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Remarks on the Structure of Maximally Almost Periodic
Groups
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Introduction

The purpose of this note is to give two remarks on the structure
of maximally almost periodic (abbreviated to in." a. p.) locally compact
groups.

In Part I, we shall determine the structure of m. a. p. locally
compact groups, which are not necessarily connected but satisfy
the following condition: the factor group of the group by the
connected component of the identity is compact. We shall call a
group which satis'fies this condition to be of type (A). The results are
similar to those of H. Freudenthal [1],1} who treated the same sub-
ject for connected groups and whose main theorem2) states that a
connected m. a. p. locally compact group decomposes into the direct
product of a vector group and a compact group.8) It will be needed to
obtain our results this FreudenthaΓs theorem and a theorem which
was proved as a lemma by K. Iwasawa [2]. The proof of our
Theorem 1 will be reduced namely in the first half to these two
theorems, and in the second half to a simple lemma (Lemma 4). These
both reductions of the subject with some results was found previously
by M. Kuranishi [3] in the case when the groups under consideration are
Lie groups. Our results are thus only the generalizations of these Kura-
nishi "s results to the case of locally compact groups, but much or less
simpler methods will be used in proving the applicability of the above
reductions.

Part II will be devoted to construct concretely a m. a. p. group with
the following significance. For convenience, we call that a group has
a two-sidedly invariant uniform structtire, if the group satisfies the

1) Numbers in bracket refer to the Bibliography at the end of this note.
2) See CU p. 68, Hauptsatz 1.
3) In CU, the groups in question are always supposed to be separable. But

this assumption can be excluded. Cf. A. Weil: L'integration dans les groupes
topologiques et ses applications.
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following condition: there exists in the group a complete system of
neighbourhoods of the identity which are invariant 'under all inner
automorphisms in the group. For a group satisfying the first axiom
of countability, this condition is equivalent to that the group can be
topologized by a both right- and left-invariant metric. It was proved
also by H. Freudenthal [1] that a connected locally compact group is
m. a. p. if and only if the group has a two-sidedly invariant uniform
structure.3) 4) When we use our results in Part I, it may be easily
seen that this theorem is still valid if the group is not connected but
of type (A). In more general cases, as far as the author knows, it
has been believed to be plausible that m. a. p. group has in any case a
two-sidedly invariant uniform structure even though the converse is
obviously false.5' The group constructed in Part II is a counter-ex-
ample to this fact.

Parts I and II are independent of one another except for the use
of Lemma 4, which will play an essential role in both Parts.

We note that the author is suggested to use the above reductions
of the proof of Theorem 1 from the paper [3] which was fortunately
communicated to him before its publication. For this and for his kind
encouragements to write this note, the present author is grateful to
Mr. M. Kuranishi.

Part I. On the structure of m. a. p. locally compact groups of type (A)

1. Throughout this part we shall use the following

NOTATIONS. The letters V, T and K (with a prime or a suffix if ne-
cessary) are reserved for a (finite-dimensional) vector group, a toroidal
group and a compact group respectively. Furthermore β denotes always
the identity of the group in question. When we denote by G a group,
we indicate by G° the connected component of e in G.

As we have defined in Introduction, a group G is called of type
(A) if the factor group G/G° is compact.

Our main object of this part is to prove the following
Theorem 1. A locally compact group G of type (A) is m. a. p. if and

only if G contains a maximal compact subgroup K and a normal sub-

4) See GO p. 74. Hauptsatz VIII.
5) This was stated by H. Freudenthal, OJ p. 75 § 30.
6) X denotes the direct product of groups.
7) This follows from the facts that C/T^V and that the only one compact

subgroup of V is the trivial subgroup. The same reasoning will be repeatedly
used hereafter.
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group V isomorphic with a vector group so that G=KV, K f\ V=e and
that every element of V commutes with any element of the connected
component K° of e in K.

2. Before we prove Theorem 1, we shall establish some lemmas.

Lemma 1. Let C be a connected abelian Lie group, and let Φ be a
finite group of automorphisms in C. Then C decomposes into the form
VxT,6:> where V and T are invariant under (all automorphisms of) Φ.

PROOF. Since C is a connected abelian Lie group, C has the form
V'xT, in which T is characteristic since it is the uniquely determined
maximal compact subgroup of <7,7) while V may not be invariant
under Φ. Consider the character group C* of C, and let V* and Ά'
be the annihilators of T and Vr respectively. Then, as may be readily
seen, (7* decomposes into the form V*xA', where V* is isomorphic with
V, and Af is a free abelian group of rank equal to the dimension of T.

The dual automorphisms of these belonging to Φ obviously form
a finite group, which we shall denote by Ψ. It follows immediately
from the definitions of T7* and of dual automorphisms that V* is in-
variant under Ψ.

Now, since C*=V*xA', we may suppose that (7* is a subgroup of
a vector group W whose dimension is equal to the sum of the dimen-
sion of V* and the rank of A', and we can introduce coordinate systems
both in C* and in W by a system of linearly independent elements
belonging either to V* or to A'. Then with respect to the coordi-
nate system in C* every automorphism in C* is represented by a
non-singular matrix and so it can be extended to the automorphism
defined by the same matrix with respect'to the coordinate system in
W. For this reason, we can regard Ψ as a finite group of automor-
phisms acting on W, which leaves invariant the subgroups C* and F*.

Since a finite linear group is completely reducible, we can take
such a subgroup Vl in W that Vτ p\ y*=β, and V1V*=W, and that Vl

is invariant under Ψ. Set A=Vl f\ C*. It is obvious that Vι is in-
variant under Ψ and that C*=V* x A. Denoting by V the annihilator
of A in (7, it is also easy to see that V is invariant under Φ, that V
is isomorphic with V and that C is written in the form C—VxT,
which gives the required decomposition of C.

Lemma 2. Let G be a locally compact group of type (A), and as-
sume that G° decomposes into the form: GQ—KxV. Then, for an
arbitrary neighbourhood U of e in G, there exists in K f\U such a nor-
mal subgroup N of G that K/N is a Lie group.

PROOF. We first remark that for a compact group to be a Lie
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group it is necessary and sufficient that there exists a neighbourhood
of the identity such that no normal subgroups exist in it.

Since K is compact, we can find in K f\ U a subgroup M so that
it is normal in K and that K/M is a Lie .group. We shall prove that
the number of conjugate subgroups of M in G (which are also con-
tained and normal in K) is finite, and then that their intersection has
the required properties.

From the above remark applied to K/M follows the existence of
such a neighbourhood Uτ of e in G that MUl contains no conjugate
subgroups of M different from M. Indeed, this is satisfied by the
neighbourhood Ul for which the image of K f\ U1 under the natural
homomorphism on K to K/M contains no normal subgroups.

Now let us denote by H the normalizer of M in G. H is an open
subgroup of G; in fact, by the compactness of M we can easily find
a neighbourhood U2 of e so that U2MU~2

l <^MU19 and then we see
from the choice of Ul that U2 C

 H> which shows the openness of H.
Obviously G°(^H. From these facts and the compactness of G/G°, it
follows easily that the index of H is finite, which means that the num-
ber of conjugate subgroups of M is finite. Let these subroups be M=
M19 M2,..., Mn. We notice that all the groups K/Mt (ί=l, 2,... ,n) are
isomorphic with the Lie group K/M.

We proceed to prove that the intersection N of all Mt (i—1, 2,....,
n) has the required properties. It is .obvious that this subgroup N is
a normal subgroup contained in K f\U. Setting Nj=M1f\M2f\...
f\Mj for /=!, 2,... ,n, we shall prove by induction for K /Nj to be
Lie groups. The case /=!• is trivial by assumption. Suppose that
K/Nj is a Lie group. Then, since Nj/NJ+l is isomorphic with the sub-
group (Mj+^Nύ/Mj+T, of the Lie group K/Mj+l, that K/Nj+l is a Lie
group follows from the following principle: if a compact group K
contains a normal subgroup N such that both N and K/N are Lie
groups, then K itself is a Lie group.8) This may be easily proved by
means of the remark mentioned at the top of this proof. Thus, for
j=n, the proof of Lemma 2 is completed.

Lemma 3. Suppose the same assumptions as in Lemma 2 be valid
for G and G°. Then, we can find in G° a normal subgroup V of G
isomorphic with V such that G°=KxVf.

REMARK. In the assumptions of Lemma 2, we supposed that G°
of a locally compact group G of type (A) has the form KxV, where
K is a characteristic subgroup of G since it is the uniquely determined

8) This is a particular case of Theorem 7 in C23, p. 537,
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maximal connected compact subgroup of G, but V is not necessarily a
normal subgroup of G. This Lemma 3 states that we may assume
here without loss of generality that V is a normal subgroup of G as
well as K.

PROOF. We first note a simple proposition:
(1) // a locally compact group G has a compact normal subgroup K

such that G/K is connected, then G is of type (A).
This is observed from the fact that the factor group G/(G°1Γ) be-

comes at the same time connected and 0-dimensional.
We now consider a family ξ> of subgroups //satisfying the follow-

ing conditions:
a) H is an abelian normal subgroup of G contained in the center

of G°,
6) G°=KH, and
c) H is of type (A).

For example, the center of G° (which is a normal subgroup of G con-
taining F) belongs to φ, and hence ξ> is not empty. Now, after in-
troducing into ξ> an order by the relation of set-inclusion, we see that
the assumption of the Zorn's lemma on the existence of the minimal
elements is satisfied; let (HΛ\ be a totally ordered subset of ξ>, then
H=f\Ha gives the infimum of this subset belonging to ξ>. In fact,

for H, the condition a) is obvious, δ) follows from the compactness of
K and c) can be verified by means of property b) and of Proposition
(1). Thus by the Zorn's lemma the existence of at least one minimal
element, say V, of ξ> is established.

Since V belongs to ξ>, Gΰ=KVf and Vr is.a normal subgroup of G.
Therefore, the proof of this lemma will be completed for this sub-
group Vf, if we show that K f\ Vf=e, which follows immediately by
the minimality of Vf from the following proposition.

(2) Let H be a subgroup belonging to ξ> aφd assume that K f\ H
has more elements than e. Then there exists a proper subgroup Hf of
H which also belongs to ξ>.

Proof of (2). Set P=Kf\H. By assumption, P^e and hence
there exists a neighbourhood U of e which does not contain P, that
is, P f\U^P. Applying Lemma 2 for this neighbourhood U, we can
find a normal subgroup N contained in K f\ U such that G°/N is a

Lie group. Set Q=Pf\N. Clearly Q=H f\N and so Q is a normal
subgroup of G. Since HN is a closed subgroup according to the com-
pactness of N,H/Q is a group isomorphic with the subgroup (JffΛO/W
of the Lie group G°/N. While H is abelian and of type (A), so is
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H/Q, too. The H/Q is an abelian Lie group of type (A), and there-
fore decomposes into the form CxE, where C is the connected com-
ponent of the identity and E is a finite group.

Now, we set G=G/Q,G0=G0/Q and H=H/Q. Since C is the con-

nected component of e in the normal subgroup H of G, C is also a
normal subgroup of G. Therefore each inner automorphism ip G
defined by an element x induces in C an automorphism a*\ a*(z)=
x~lzx, where zeC. The mapping: x->a* is obviously a continuous

homomorphism from G into the group A (C) of all automorphisms in

C, where A(C) is topologized as usual. Since H is central in G°,JΪ
is a central subgroup of G° and hence the kernel of this homomor-
phism contains G°. Then, G/G0 being compact and 0-dimensicnal as
G/G°, the image of G in A (G) under this homomorphism is also com-
pact and 0-dimensional. On the other hand, A (<7) is a Lie group
because C is a connected Lie group. Thus the above image must be

a finite group. In other words, the inner automorphisms in G induces
in C a finite group of automorphisms. By Lemma 1, we have then a
decomposition of C: C=V1 x T, where Vτ and T are invariant under
all inner automorphisms in G, that is, they are normal subgroup in G.

We set Hf and Kf for the complete inverse image of Vτ and TxE

respectively under the natural homomorphism on G to G, and we shall
show that H' is one of the required proper subgroups of H which
belong to ξ>. Since H'/Q=Vlf Q is the uniquely determined maximal
compact subgroup of H1', and therefore Kf\Hr C^Qc^ U. Whence
K f\ H'^P=K f\ H, which shows that H' is a proper subgroup of H.
Now we verify the conditions α), 6) and c) for Hr to belong to ξ>. a)
is obvious except for the normality of Hr in G, which follows from
that of FX in G. 6) follows by (1) since Hf/Q=Vlt Finally, c) is veri-
fied as follows: since both K'/Q=TxE and Q are compact, Kf is
compact, and therefore Kr C K. Then the relation H=KΉ' implies
that KH'=KH=GQ, q. e. d.

Lemma 4. Let G be a group and N a normal subgroup of G with
finite index. Then, if N is m.a.p., G is also m.a.p.

t In other words, every finite extension of a m.a.p. group is also
m. a. p.

PROOF. To prove this lemma, it is sufficient to show that, for
every continuous almost periodic function /(#) defined en N, there is
a continuous almost periodic function F(x) defined en G which coin-

cides with /(#) for xeN. This function F{x) is given by the following
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formula :
if *€tf,

0, if x£N.

The continuity of this function is obvious since G/N is discrete. We
shall prove that F(x) is an almost periodic function, i. e., every se-
quence of functions of the form

Fn(x)=F(anx), where an e G,

contains a subsequence which uniformly converges on G. Since the
number of cosets modulo N is finite, we first extract from the original
sequence an infinite number of functions for which an's belong to one
and the same coset aQN modulo N, where a0 is a representative of
this coset. According to the definition of F(x), all these functions
vanish on any coset modulo N except on the ccset of the form αj W,
and on the latter one they are expressed in the form f(ana>όlx) where
x € N. Hence from the almost periodicity of f(x) on N, it follows
immediately that we can select again from these functions an infinite
number of functions which form the required uniformly convergent
subsequence, q. e. d.

The following lemma was obtained recently by K. Iwasawa [2] 9).
Lemma 5. Let G be a locally compact group and V be a normal

subgroup of G. If V is isomorphic with a vector group, and if G/V is
compact, then G contains a compact subgroup K such that G=KV,
K f\V~e. Moreover, K is the maximal compact subgroup unique up to
its conjugate subgroups.

3. PROOF OF THEOREM 1. Suppose G be a m. a. p. locally compact
group of type (A). Then G° is obviously m. a. p. and by the Freuden-
thaΓs theorem on the structure of connected locally compact m. a. p.
groups (cited in Introduction), G° has the form -KVxV, where we may
assume by Lemma 3 that both Kλ and V are normal subgroups of G.
Then, since G is of type (A), G/V is compact. Thus, by Lemma 5,
we have the decomposition of G : G=KV, K p\ V=e. The maximality
of K as a compact subgroup is involved in Lemma 5. Since it is
easily seen that the connected component of K° of β in K coincides
with Klf K° and V are elementwise commutative.

Conversely, let G be a group with the above decomposition and
assume that every element of V commutes with any element of K°.
To each element k of K there corresponds the automorphism σk in V

9) See C2] p. 524, Lemma 3.8.



126 Remarks on the Structure of Maximally Almost Periodic Groups

defined by σk(v*)=k-lvk for #e V. The mapping : k-+σk obviously gives
a continuous homomorphism on K into the group of all automorphisms
in 7, which is the full linear group of some degree. By the second
assumption, this homomorphism induces an isomorphism between a
factor group of K/KQ and a subgroup of the full linear group. The
former being a compact 0-dimensional group and the latter being a
Lie group, these groups must be finite. Hence the kernel K' of
the homomorphism: k-+σk is a subgroup of finite index in K. It
follows then that the centralizer of G (which is a normal subgroup of
G) decomposes into the direct product of Kr and V and that it has a
finite index in G. Thus by Lemma 4 we see immediately that G
is a m. a. p. group. This completes the proof of Theorem 1.

In the first half of this proof, we have only used that G° is m. a. p.
Therefore by the second half of it, we have proved incidentally the
following

Theorem 2. Let G be a locally compact group of type (A), G is
m. a. p. when (and obviously only when) G° is m. a. p.

4. As a consequence of Theorems 1 and 2, we note the following.

Proposition. Let G be a locally compact group and assume that
G has a two-sidedly invariant uniform structure. Then G contains an
open normal subgroup N which decomposes into the form KxG 1Ό\

PROOF. In this case G° has the two-sidedly invariant uniform
structure induced from that of G, and hence, by the second theorem
of Freudenthal cited in Introduction, G° is m. a. p. while as is easily
seen, G contains an open subgroup L of type (A) which contains G°.
By Theorem 2, L is m. a. p., and by Theorem 1 it is of the form KJΐ,

where Kτ is a compact subgroup. Now as was shown in the proof of
Theorem 1, the centralizer M of V in L is an open subgroup of L and

so of G, and it takes the form K'xV. Let N be the intersection of

all the conjugate subgroups of M. Then N is the required open nor-

mal subgroup of G, since it contains G° and so V, and since its open-

ness is observed from the fact that M contains a neighbourhood of e
which is invariant under all inner automorphisms in G, q, e. d.

10) This structural condition is not sufficient for a group to have a two-sidedly
invariant uniform structure. For example, the group composed of all matrices of

the form (Q ι ) > where r runs over the discrete multiplicative group of positive

rational numbers and x runs over the (usual) additive group of real numbers.
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R©MARKS. This proposition would be the best possible answer for
the conjecture of E. R. van Karnpen (which reads that a locally com-
pact group with a two-sidedly invariant uniform structure may be
represented as a direct product of a vector group and a group in which
an open compact normal subgroup exists), since this conjecture was
disproved by M. Kuranishi [3].

Part II. Example of a m. a. p. group which has no two-sidedly
invariant uniform structures

1. Consider a 0-dimensional locally compact group G which has
a two-sidedly invariant uniform structure. Then there exists in G an
open compact normal subgroup N. In fact, since G is 0-dimensional
and locally compact, we can find an open subgroup O in a condition-
ally compact neighbourhood of e. The intersection of all its conjugate
subgroups gives the required normal subgroup N, since its openness
follows from the fact that the former subgroup O contains a neigh-
bourhood of e which is invariant under all inner automorphisms in G.

Thus we can state as follows:
An example of & locally compact group G which is m.a.p. but

has no two-sidedly uniform structures, can be given by a 0-dimensίonal
m.a.p. locally compact group which admits no open compact subgroups.

In the next section, we shall construct such a group concretely.
2. CONSTRUCTION OF THE; EXAMPLE. First we define two kinds

of groups.

Let D. be the weak direct product of countable number of groups,
each of which is isomorphic with the additive group of integers.
Namely, an element of D is a sequence \xn\ of integers, where xn(n=^
1, 2,...) are equal to zero except for a finite number of n's, and the
product of two elements \χn\,\yn\ in D is defined to be the element
\xn+yn\ Denote by Ar and Br two subgroups of D which consist of
those elements \xn\ that satisfy the condition a?n=0 for w>r, and the
condition a?Λ= 0 for n <; r respectively. In the following D will be
regarded as a topological group with discrete topology.

Secondly, let K be the direct product (in the sense of a topological
group) of countable number of groups, each of which is isomorphic
with the multiplicative group of two numbers ±1. That is to say, an
element of K is expressed in the form \en\, where £n=±l, and the
product of two elements \en\, \8n\ in K is {£A! The subgroups Lr

and Mr are defined as those formed by such elements [£„} that satisfy
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the condition £w=l for n^>r, and the condition £Λ=1 for n<r re-
spectively. K is a 0-dimensional compact group.

Now the required group G is the group of all pairs ({£„}', {#w}) of
elements from K and D, in which the product of two elements is
defined by the formula :

It is easy to verify that G forms an algebraic group, and that the set of
all the elements of the form ({£„},{()}), and the set of those of the form
({!}» \χnΌ constitute respectively a subgroup isomorphic with K and a
normal subgroup isomorphic with D. Denoting such corresponding
groups by the same letters, we can see easily that Br and MrD are
normal subgroups in G.

Moreover the following relations hold in G :

G=KD,Kf\D=e.

Hence we can assign to G the direct product topology of K and D.
Obviously by this topologization G becomes a 0-dimensional locally
compact group.

3. We are to show that G is m.a. p. Since G/D is isomorphic
with the compact group K, we have only to prove that every element
(Φe) of G can be separated from e by a suitable bounded representa-
tion of G. For this purpose it is enough to show that G/Br is m. a. p.,
since each element (Φe) of D is contained in some Ar and then has
its natural homomorphic image different from the identity into G/Br.
Now a simple calculation shows that the normal subgroup (MrD}/Br in
G/Br is abelian and hence is m. a. p., while the factor group of G/Br

by (MfΠ)/Br is isomorphic with the finite group L,. Thus, by Lemma
4 in the foregoing Part we conclude that G/Br is m. a. p.

Next we shall prove that G admits no open compact normal sub-
groups. Suppose there be such a normal subgroup N in G. Then, by
the definition of the topology in G, there would exist a suitable r such
that N^>Mr, and therefore an element k=(\sn\, |0j) in which £n=l
for n<r,£n=—l for w>r, must belong to N. Let d=({lj, {xn\} be
an element of D, in which #r+1Φθ. By virtue of the normality of
N and of D, the element dkd-lk~l=(\l}9 \xn-£nxnft which is not
equal to e because ' a?r+1— £r+1a?,+1==2 awΦO, must be contained both in
N and in D. This implies that D should have non-trivial compact
(i.e. finite, since D is discrete) subgroup N f\D, which contradicts
the algebraic structure of D.
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Thus the construction of the example mentioned in 1 has been
finished.

(Received March 20, 1950)
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