On the Quotient Semi-Group of a Noncommutative Semi-Group

By Kentaro MURATA

In this short note we remark, following K. Asano'), that a non-commutative semi-group $\mathfrak g$ with a certain condition can be embedded into the quotient semi-group G. The necessary and sufficient condition for the existence of the quotient semi-group is the same as the case of a ring. Moreover if $\mathfrak g$ is a ring, we can define the addition in G in a natural manner and G is just the quotient ring of $\mathfrak g$.

Definition 1. An element λ in a semi-group $\mathfrak g$ is called *regular*, if the following two conditions are satisfied: 1) $a\lambda = b\lambda(a, b \in \mathfrak g)$ implies a = b and 2) $\lambda a = \lambda b(a, b \in \mathfrak g)$ implies a = b.

If g has the unit, the elements having their inverse elements in \mathfrak{g} are obviously regular.

In the following we assume that a semi-group $\mathfrak g$ has regular elements. It is clear that all regular elements in $\mathfrak g$ form a sub-semi-group $\mathfrak g^*$ of $\mathfrak g$.

Definition 2. Let $\mathfrak m$ be a sub-semi-group of $\mathfrak g^*$. If a semi-group G which contains $\mathfrak g$ satisfies the next three conditions, we call G a left quotient semi-group of $\mathfrak g$ by $\mathfrak m$.

- (1) G has a unit 1.
- (2) Every element α in m has an inverse α^{-1} in G.
- (3) For every x in G, there exists α in m such that αx is contained in g.

In particular if $\mathfrak{m}=\mathfrak{g}^*$, we call G a left quotient semi-group of \mathfrak{g} . According to Definition 2, every element s in G is clearly expressible in the form $s=\alpha^{-1}a$, where $\alpha\in\mathfrak{m}$ and $a\in\mathfrak{g}$. If \mathfrak{g} has a left (or right) unit e, then e=1.2

Lemma 1. If for every a in g and every α in m there exist α' in m and a' in g such that α' a = a' α then, for any n elements $\lambda_i \in m$ $(i=1,\ldots,n)$ there exist n elements $c_i \in g$ $(i=1,\ldots,n)$ satisfying the following condition:

¹⁾ K. Asano, Arithmetische Idealtheorie in nichtkommutativen Ringen, Japan. Journ. Math. 16 (1939); Über die Quotientenbildung von Schiefringen, Journ. Math. Soc. Japan 1 (1949).

²⁾ $e = e \cdot 1 = e \lambda \lambda^{-1} = \lambda \lambda^{-1} = 1 \quad (e = \lambda \cdot e = \lambda^{-1}\lambda \cdot e = \lambda^{-1}\lambda = 1)$.

$$c_1 \lambda_1 = \ldots = c_n \lambda_n = \gamma \in \mathfrak{m}$$
.

Proof. According to the assumption, there exist a_1 in \mathfrak{g} and α_2 in \mathfrak{m} such that $a_1\lambda_1=\alpha_2\lambda_2$. Next, for $\alpha_2\lambda_2$ and λ_3 , there exist a_2 in \mathfrak{g} and α_2 in \mathfrak{m} such that $a_1\lambda_1=\alpha_2\lambda_2$. Next, for $\alpha_2\lambda_2$ and λ_3 , there exist a_2 in \mathfrak{g} and α_3 in \mathfrak{m} such that $a_2\cdot\alpha_2\lambda_2=\alpha_3\lambda_3\in\mathfrak{m}$. By induction we complete our proof.

Lemma 2. If, under the same assumption as in lemma 1, there exists one element pair x_0 , y_0 in \mathfrak{g} such that $x_0 \alpha = y_0 \beta \in \mathfrak{m}(\alpha, \beta \in \mathfrak{m})$ and $x_0 a = y_0 b(a, b \in \mathfrak{g})$, then every pair x, y in \mathfrak{g} satisfying the condition $x \alpha = y \beta \in \mathfrak{m}$ satisfies x a = y b.

Proof. Putting $\theta = x_0 \alpha = y_0 \beta$ and $\varphi = x \alpha = y \beta$, we take c and δ in g and m respectively as $c \theta = \delta \varphi \in m$. Then $c \theta = c x_0 \alpha = c y_0 \beta = \delta \varphi = \delta x \alpha = \delta y \beta$, $c x_0 = \delta x$, $c y_0 = \delta y$, hence $\delta x \alpha = c x_0 \alpha = c y_0 b = \delta y b$, that is, $x \alpha = y b$.

Theorem 1. In order that there exists a left quotient semi-group of g by m, it is necessary and sufficient that for every $a \in g$ and every $\lambda \in m$ there exist $a' \in g$ and $\lambda' \in m$ satisfying $\lambda' a = a' \lambda$. And such a left quotient semi-group is uniquely determined by m and g apart from its isomorphism.

Proof. Let G be a left quotient semi-group of g by m. Then for $a\lambda^{-1}(a \in g, \lambda \in m)$ in G, there exists $\lambda' \in m$ such that $\lambda' \cdot a\lambda^{-1} = a' \in g$, namely $\lambda' a = a'\lambda$. Hence the condition is necessary. We show now the condition is sufficient. First, we assume g has the unit 1. Let G be the set of all symbols (α, a) , $\alpha \in m$, $a \in g$. We can introduce the equality of the elements in G as follows: (α, a) is equal to (β, b) if and only if xa = yb for every x and y satisfying $x\alpha = y\beta \in m$, $x, y \in g$. Then, according to Lemma 2, in order that $(\alpha, a) = (\beta, b)$ it is sufficient that there exists at least one element pair x, y in g satisfying xa = yb and $x\alpha = y\beta \in m$. As we can then readily prove, the above-defined equality fulfils the equivalence relation. In particular $(\lambda \alpha, \lambda a) = (\alpha, a)(\lambda \in m)$. Now we define the multiplication of the elements in G as follows:

$$(\alpha, a) (\beta, b) = (\beta' \alpha, a' b), \beta' a = a' \beta, \beta' \in \mathfrak{m}, a' \in \mathfrak{g}.$$

The product is independent of the choice of $a' \in \mathfrak{g}$ and $\beta' \in \mathfrak{m}$. For if $\beta''a = a''\beta$, $\beta'' \in \mathfrak{m}$, $a'' \in \mathfrak{g}$, then taking u and δ such that $u\beta' = \delta\beta'' \in \mathfrak{m}$ ($u \in \mathfrak{g}$, $\delta \in \mathfrak{m}$), we get $u\beta'\alpha = \delta\beta''\alpha \in \mathfrak{m}$, and

$$u a' \beta = u \beta' a = \delta \beta'' a = \delta a'' \beta.$$

Hence $u a' = \delta a''$, $u a' b = \delta a'' b$, that is, $(\beta' \alpha, a' b) = (\beta'' \alpha, a'' b)$. In

particular, if the product of a and β is commutative, then $(\alpha, a)(\beta, b) = (\beta \alpha, ab)$. Further, if $(\alpha, a) = (\alpha_1, a_1)$ and $(\beta, b) = (\beta_1, b_1)$ then $(\alpha, a)(\beta, b) = (\alpha_1, a_1)(\beta_1, b_1)$. For if we choose c, c_1, a' in g and β' in m satisfying $\gamma = c \beta = c_1 \beta_1 \in m$, $\beta' = a' \gamma$, then $(\alpha, a)(\beta, b) = (\beta' \alpha, a' c b) = (\beta' \alpha, a' c_1 b_1) = (\alpha, a)(\beta_1, b_1)$. Similarly $(\alpha, a)(\beta_1, b_1) = (\alpha_1, a_1)(\beta_1, b_1)$. One can easily verify the associative law of the multiplication introduced above. Hence G is a semi-group. The mapping $a \rightarrow (1, a)$ gives an isomorphism of g into G. Identifying a and (1, a), we can see that G contains g, 1 = (1, 1) is the unit of G, every element $\alpha = (1, \alpha)$ in m has an inverse $(\alpha, 1)$ in G, and

$$\alpha(\alpha, \alpha) = (1, \alpha)(\alpha, \alpha) = (\alpha, \alpha \alpha) = (1, \alpha) = \alpha$$
.

Corollary 1. In order that there exists a left quotient semi-group of a semi-group $\mathfrak g$, it is necessary and sufficient that for every regular element λ and every element a in $\mathfrak g$ there exist a' in $\mathfrak g$ and a regular element λ' satisfying $a'\lambda = \lambda'a$.

Corollary 2. Let all elements in a semi-group $\mathfrak g$ be regular. In order that there exists a left quotient group of $\mathfrak g$, it is necessary and sufficient that for any two elements α , β in $\mathfrak g$ there exist another two elements α' , β' in $\mathfrak g$ satisfying $\alpha'\alpha=\beta'\beta$.

Lemma 3. Let G be a left quotient semi-group of g by m. Let further x_i $(i=1, \ldots, n)$ be any n elements in g, then we can choose an element $\gamma \in \mathbb{N}$ such that $\gamma x_i \in \mathfrak{g}$ $(i=1, \ldots, n)$.

Proof. There exist α_i in \mathfrak{m} such that $\alpha_i x_i \in \mathfrak{g}$ $(i=1,\ldots,n)$. And if we take, according to Lemma 1, $\gamma = c_1 \alpha_1 = \ldots = c_n \alpha_n \in \mathfrak{m}$, then $\gamma x_i \in \mathfrak{g}$ $(i=1,\ldots,n)$.

Now, we shall consider a quotient system of some algebraic system. Let $\mathfrak o$ be a semi-group with regular elements, and $\mathfrak m$ a sub-semi-group of $\mathfrak o$ consisting of regular elements. Let further $\mathfrak o$ has besides the multiplication, binary operations denoted by $\mathfrak o$, which satisfy the following conditions:

[1] If a and b $(a, b \in v)$ are composable, (with respect to \circ) then ca and cb are composable, also ac and bc are composable. And $ca \circ cb = c (a \circ b)$, $ac \circ bc = (a \circ b)c$.

[2] If, for some $\gamma \in \mathfrak{m}$, γa and $\gamma b (a, b \in \mathfrak{o})$ are composable, then a and b are composable, also if $a \gamma$ and $b \gamma$ are composable then so are a and b.

For example, let $\mathfrak o$ be a (noncommutative or commutative) ring, and \circ the addition, then the above-mentioned conditions are of course fulfilled.

Theorem 2. Let S be a left quotient semi-group of \mathfrak{o} by \mathfrak{m} . If there exists an element $\lambda \in \mathfrak{m}$, such that λx and λy $(x, y \in S)$ are contained in \mathfrak{o} and composable, we define the composition of x and y by

$$(*) x \circ y = \lambda^{-1} (\lambda x \circ \lambda y).$$

Then S becomes an algebraic system of the same kind of \mathfrak{o} .

Proof. If x and y (where x, $y \in S$) are composable in the sense of the above-defined (*), then $x \circ y$ is uniquely determined independently of the choice of λ in m. For if μx and μy (where $\mu x \in \mathfrak{o}$, $\mu y \in \mathfrak{o}$, $\mu \in \mathfrak{m}$) are composable, then, by taking η and c satisfying $\eta \mu = c \lambda = \gamma \in \mathfrak{m}$ ($\eta \in \mathfrak{m}$, $c \in \mathfrak{o}$), we get

$$\gamma \lambda^{-1} (\lambda x \circ \lambda y) = c \lambda \lambda^{-1} (\lambda x \circ \lambda y) = c (\lambda x \circ \lambda y)$$
$$= c \lambda x \circ c \lambda y = \eta \mu x \circ \eta \mu y = \eta (\mu x \circ \mu y) = \gamma \mu^{-1} (\mu x \circ \mu y).$$

Namely $\lambda^{-1}(\lambda x \circ \lambda y) = \mu^{-1}(\mu x \circ \mu y)$.

Next, if x and y in S are composable, then so are zx and zy ($z \in S$) and $zx \circ zy = z$ ($x \circ y$). By the hypothesis, there exists λ in m such that $x \circ y = \lambda^{-1} (\lambda x \circ \lambda y)$. If we choose α , τ and α such that $\alpha z \in \mathfrak{0}$, $\alpha \cdot z x \in \mathfrak{0}$, $\alpha \cdot z y \in \mathfrak{0}$ ($\alpha \in \mathfrak{m}$) and $\tau (\alpha z) = \alpha \lambda (\tau \in \mathfrak{m}, \alpha \in \mathfrak{0})$, then $\sigma z x = \alpha \lambda x$, $\sigma z y = \alpha \lambda y$ ($\sigma = \tau \alpha$). Since $\alpha \lambda x = \sigma z x$ and $\alpha \lambda y = \sigma z y$ are composable in α , α , α and α and α are composable in α , α and α are composable in α , and

$$\begin{split} z\left(x\circ y\right) &= z\,\lambda^{-1}\left(\lambda\,x\circ\lambda\,y\right) = \sigma^{-1}\,a\left(\lambda\,x\circ\lambda\,y\right) \\ &= \sigma^{-1}\left(a\,\lambda\,x\circ a\,\lambda\,y\right) = \sigma^{-1}\left(\sigma\,z\,x\circ\sigma\,z\,y\right) = z\,x\circ z\,y, \quad (\sigma\in\mathfrak{m})\;. \end{split}$$

If x and y in S are composable, then xz and yz are composable, and $(x \circ y)z = xz \circ yz$. By the hypothesis, there exists $\lambda \in \mathfrak{m}$ such that $x \circ y = \lambda^{-1}(\lambda x \circ \lambda y)$. If we take μ and α such that $\mu z \in \mathfrak{o}(\mu \in \mathfrak{m})$, $\alpha \lambda x \mu^{-1} \in \mathfrak{o}$ and $\alpha \lambda y \mu^{-1} \in \mathfrak{o}(\alpha \in \mathfrak{m})$, then $x \circ y = \sigma^{-1}(\sigma x \circ \sigma y)$, $\sigma = \alpha \lambda$. According to the latter part of the condition [2], $\sigma x \mu^{-1}$ and $\sigma y \mu^{-1}$ are composable in \mathfrak{o} . Hence

$$\begin{aligned} & (x \circ y) \, z = \sigma^{-1} \, (\sigma \, x \circ \sigma \, y) \, z = \sigma^{-1} \, (\sigma \, x \, \, \mu^{-1} \, \, \mu \circ \sigma \, y \, \, \mu^{-1} \, \, \mu) \, z \\ & = \sigma^{-1} \, (\sigma \, x \, \, \mu^{-1} \circ \sigma \, y \, \, \mu^{-1}) \, \mu \, z = \sigma^{-1} \, (\sigma \, x \, \, \mu^{-1} \, \, \mu \, z \circ \sigma \, y \, \, \mu^{-1} \, \mu \, z) \\ & = \sigma^{-1} \, (\sigma \, xz \circ \sigma \, y \, z) = x \, z \circ y \, z. \end{aligned}$$

Every element in \mathfrak{m} has an inverse in S. Then condition [2] is therefore easily obtained from the condition [1]. Thus our theorem is proved.

Let v be a noncommutative ring containing non-nilfactors. The non-nilfactor is clearly a regular element in v in the sense of Definition 1. Hence we have

Corollary.³) Let m be a sub-semi-group consisting of non-nilfactors in a given ring o. In order that there exists a left quotient ring S of o by m, it is necessary and sufficient that, for every $\alpha \in m$ and every $a \in o$, there exist $a' \in o$ and $\alpha' \in m$ satisfying $a' \alpha = \alpha' a$.

Putting the word right in place of left in the above-mentioned argument, we can argue similarly as above. But the existence of a left quotient semi-group and a right one are independent, and if there exist both, then they are the same 4).

(Received June 8, 1949)

³), ⁴) K. Asano, 1. c.