On a Theorem of Kaplansky

By Masatoshi Ikeda

I. Kaplansky has proved an interesting theorem: any division ring is commutative if, for every element x, some power $x^{n(x)}$ is in the centre. ${ }^{1)}$ As special cases this theorem contains the well-known theorem of Wedderburn of finite division rings as well as its generalization due to Jacobson. ${ }^{2)}$ On the other hand I. N. Herstein has proved that any ring in which $x^{n}-x$ is in its centre for every element x and for a fixed integer $n>1$, is commutative. Moreover he has conjectured that the rings in which $x^{n(x)}-x$ is in the centre for every element x and for an integer $n(x)$ (depending on x and larger than 1) may be commutative.?

In this note we shall prove a generalization of Kaplansky's theorem and, as its applications, we shall generalize a restilt of $\mathrm{Hua}^{4)}$ and show that Herstein's conjecture is valid for semi-simple rings in the sense of Jacobson.

Theorem. Let D be a division ring with centre Z and let $c_{i}(i=0,1, \cdots, r)$ be $r+1$ fixed non- zero elements in the prime subfield of D. If, for every element x in D, there are integers $n_{0}(x)>n_{1}(x)>\cdots$ $>n_{r}(x)>0$ such that i) $\sum_{:=0}^{r} c_{i} x^{n_{i}(x)}$ is in Z and ii) $n_{1}(x)$ is smaller than an integer M (not depending on x), then D is commutative.

Here, if we put $r=0$, we have Kaplansky's theorem. Hence we prove only the case $r>0$.

To prove our theorem, it is sufficient according to Kaplansky to prove the following)

Lemma. Let K be a field, $L(\neq K)$ an extension of K and let $c_{i}(i=0,1, \cdots, r)$ be $r+1$ fixed non-zero elements in the prime subfield of L. If, for every element x in L, there are integers $n_{0}(x)>n_{1}(x)>\cdots$

1) Cf. Kaplansky [5].
2) Cf. Jacobson [4] Th. 8.
3) Cf. Herstein [1].
4) Cf. Hua [2] Th. 7.
5) Cf. Kaplansky [5].
$n_{r}(x)>0$ such that (i) $\sum_{i=0}^{r} c_{i} x^{n_{i}(x)}$ is in K and (ii) $n_{1}(x)$ is smaller than a fixed integer M, then L has prime characteristic and is either purely inseparable over K or algebraic over its prime subfield.

Proof For every element $x, m_{0}(x)>m_{1}(x)>\cdots>m_{r}(x)>0$ denote the system of $r+1$ integers satisfying (i) such that $m_{1}(x)$ is the minimum of $n_{1}(x)$. Hence $m_{1}(x)$ is smaller than M by (ii).
(a) First we prove that L has prime characteristic.

Assume that L has characteristic zero. Then the prime subfield P of L is the field of rational numbers. Therefore, we may assume that $c_{i}(i=0, \cdots, r)$ are $r+1$ fixed non-zero integers. Now let a be an element in L but not in K. Then a can be sent into an element $b(\neq a)$ by a suitable isomorphism θ which leaves K elementwise fixed. Here b need not be in L. By θ, a^{-1} and $i(a+1), i$ an arbitrary integer, are sent into b^{-1} and $i(b+1)$ respectively. Since $\sum_{k=0}^{r} c_{\kappa}\left(a^{-1}\right)^{m_{\kappa}\left(a^{-1}\right)}$ and $\sum_{\kappa=0}^{r} c_{\kappa}(i(a+1))^{m_{\kappa}(i(a+1))}$ are in K, we have readily

$$
\begin{equation*}
\sum_{\kappa=v}^{r} c_{\kappa}\left(a^{-1}\right)^{m_{\kappa}\left(a^{-1}\right)}-\sum_{k=v}^{r} c_{\kappa}\left(b^{-1}\right)^{m_{\kappa}\left(a^{-1}\right)}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\kappa=0}^{r} c_{\kappa}\left\{(i(b+1))^{m_{\kappa}(i(a+1))}-(i(a+1))^{m_{\kappa}(i(a+1))}\right\}=0 . \tag{2}
\end{equation*}
$$

Multiplying (1) by $(a b)^{m_{0}\left(a^{-1}\right)}$, we have

$$
\begin{align*}
&\left(\sum_{k=v}^{r} c_{\kappa} a^{m_{0}\left(a^{-1}\right)-m_{\kappa}\left(a^{-1}\right)}\right) b^{m_{0}\left(a^{-1}\right)} \tag{3}\\
& \quad-\sum_{k=v}^{r} c_{\kappa} a^{m_{0}\left(a^{-1}\right)} b^{m_{0}\left(a^{-1}\right)-m_{\kappa}\left(a^{-1}\right)}=0 .
\end{align*}
$$

Dividing (2) by $i^{m_{r}(i(a+1))}$, we have

$$
\begin{align*}
& \sum_{k=0}^{r} c_{\kappa} i^{\left.m_{\kappa}^{\prime} \cdot i(a+1)\right)-m_{r}(i(a+1))}\left\{(b+1)^{m_{\kappa}(i(a+1))}\right. \tag{4}\\
&\left.-(a+1)^{\left.m_{\kappa}^{\prime} \cdot i(a+1)\right)}\right\}=0
\end{align*}
$$

Since $b-a \neq 0$, dividing (4) by ($b+1)-(a+1)$, we have
(5) $\quad c_{0} i^{i m_{0}(i(a+1))-m_{r}(i(a+1))} b^{\left.m_{0}(i, a+1)\right)-1}+\cdots$ terms with powers of b

$$
\cdots+\sum_{k=v}^{r} c_{\kappa} i^{m_{\kappa}(i(a+1))-m_{r}(i(a+1))}\left(\sum_{\lambda=v}^{\left.m_{\kappa} i(a+1)\right)-1}(a+1)^{\lambda}\right)=0 .
$$

Eliminating b from (3) and (5), we have a relation:

where * is the last term of (5). Replacing a by X, we have an equation $F(X ; i)=0$ satisfied by a. It is obvious that the coefficients of $F(X ; i)$ are integers. The constant term $F(0 ; i)$ of $F(X ; i)$ is a product of c_{0} and $c(i)=\sum_{\mathrm{k}=0}^{r} c_{\kappa} m_{\kappa}(i(a+1)) i^{m_{\kappa}(i(a+1))-m_{r}(i(a+1))}$. Since $M>$ $m_{\kappa}(i(a+1))(\kappa \geqq 1)$ for every i, it is obvious that, if we take as i an integer j such that $|j|>r M \times \operatorname{Max}_{\kappa \geqq 1} c_{\kappa}$, then. $c(j) \neq 0$. Hence $F(X ; j)=0$ is a non-trivial equation and consequently a is algebraic over P. Let $g(X) \equiv \sum_{i=0}^{N} \alpha_{i} X^{i}$ be a primitive irreducible polynomial in $P[X]$ satisfied by a. Then the constant term α_{0} of $g(X)$ divides the constant term of $F(X ; i)$ for every i. Hence α_{0} divides the constant term of $F\left(X ; \alpha_{0}\right)$ which is a product of powers of c_{0} and $c\left(\alpha_{0}\right)=\sum_{\kappa=0}^{r} c_{\kappa} m_{\kappa}\left(\alpha_{0}(a+1)\right)$ $\alpha_{0} m_{\kappa}\left(\alpha_{0}(a+1)\right)-m_{r}\left(\alpha_{0}(a+1)\right)$. Therefore, α_{0} divides a product of suitable powers of c_{0} and $c_{r} m_{r}\left(\alpha_{0}(a+1)\right)$. Now let p be a prime which does not divide c_{0}, c_{r} and α_{N}, and is larger than M. Then $p a$ satisfies the equation $\alpha_{N} X^{N}+p \alpha_{N-1} X^{N-1}+\cdots+p^{N} \alpha_{0}=0$ which is primitive and irreducible. Therefore, considering $p a$ in place of a, we see that the constant term $p^{N} \alpha_{0}$ divides a product of suitable powers of c_{0} and $c_{r} m_{r}\left(p^{N} \alpha_{0}(p a+1)\right)$. But p does not divide c_{0} and c_{r}, so it divides $m_{r}\left(p^{N} \alpha_{0}(p a+1)\right)<M$. This is a contradiction. Hence L has prime characteristic.
(b) Secondly we prove the latter half of the lemma. Now let L have characteristic $p \neq 0$. If L is purely inseparable over K, then there is nothing to prove. Therefore, let a be a separable element in L but not in K. Since L is algebraic over K, if K is algebraic over its prime subfield P, then L is algebraic over P. So we assume that in K there is at least one transcendental element over P. Let z be such an element. Since a is separable over K, it is sent into an element $b(\neq a)$ by a suitable isomorphism θ whicn leaves K element-
wise fixed. By θ, a^{-1} and $z(a+1)$ are set into b^{-1} and $z(b+1)$ respectively. In the same way as in (a), we have

$$
\begin{equation*}
\left(\sum_{\kappa=0}^{r} c_{\kappa} a^{m_{0}\left(a^{-1}\right)-m_{\kappa}\left(a^{-1}\right)}\right) b^{m_{0}\left(a^{-1}\right)}-\sum_{\kappa=0}^{r} c_{\kappa} a^{m_{0}\left(a^{-1}\right)} b^{m_{0}\left(a^{-1}\right)-m_{\kappa}\left(a^{-1}\right)}=0 \tag{6}
\end{equation*}
$$

and
(7) $\quad c_{0} z^{m_{0}(z(a+1))-m_{r}(z(a+1))} b^{m_{0}(z(a+1))-1}+\cdots$ terms with powers of b

$$
\cdots+\sum_{k=0}^{r} c_{\kappa} z^{m_{k}(z(a+1))-m_{r}(z(a+1))}\left(\sum_{\lambda=0}^{m_{\kappa}(z(a+1))-1}(a+1)^{\lambda}\right)=0 .
$$

Eliminating b from (6) and (7), we have an equation $F(X)=0$ satisfied by a. It is easy to see that the coefficients of $F(X)$ are in $P[z]$ and the constant term of $F(X)$ is a product of suitable powers of c_{0} and $c(z)=\sum_{\kappa=0}^{r} c_{\kappa} m_{\kappa}(z(a+1)) z^{m_{\kappa}(z(a+1))-m_{r}(z(a+1))}$. Here we may assume that $m_{0}(x), m_{1}(x), \cdots, m_{r}(x)$ are not all congruent to zero mod. p for every separable element x over K. For, if $m_{i}(x)=p^{\mu} m_{i}{ }^{\prime}(x)$ for $i=0, \cdots, r$, then $\sum_{i=0}^{r} c_{i} x^{m_{i}(x)}=\left(\sum_{i=0}^{r} c_{i} x^{m_{i}^{\prime}(x)}\right)^{p^{\mu}}$ is in K. Since x is separable over $K, \sum_{i=0}^{r} c_{i} x^{m_{i}^{\prime}(x)}$ is separable over K, so $\sum_{i=0}^{r} c_{i} x^{m_{i}^{\prime}(x)}$ is in K. This contradicts the minimality of $m_{1}(x)$. Therefore $c(z)$ is not zero, since z is transcendental over P. Therefore $F(X)=0$ is a non-trivial equation and consequently a is algebraic over $P(z)$. Furthermore the domain of integrity $P[z]$ of $P(z)$ is a unique factorization domain. Let $g(X) \equiv \sum_{i=0}^{N} \alpha_{i} X^{i}$ be a primitive irreducible polynomial in $P[z][X]$ satisfied by a. Now assume that α_{0} is not in P and π is a prime divisor of α_{0}. Since $\pi\left(\pi^{3} a+1\right)$ is sent into $\pi\left(\pi^{M} b+1\right)$ by θ,

$$
\sum_{\kappa=0}^{r} c_{\kappa}\left\{\left(\pi\left(\pi^{M} b+1\right)\right)^{m_{\kappa}\left(\pi\left(\pi^{M} a+1\right)\right)}-\left(\pi\left(\pi^{m} a+1\right)\right)^{m_{\kappa}\left(\pi\left(\pi^{M} a+1\right)\right)}\right\}=0
$$

Dividing this by $\pi^{m_{r}\left(\pi\left(\pi^{M} a+1\right)\right.}\left\{\left(\pi^{M} b+1\right)-\left(\pi^{M} a+1\right)\right\}$, we have the relation : $c_{0} \pi^{m_{0}\left(\pi\left(\pi^{3} a+1\right)\right)-m_{r}\left(\pi\left(\pi^{M} a+1\right)\right)}\left(\pi^{M} b\right)^{m_{0}\left(\pi\left(\pi^{M} a+1\right)\right)-1}+\cdots$ terms with powers of b $\cdots+\{\cdots$ terms with powers of $a \cdots$

$$
\left.+\sum_{k=0}^{r} c_{\kappa} m_{\kappa}\left(\pi\left(\pi^{3} a+1\right)\right) \pi^{m_{\kappa}\left(\pi\left(\pi^{M} a+1\right)\right)-m_{r}\left(\pi\left(\pi^{M} a+1\right)\right)}\right\}=0
$$

In this relation, terms with powers of b or a are divisible by π^{k}. Hence if $m_{i}\left(\pi\left(\pi^{N} a+1\right)\right) \equiv 0(p)$ for $i>s$ and $m_{s}\left(\pi\left(\pi^{M} a+1\right)\right) \equiv 0(p)$ for an $s \neq 0$, we divide the above relation by $\pi^{\left.m_{s}\left(\pi^{m} a+1\right)\right)-m_{r}\left(\pi\left(\pi^{M} a+1\right)\right)}$. Now we eliminate b from the relation thus obtained and (6). Then we have an equation $G(X)=0$ satisfied by a where the constant term $G(0)$ of $G(X)$ is either a product of powers of c_{0} and $\sum_{k=0}^{s} c_{k} m_{k}\left(\pi\left(\pi^{H} a+1\right)\right)$ $\pi^{m_{\mathrm{K}}\left(\pi\left(\pi^{M} a+1\right)\right)-m_{s}\left(\pi\left(\pi^{M a} a+1\right)\right)}$ for some $s \neq 0$ or a product of powers of c_{0}
and $c_{0} m_{0}\left(\pi\left(\pi^{s} a+1\right)\right) \pi^{m_{0}\left(\pi\left(\pi^{J} a+1\right)\right)-m_{r}\left(\pi\left(\pi^{H} a+1\right)\right)}$. It is easy to see that the coefficients of $G(X)$ are in $P[z]$. Therefore, α_{0} is a divisor of the constant term $G(0)$ of $G(X)$ and consequently π is a divisor of $G(0)$. If $G(0)$ is a product of powers of c_{0} and $\sum_{k=0}^{s} c_{k} m_{k}\left(\pi\left(\pi^{M} a+1\right)\right)$ $\pi^{m_{k}\left(\pi\left(\pi^{M} a+1\right)\right)-m_{s}\left(\pi\left(\pi^{s} a+1\right)\right)}$ for an $s \neq 0$, then a product of powers of $c_{0} \neq 0$ and $c_{s} m_{s}\left(\pi\left(\pi^{\pi} a+1\right)\right) \neq 0$ is divisible by π. This is a contradiction. Therefore, $G(0)$ is a product of a power of π and an element in P. Thus we see that the constant term of a primitive irreducible polynomial in $P[z][X]$ satisfied by a separable element is either in P or a product of a power of an irreducible polynomial in $P[z]$ and an element in P.

Now if we take $a+H(z), H(z)$ an arbitrary polynomial in $P[z]$, in place of a, then the constant term of a primitive irreducible polynomial in $P[z][X]$ satisfied by $a+H(z)$ must be either in P or a product of a power of an irreducible polynomial in $P[z]$ and an element in P. Now we take z^{t} as $H(z)$, where i is an integer larger than the degrees of $\alpha_{\kappa}(\kappa=0, \cdots, N)$. Then $a+z^{i}$ satisfies $g\left(X-z^{t}\right)$ which is a primitive irreducible polynomial in $P[z][X]$. Obviously the constant term $g\left(-z^{i}\right)$ of $g\left(X-z^{i}\right)$ is not in P. Hence $g\left(-z^{i}\right)=\beta h(z)^{l}$, where $h(z)$ is an irreducible polynomial in $P[z]$ and β is an element in P. Take $z^{t}+h(z)^{t}$ as $H(z)$, where t is an integer larger than l. Then the constant term $g\left(-\left(z^{i}+h(z)^{t}\right)\right)$ of $g\left(X-\left(z^{i}+h(z)^{t}\right)\right)$ which is a primitive irreducible polynomial in $P[z][X]$ satisfied by $a+z^{i}+h(z)^{t}$, is not in P and is divisible by $h(z)$. Therefore, $g\left(-\left(z^{i}+h(z)^{t}\right)\right)$ must be a product of a power of $h(z)$ and an element in P. But this is impossible. Thus we have a contradiction. Therefore K is algebraic over P and L is algebraic over P.

Corollary. Let D be a division ring with centre Z and let $f(X)$ be a fixed polynomial of degree n whose coefficients are in the prime subfield of D. If $x^{n(x)}+f(x)$ is in Z for every x in D and for an integer $n(x)$ (depending on x and larger than n), then D is commutative.

Remark. It is probably true that we can drop the condition (ii) and take the assumption that $c_{i}(i=0, \cdots, r)$ are in Z, in place of the assumptian that c_{i} are in the prime subfield. But this is still an open question.

As the first application of our theorem, we shall generalize a result of Hua^{6}) as follows :

Theorem. Any non-commutative division ring D is generated by
6) Cf. Hua [2] Th. 7.
elements of the form $\sum_{i=0}^{r} c_{i} x^{n_{i}(x)}$, where $c_{i}(i=0,1, \cdots, r)$ are the fixed non-zero elements in the prime subfield of D and $n_{0}(x)>n_{1}(x)>$ $\cdots>n_{r}(x)>0$ are intergers such that $n_{i}(x)=n_{i}\left(a^{-1} x a\right)$ for all $a \neq 0$ in D and $n_{1}(x)$ is smaller than a fixed integer M.

Proof. Let D^{\prime} be the division ring generated by the elements $\sum_{i=0}^{r} c_{i} x^{n_{i}(x)}$, then D^{\prime} is invariant under inner automorphisms of D. If $D^{\prime} \neq D$, then D^{\prime} is contained in the centre of D, by a result of Hua. ${ }^{7)}$ Then D is commutative. This is a contradiction. Therefore $D^{\prime}=D$.

As the second application of our theorem, we show that Herstein's conjecture is valid for semi-simple rings in the sense of Jacobson:

Theorem. Let A be a senii-simple ring with centre Z and let c be an integer. If there is an integer $n(x)$ larger than 1 for every element x and $x^{n(x)}+c x \in Z$, then A is commutative.

Proof. Since A is semi-simple, A is a subdirect sum of primitive rings. ${ }^{\text { }}$) Since our assumption is valid for residue class rings of A, it is sufficient to prove our assertion in the case where A is a primitive ring. Any primitive ring is isomorphic to a dense ring R of linear transformations in a vector space V over a division ring $D .{ }^{9}$ Let V be more than one-dimensional and let α and β be two linear independent vectors. Since R is dense, there is an element a in R such that $\alpha a=\beta$ and $\beta a=0$. Then, for any integer $n>1, \alpha\left(\alpha^{n}+c \alpha\right)=c \beta$ and $\beta\left(a^{n}+c a\right)=0$. If $c \beta=0$, then $c \gamma=0$ for all vectors in V. Hence $c b=0$ for all b in R, so $c x=0$ for all x in A. But this case was proved by Kaplansky. ${ }^{10\rangle}$ If $c \beta \neq 0$, then $a^{n}+c a$ is not in the centre of R. For, $a^{n}+c a$ does not commute with the linear transformation in R such that $\alpha \rightarrow \beta$ and $\beta \rightarrow \alpha$. Hence V is one-dimensional, so R is a division ring. Then, by our theorem, R is commutative.

Putting $c=-1$, we see that Herstein's conjecture is valid for semi-simple rings.
(Received March, 15, 1952)

References

[1] I. N. Herstein: A generalization of a theorem of Jacobson, Amer. J. of Math. 73 (1951).
[2] L. K. Hua: Some properties of a sfield, Proc. Nat. Acad. Sci. U. S. A., 35 (1949).
[3] N. Jacobson: The radical and semi-simplicity for arbitrary rings, Amer. J. of Math. 67 (1945).
[4] -: Structure theory for algebraic algebras of bounded degree, Ann. of Math. 46 (1945).
[5] I. Kaplansky : A theorem on division rings, Canadian J. Math. 3 (1951).
7) Cf. Hua [2] Th. 1.
8) Cf. Jacobson [3].
9) Cf. Jacobson [3].
10) Cf. Kaplansky [5].

