Moreover, as was shown above, the P-submodule $N' = \{\sum_i x_{u_i} a_{u_i} | \sum_i a_{u_i} p_{i,j}^* = a \eta_i$, $a \in \mathfrak{m}\}$ is mapped onto \mathfrak{m} by ψ . Therefore $M_A = N + N'$ as a P-module and consequently $M_A = N + N''$ as an A-P-module if \mathfrak{m} is an M_0 -module. Thus we have that M_A is directly decomposable into \mathfrak{m} and an A-P-module. Since M_A has a P-endomorphism β satisfying our condition, we can easily construct a P-endomorphism satisfying our condition for \mathfrak{m} .

Next we show that our result is essentially a generalization of Gaschütz's result. Let m be a G-module, where $G = \{g_i | i = 1, \cdots, n\}$ is a finite group and Ω an arbitrary domain of G-endomorphisms of m. Let P be the ring of endomorphisms generated by Ω and the identity endomorphism of m, and G the centre of G. Then the group ring G(G) of G over G is a Frobenius algebra with a G-basis containing the unit element of G. Furthermore $\{g_i^{-1}\}$ is a dual basis to $\{g_i\}$. Considering m as G(G)-F-module in the natural way, we have

Theorem. (Gaschütz). Let $G=\{g_i|i=1,\cdots,n\}$, m and Ω be a finite group, a G-module and an arbitrary domain of G-endomorphisms of m respectively. Then $G-\Omega$ -module m is an M_u - or M_0 -module if and only if m has an Ω -endomorphism β such that $\sum g_i\beta g_i^{-1}$ is the identity endomorphism of m.

(Received March 9, 1953)