Osaka Mathematical Journal Vol. 4, No. 2, December, 1952

On a Theorem of Kaplansky

By Masatoshi IKEDA

I. Kaplansky has proved an interesting theorem: any division ring is commutative if, for every element x, some power $x^{n(x)}$ is in the centre.¹⁾ As special cases this theorem contains the well-known theorem of Wedderburn of finite division rings as well as its generalization due to Jacobson.²⁾ On the other hand I. N. Herstein has proved that any ring in which $x^n - x$ is in its centre for every element x and for a fixed integer n > 1, is commutative. Moreover he has conjectured that the rings in which $x^{n(x)} - x$ is in the centre for every element x and for an integer n(x) (depending on x and larger than 1) may be commutative.³⁾

In this note we shall prove a generalization of Kaplansky's theorem and, as its applications, we shall generalize a result of Hua⁴ and show that Herstein's conjecture is valid for semi-simple rings in the sense of Jacobson.

Theorem. Let D be a division ring with centre Z and let $c_i(i = 0, 1, ..., r)$ be r+1 fixed non-zero elements in the prime subfield of D. If, for every element x in D, there are integers $n_0(x) > n_1(x) > ...$ $> n_r(x) > 0$ such that i) $\sum_{i=0}^{r} c_i x^{n_i(x)}$ is in Z and ii) $n_1(x)$ is smaller than an integer M (not depending on x), then D is commutative.

Here, if we put r = 0, we have Kaplansky's theorem. Hence we prove only the case r > 0.

To prove our theorem, it is sufficient according to Kaplansky to prove the following⁻)

Lemma. Let K be a field, $L(\pm K)$ an extension of K and let $c_i(i = 0, 1, \dots, r)$ be r+1 fixed non-zero elements in the prime subfield of L. If, for every element x in L, there are integers $n_0(x) > n_1(x) > \cdots$

¹⁾ Cf. Kaplansky [5].

²⁾ Cf. Jacobson [4] Th. 8.

³⁾ Cf. Herstein [1].

⁴⁾ Cf. Hua [2] Th. 7.

⁵⁾ Cf. Kaplansky [5].

M. IKEDA

 $n_r(x) > 0$ such that (i) $\sum_{i=0}^r c_i x^{n_i(x)}$ is in K and (ii) $n_1(x)$ is smaller than a fixed integer M, then L has prime characteristic and is either purely inseparable over K or algebraic over its prime subfield.

Proof For every element $x, m_0(x) > m_1(x) > \cdots > m_r(x) > 0$ denote the system of r+1 integers satisfying (i) such that $m_1(x)$ is the minimum of $n_1(x)$. Hence $m_1(x)$ is smaller than M by (ii).

(a) First we prove that L has prime characteristic.

Assume that L has characteristic zero. Then the prime subfield P of L is the field of rational numbers. Therefore, we may assume that $c_i(i = 0, \dots, r)$ are r+1 fixed non-zero integers. Now let a be an element in L but not in K. Then a can be sent into an element $b (\neq a)$ by a suitable isomorphism θ which leaves K elementwise fixed. Here b need not be in L. By θ , a^{-1} and i(a+1), i an arbitrary integer, are sent into b^{-1} and i(b+1) respectively. Since $\sum_{\kappa=0}^{r} c_{\kappa}(a^{-1})^{m_{\kappa}(a-1)}$ and $\sum_{\kappa=0}^{r} c_{\kappa}(i(a+1))^{m_{\kappa}(i(a+1))}$ are in K, we have readily

(1)
$$\sum_{\kappa=0}^{r} c_{\kappa}(a^{-1})^{m_{\kappa}(a^{-1})} - \sum_{\kappa=0}^{r} c_{\kappa}(b^{-1})^{m_{\kappa}(a^{-1})} = 0$$

and

(2)
$$\sum_{\kappa=0}^{r} c_{\kappa} \left\{ (i(b+1))^{m_{\kappa}(i(a+1))} - (i(a+1))^{m_{\kappa}(i(a+1))} \right\} = 0.$$

Multiplying (1) by $(ab)^{m_0(a^{-1})}$, we have

$$(3) \qquad (\sum_{\kappa=0}^{r} c_{\kappa} a^{m_{0}(a^{-1}) - m_{\kappa}(a^{-1})}) b^{m_{0}(a^{-1})} \\ -\sum_{\kappa=0}^{r} c_{\kappa} a^{m_{0}(a^{-1})} b^{m_{0}(a^{-1}) - m_{\kappa}(a^{-1})} = 0.$$

Dividing (2) by $i^{m_r(i(a+1))}$, we have

$$(4) \qquad \sum_{\kappa=0}^{r} c_{\kappa} i^{m_{\kappa}(i(a+1)) - m_{r}(i(a+1))} \Big\{ (b+1)^{m_{\kappa}(i(a+1))} - (a+1)^{m_{\kappa}(i(a+1))} \Big\} = 0.$$

Since $b-a \neq 0$, dividing (4) by (b+1)-(a+1), we have

(5)
$$c_0 i^{m_0(i(a+1))-m_r(i(a+1))} b^{m_0(i(a+1))-1} + \cdots$$
 terms with powers of b
 $\cdots + \sum_{\kappa=\nu}^r c_{\kappa} i^{m_{\kappa}(i(a+1))-m_r(i(a+1))} (\sum_{\lambda=\nu}^{m_{\kappa}(i(a+1))-1} (a+1)^{\lambda}) = 0.$

236

Eliminating b from (3) and (5), we have a relation:

0

where * is the last term of (5). Replacing a by X, we have an equation F(X; i) = 0 satisfied by a. It is obvious that the coefficients of F(X; i)are integers. The constant term F(o; i) of F(X; i) is a product of c_0 and $c(i) = \sum_{\kappa=0}^{r} c_{\kappa} m_{\kappa}(i(a+1)) i^{m_{\kappa}(i(a+1)) - m_{r}(i(a+1))}$. Since M > 1 $m_{\kappa}(i(a+1))$ ($\kappa \ge 1$) for every *i*, it is obvious that, if we take as *i* and integer j such that $|j| > rM \times \text{Max } c_{\kappa}$, then $c(j) \neq 0$. Hence F(X; j) = 0is a non-trivial equation and consequently a is algebraic over P. Let $g(X) \equiv \sum_{i=0}^{N} \alpha_i X^i$ be a primitive irreducible polynomial in P[X] satisfied by a. Then the constant term α_0 of g(X) divides the constant term of F(X; i) for every *i*. Hence α_0 divides the constant term of $F(X; \alpha_0)$ which is a product of powers of c_0 and $c(\alpha_0) = \sum_{\kappa=0}^r c_{\kappa} m_{\kappa}(\alpha_0(a+1))$ $\alpha_0^{m_{\kappa}(\alpha_0(a+1))-m_r(\alpha_0(a+1))}$. Therefore, α_0 divides a product of suitable powers of c_0 and $c_r m_r(\alpha_0(a+1))$. Now let p be a prime which does not divide c_0 , c_r and α_N , and is larger than M. Then pa satisfies the equation $\alpha_N X^N + p \alpha_{N-1} X^{N-1} + \cdots + p^N \alpha_0 = 0$ which is primitive and irreducible. Therefore, considering pa in place of a, we see that the constant term $p^{N}\alpha_{0}$ divides a product of suitable powers of c_{0} and $c_r m_r (p^N \alpha_0 (pa+1))$. But p does not divide c_0 and c_r , so it divides $m_r(p^{N}\alpha_0(pa+1)) < M$. This is a contradiction. Hence L has prime characteristic.

(b) Secondly we prove the latter half of the lemma. Now let L have characteristic $p \neq 0$. If L is purely inseparable over K, then there is nothing to prove. Therefore, let a be a separable element in L but not in K. Since L is algebraic over K, if K is algebraic over its prime subfield P, then L is algebraic over P. So we assume that in K there is at least one transcendental element over P. Let z be such an element. Since a is separable over K, it is sent into an element $b (\neq a)$ by a suitable isomorphism θ which leaves K element-

0

M. IKEDA

wise fixed. By θ , a^{-1} and z(a+1) are set into b^{-1} and z(b+1) respectively. In the same way as in (a), we have

(6)
$$\left(\sum_{\kappa=0}^{r} c_{\kappa} a^{m_{0}(a^{-1})-m_{\kappa}(a^{-1})}\right) b^{m_{0}(a^{-1})} - \sum_{\kappa=0}^{r} c_{\kappa} a^{m_{0}(a^{-1})} b^{m_{0}(a^{-1})-m_{\kappa}(a^{-1})} = 0$$

and

(7)
$$c_0 z^{m_0(z(a+1))-m_r(z(a+1))} b^{m_0(z(a+1))-1} + \cdots$$
 terms with powers of b
 $\cdots + \sum_{\kappa=0}^r c_{\kappa} z^{m_{\kappa}(z(a+1))-m_r(z(a+1))} (\sum_{\lambda=0}^{m_{\kappa}(z(a+1))-1} (a+1)^{\lambda}) = 0.$

Eliminating b from (6) and (7), we have an equation F(X) = 0satisfied by a. It is easy to see that the coefficients of F(X) are in P[z] and the constant term of F(X) is a product of suitable powers of c_0 and $c(z) = \sum_{\kappa=0}^{r} c_{\kappa} m_{\kappa}(z(a+1)) z^{m_{\kappa}(z(a+1)) - m_{r}(z(a+1))}$. Here we may assume that $m_0(x)$, $m_1(x)$, ..., $m_r(x)$ are not all congruent to zero mod. p for every separable element x over K. For, if $m_i(x) = p^{\mu}m_i'(x)$ for $i = 0, \dots, r$, then $\sum_{i=0}^{r} c_i x^{m_i(x)} = (\sum_{i=0}^{r} c_i x^{m_i'(x)})^{p^{\mu}}$ is in K. Since x is separable over K, $\sum_{i=0}^{r} c_i x^{m_i'(x)}$ is separable over K, so $\sum_{i=0}^{r} c_i x^{m_i'(x)}$ is in K. This contradicts the minimality of $m_1(x)$. Therefore c(z) is not zero, since z is transcendental over P. Therefore F(X) = 0 is a non-trivial equation and consequently a is algebraic over P(z). Furthermore the domain of integrity P[z] of P(z) is a unique factorization domain. Let $g(X) \equiv \sum_{i=0}^{N} \alpha_i X^i$ be a primitive irreducible polynomial in P[z][X] satisfied by a. Now assume that α_0 is not in P and π is a prime divisor of α_0 . Since $\pi(\pi^{M}a+1)$ is sent into $\pi(\pi^{M}b+1)$ by θ ,

$$\sum_{\kappa=0}^{r} c_{\kappa} \left\{ (\pi (\pi^{M}b+1))^{m_{\kappa}(\pi(\pi^{M}a+1))} - (\pi (\pi^{M}a+1))^{m_{\kappa}(\pi(\pi^{M}a+1))} \right\} = 0$$

Dividing this by $\pi^{m_r(\pi(\pi^M a+1))} \{ (\pi^M b+1) - (\pi^M a+1) \}$, we have the relation: $c_0 \pi^{m_0(\pi(\pi^M a+1)) - m_r(\pi(\pi^M a+1))} (\pi^M b)^{m_0(\pi(\pi^M a+1)) - 1} + \cdots$ terms with powers of b $\cdots + \{ \cdots$ terms with powers of $a \cdots$ $+ \sum_{\kappa=0}^r c_{\kappa} m_{\kappa}(\pi(\pi^M a+1)) \pi^{m_{\kappa}(\pi(\pi^M a+1)) - m_r(\pi(\pi^M a+1))} \} = 0.$

In this relation, terms with powers of b or a are divisible by π^{M} . Hence if $m_i(\pi(\pi^M a + 1)) \equiv 0(p)$ for i > s and $m_s(\pi(\pi^M a + 1)) \equiv 0(p)$ for an $s \neq 0$, we divide the above relation by $\pi^{m_s(\pi(\pi^M a + 1)) - m_r(\pi(\pi^M a + 1))}$. Now we eliminate b from the relation thus obtained and (6). Then we have an equation G(X) = 0 satisfied by a where the constant term G(0)of G(X) is either a product of powers of c_0 and $\sum_{\kappa=0}^{s} c_{\kappa} m_{\kappa}(\pi(\pi^M a + 1))$ $\pi^{m_{\kappa}(\pi(\pi^M a + 1)) - m_s(\pi(\pi^M a + 1))}$ for some $s \neq 0$ or a product of powers of c_0

238

and $c_0 m_0(\pi (\pi^M a + 1)) \pi^{m_0(\pi(\pi^M a + 1)) - m_r(\pi(\pi^M a + 1))}$. It is easy to see that the coefficients of G(X) are in P[z]. Therefore, α_0 is a divisor of the constant term G(0) of G(X) and consequently π is a divisor of G(0). If G(0) is a product of powers of c_0 and $\sum_{\kappa=0}^{s} c_{\kappa} m_{\kappa}(\pi (\pi^M a + 1))$ $\pi^{m_{\kappa}(\pi(\pi^M a + 1)) - m_s(\pi(\pi^M a + 1))}$ for an $s \neq 0$, then a product of powers of $c_0 \neq 0$ and $c_s m_s(\pi (\pi^M a + 1)) \neq 0$ is divisible by π . This is a contradiction. Therefore, G(0) is a product of a power of π and an element in P. Thus we see that the constant term of a primitive irreducible polynomial in P[z][X] satisfied by a separable element is either in P or a product of a power of an irreducible polynomial in P[z] and an element in P.

Now if we take a + H(z). H(z) an arbitrary polynomial in P[z], in place of a, then the constant term of a primitive irreducible polynomial in P[z][X] satisfied by a+H(z) must be either in P or a product of a power of an irreducible polynomial in P[z] and an element in P. Now we take z^i as H(z), where i is an integer larger than the degrees of $\alpha_{\kappa}(\kappa = 0, \dots, N)$. Then $a + z^{i}$ satisfies $g(X - z^{i})$ which is a primitive irreducible polynomial in P[z][X]. Obviously the constant term $g(-z^i)$ of $g(X-z^i)$ is not in P. Hence $g(-z^i) = \beta h(z)^i$, where h(z) is an irreducible polynomial in P[z] and β is an element in P. Take $z^{t} + h(z)^{t}$ as H(z), where t is an integer larger than l. Then the constant term $g(-(z^i+h(z)^i))$ of $g(X-(z^i+h(z)^i))$ which is a primitive irreducible polynomial in P[z][X] satisfied by $a + z^i + h(z)^i$, is not in P and is divisible by h(z). Therefore, $g(-(z^i+h(z)^i))$ must be a product of a power of h(z) and an element in P. But this is impossible. Thus we have a contradiction. Therefore K is algebraic over P and L is algebraic over P.

Corollary. Let D be a division ring with centre Z and let f(X) be a fixed polynomial of degree n whose coefficients are in the prime subfield of D. If $x^{n(x)} + f(x)$ is in Z for every x in D and for an integer n(x)(depending on x and larger than n), then D is commutative.

Remark. It is probably true that we can drop the condition (ii) and take the assumption that $c_i(i = 0, \dots, r)$ are in Z, in place of the assumptian that c_i are in the prime subfield. But this is still an open question.

As the first application of our theorem, we shall generalize a result of Hua⁶⁰ as follows:

Theorem. Any non-commutative division ring D is generated by

⁶⁾ Cf. Hua [2] Th. 7.

M. IKEDA

elements of the form $\sum_{i=0}^{r} c_i x^{n_i(x)}$, where $c_i(i = 0, 1, \dots, r)$ are the fixed non-zero elements in the prime subfield of D and $n_0(x) > n_1(x) >$ $\dots > n_r(x) > 0$ are intergers such that $n_i(x) = n_i(a^{-1}xa)$ for all $a \neq 0$ in D and $n_1(x)$ is smaller than a fixed integer M.

Proof. Let D' be the division ring generated by the elements $\sum_{i=0}^{r} c_i x^{n_i(x)}$, then D' is invariant under inner automorphisms of D. If $D' \neq D$, then D' is contained in the centre of D, by a result of Hua.⁷⁾ Then D is commutative. This is a contradiction. Therefore D' = D.

As the second application of our theorem, we show that Herstein's conjecture is valid for semi-simple rings in the sense of Jacobson:

Theorem. Let A be a semi-simple ring with centre Z and let c be an integer. If there is an integer n(x) larger than 1 for every element x and $x^{n(x)} + cx \in Z$, then A is commutative.

Proof. Since A is semi-simple, A is a subdirect sum of primitive rings.⁽⁾ Since our assumption is valid for residue class rings of A, it is sufficient to prove our assertion in the case where A is a primitive ring. Any primitive ring is isomorphic to a dense ring R of linear transformations in a vector space V over a division ring D.⁹⁾ Let V be more than one-dimensional and let α and β be two linear independent vectors. Since R is dense, there is an element a in R such that $\alpha a = \beta$ and $\beta a = 0$. Then, for any integer n > 1, $\alpha (a^n + ca) = c\beta$ and $\beta (a^n + ca) = 0$. If $c\beta = 0$, then $c\gamma = 0$ for all vectors in V. Hence cb = 0 for all b in R, so cx = 0 for all x in A. But this case was proved by Kaplansky.¹⁰⁾ If $c\beta = 0$, then $a^n + ca$ is not in the centre of R. For, $a^n + ca$ does not commute with the linear transformation in R such that $\alpha \to \beta$ and $\beta \to \alpha$. Hence V is one-dimensional, so R is a division ring. Then, by our theorem, R is commutative.

Putting c = -1, we see that Herstein's conjecture is valid for semi-simple rings.

(Received March, 15, 1952)

References

- I. N. Herstein: A generalization of a theorem of Jacobson, Amer. J. of Math. 73 (1951).
- [2] L. K. Hua: Some properties of a sfield, Proc. Nat. Acad. Sci. U. S. A., 35 (1949).
- [3] N. Jacobson: The radical and semi-simplicity for arbitrary rings, Amer. J. of Math. 67 (1945).
- [4] —: Structure theory for algebraic algebras of bounded degree, Ann. of Math. 46 (1945).
- [5] I. Kaplansky: A theorem on division rings, Canadian J. Math. 3 (1951).

10) Cf. Kaplansky [5].

⁷⁾ Cf. Hua [2] Th. 1.

⁸⁾ Cf. Jacobson [3].

⁹⁾ Cf. Jacobson [3].