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V

G. SILOV, I. GELFAND and A. KOLMOGOROFF have shown that the

structure of the ring of continuous functions on a bicompact topological

space defines the space up to a homeomorphism1),2).

We shall give in this paper an extension of their results to comple-

tely regular, not necessarily bicompact, topological spaces and to uniform

spaces.

In § 1 we consider completely regular (not necessarily bicompact)

spaces. In § 2 we consider chiefly uniformities (uniform topologies) of

totally bounded uniform spaces and of metric spaces. In § 3 we discuss

the special case of complete metric spaces.

§ 1. Let R be a completely regular topological space. We denote by

L(R} the lattice of all functions defined on β, which are bounded, >0,

and which are defined as the infimum of certain (a finite or an infinite

.number of) continuous functions, the order being defined as usual. Then

φ (x) = inf φτ \x) is the infimum of φr in L (R), which is denoted by
r '

f\φr. We mean by"an ideal of a lattice a subset / of the lattice such
r

that / e 7, g e / imply / \J g e /, and that / e /, / ;> g imply g e /. But

the lattice itself and the null set φ are not regarded as ideals in this

paper.

Theorem 1. In order that two completely regular spaces Rl and R,

are homeomorphic, it is necessary and sufficient that the lattices L (RJ

and L (R ) are isomor phic.

Proof. Since the necessity of the condition is obvious, we shall prove

only the sufficiency.

l) G. Silov, Ideals and subrings of the rings of continuous functions, C. R. URSS,
22 (1939.)

*} I. Gelfand and A. Kolmogoroff, On rings of continuous functions on topological
spaces, C. R. URSS, 22 (1939).
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1. Let R be a completely regular space. We call an ideal / of L (β)

an open ideal, when φτ£l (for all γ) implies f\φτ£L And we call an
r

ideal J a c-ideal, when / can be represented in the form Π~ /„.. where

/! ̂  72 )̂ 7λ 7} . . . , and In (n == 1, 2, 3, . . . ) are open ideals. We denote

by 8 (β) the collection of all minimum c-ideals of L (β). Then we can

show that for any open ideal 7, there exists a point #, (ββ), αί which

there exists a number a^ ;> 0 s^cft fΛαί

9° (#t ) ̂
 αυ (φ£L (β) ) implies φ G /.

For assume that the assertion is* false. Then, for every point x ( e β),

we can find a function ^'(eL (β) ) such that

r/^O) = 0, φx£L

Since 7 is an open ideal, 0 = f\ φx <£ I hence 7 — </>, which is im-
z-ft

possible.

2. Now we take such a point #0 for 7, and denote by α0 the sup-

remum of such numbers α() at Λ;-. We remark that if / (x}^>a , and

f (XQ) is continuous, then / £ I.

For suppose that / 6 7. Let /20 be a number such that / (X.) > /S0 ]>

α . By the definition of α:0 there exists a function ψ> ( e L (β) ) such that

Λ//> (α?0) = /30, ψ jί 7. Let Λ/Γ = inf ^rr, where ^rr are continuous. Since

ψ C^o) <C / (^o)» ^r C^j) <C / (^o) f°r a certain γ. Hence in a certin aneίgh
bourhood V (α?0) of a?0, Λ/Γ (a;) ^τ gr (a?) < / (a?). Let Λ/Γ (a?) ̂  -4 (a; € β).

Then there exists a continuous function Λ on β such that

h (x,} = 0, .
0 < h (a?) < A.

ft (a?) - A, (a? i V (a?0) )
 =i '

Since ft G 7, it must be / \J h e 7. But ψ ̂  / V/ A, and f jί 7, contrary to

the fact that 7 is an ideal.

3. Let / b e a n y minimum c-ideal of L (β) (/€ 8 (β) ), then / =

πΓ 7W where 7X )̂ 72 ^> 73 ^> . . . , and 7W are open ideals. We denote by

xn the above considered #c for 7W, and by αn the αα for 7K, then wae en

conclude that x} = x, = x6 — ...-.

For suppose, for instance, that xv Φ x _. We may construct a conti-

nuous function / on β such that
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Then f e l ^ y and from the above mentioned remark f £ I , but this con-

tradicts the fact that 72 C /i Therefore it must be a?A = #, = . . . .

We denote this point by x(l.

4. Now we denote by / O0) the totality of functions of L (72), which

vanish at #u, and by 7, (#,) the totality of L (72) such that / (α J < α.

Then 7α (#0) is an open ideal, and J (#0) = IlΓ ll

n (#t.) hence / (#0) is a

c-ideal. Since /(a?)CπΓ 7W = «7, and / is minimum c-ideal, it must

be J = J (XQ). Conversely, let / (α?0) = f^> | 9? (a J = 0, φ e L (R) j . Suppose

that / (a?0) ^> /, where / is a c -ideal, then as v*re have shown above, there

exists a J (x^ such that / (xj C J C J (#„)• Hence it must be α?0 = ίr _ ,

and hence /(a J = /, which means that J (xj is a minimum c- ideal.

5. Thus we have obtained a one-to-one correspondence between

8 (7?) and R. We denote this correspondence by 2. Now we shall intro-

duce a topology in 8(72) by closure as 'follows.

Let S (72) ̂  8 (A), then we define that J0 ( 6 8 (72) ) is a point of the

closure of 8 (A) : J() 6 8 (A), when and only when

{ Π /, J0 } Φ

J (a?0) e 8 (A), i(;Λe^ αncί o^i?/ when x,£A.

For let «, j ίA, then we may construct a continuous function / such

that.

/ (#0) = a + 6,
- 0 < f (α) < Λ + 6

- ;-

Suppose that f(x)^>a in a certain nbd (= neighbourhood) V (xj) of α .

We construct a continuous function # such that

Then /e Π J, and 3 6 /(a?) ; hence a<,f\Jge\ Π /, V ( α ) } .
J-εδC^O » Jε8c^)

Since α is an arbitrary positive number, and all functions of L(R) are

We denote by {I, J} the ideal which is generated by I and J.
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bounded, it must be

{ Π /, / (a?0) } - L (Λ), i. e. J fo,) £ 8~(A).
J-εδU)

Conversely, let a? 0 eA, and ^ > € f Π /(>•), /(X ( ) j» then there exisί
atζA

two functions <p, and 95, such that

<P, e Π / (#), <?o e / (#„), and φ <φ^\J φ^
XZ.A

Let 6 be an arbitrary small positive number. Since <p, (a?0) = 0, and ^ (a?)

is an infimum of some continuous functions, there exists a nbd U (a?0) of

x , in v/hich < 2̂ (a?) is less than 6.

Let # e A - U(x ), then, since ^ (a?) — 0,

99 (a?) ̂  Maar (̂  (a?), 99. (a?) ) ~ φ« (x) <^ 8.

This fact shows that φ(x) may take an arbitrarily small value; hence

ί Π /(a,-), /(a?)} =f=L(Λ), i.e. / (a?,,) € F(A). Therefore 8 is a homeo-
XIA

morphism between 8 (R) and R.

6. Nov/ let L(β) and L(R} be isomorphic, then from this isomor-

phism follows the homeomorphism between the spaces 8 (R ) and 8 (R ),

this last homeomojphism implies the homeomorphism between the spaces

β1 and R^. Thus Theorem 1 is established.

§2. Let R be a general uniform space, and {SJ^} be the uniformity

of R. 4) We say that tv/o subsets A and B of R are n-separated, when

and only when there exists a 2^ (of {$01*}) such that

S (4, 2JΪ,) £ - φ. 4)

Nov/ we can show that the uniformity of a totally bounded uniform space

R may be defined by the notion of " u-εeparation ".

Lemma 1. In order that an open covering 9K of R is a, covering of

the uniformity {yRx #e£} of R, it is necessary and sufficient that

there exists an open 'covering 3J13 such that

(1) 3Jt0 possesses a finite subcovering,

(2) for every M()e9Jί0, there exists M e 3DΪ such that M(} and Mc

are u-separated. 5)

4) Cf. J. W. Tukey, Convergence and uniformity in topology. (1940).
5) We denote by Mc the complement of M.
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Proof. Suppose that 2Jϊe {501*}, then there exists a star-refinement

m* in {Sft,}, i.e. fflkejajU, 2JΪ/v<2Jί.6) Since R is totally bounded,

2)?., possesses a finite subcovering, and, for an arbitrary Mx e SJί*, we may

choose Λfe2JΪ such that S(Λfa,/5DϊJC"-M' Then M^ and Mc arec learly

u-separated.

Converse1^ suppose that 5ϋί possesses a covering aw0 with the proper-

ties 1) and 2), then IK e \*®lx \. Assume that the assertion is false, then

for every Wlx € {271*}, 5Dϊί < 3Jί holds. Hence to every x (of X) corresponds

a point <p (α?) of R such that

S (φ (a?), 2W,) 4: Λf (for all Λf e 9JΪ). .

Then φ(x 36) is a function on the directed system 3E. Since 9JZ9 pos-

sesses a finite subcovering, there exists a M} (esJJί)), in which φ(x} is

cofina1.6) But, S (99 (α?), 93Ϊ,,) Mc Φ 0 for every M e 2K hence Λf0 and Mc

are not u-separated, contrary to the assumption. Therefore 9Jϊ must be

an element of {aw*}, and the Lemma 1 is proved.

Next, let R be a metric space, then we can define the uniformity of

R making use of the notion of " ii-separation " as in the caεe of totally

bounded uniίorm spaec.

Lemma 2. In order that an open covering 2JΪ of R is a covering of

\Wlx] it is necessary and sufficient that there exist two open coverings

SUίi and 9JΪ2 such that

1) for every M/e^, there exists an Me9Jί such that M1 and

Mc are u-separated,

2) 9Jί2

ΔΔ<9Jίί,

3) for every sequence of points \a( ] such that

' S (aa, 90Ϊ2) S (αm, 9JΪ2) = φ (n φ m\

(i) if \bj\ and [ck] are two subsets of f α < ] , and \bj\ \cλ.} — φ,

then [bj\ and ΣS(cw 5Dlrt) are it-separated.
7c

(ii) {dί j a?zcZ nSc(a^, 2Jί2) are u-separated.

Proof. By Sε (a), we mean the set of all points with the distance

less than £ from a.

6) Cf. J. W. Tukey, loc. cit.
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1. Let ajί£ {9)U> then we may choose 3ftA and 9ft, from {Wl*} such

that

then the above conditions 1), 2), 3) hold.

2. Conversely, suppose that 2Jί possesses refinements <iSHl and 2Jί,

with the above properties 1), 2), 3) then 2Jί€ {aj^j. For assume that the
assertion is false. Then, for a sequence of positive numebrs $n -> 0, we

obtain a sequence of points (an\ such that Sβfl (αΛ) c£ Λf (for all .Λf e3W).

We remark that by the condition 1) {αn} cannot be co final in any element

ML of 3K..

Next, there exists for a only a finite number of an such that

S (aί9 3JΪ2) S (αΛ, 3Jis) φ φ.

For, suppose that there exists an infinite number of such απ, then,

since 9Ji/^<iui , such an would be contained in one and the same ele-
ment Λ/Ί (eSUϊJ, which contradicts the above mentioned remark,

Therefore we can find an n. such that

S (α , a»s) S (OΛ, SK2) = φ (w ;> ΛS);

3. In the same way we see that there exist for αΛ2 only a finite
number ot an such that

Therefore we can find an ̂  (>w2) such that

S (αΛj, aw .) S (a,, gw,) - φ (n > wβ).

Repeating the above processes we obtain a sequence of integers n <^

nΛ <...< nk < .\ . such that

S (α ,̂ 3JΪ2) S (αn, aϊl,) = φ (n :> wfc)

For simplicity we rewrite αWl, αΛj. . ... and εn , fwj, - - as .α ;̂.̂ , . . . and

6 lf 6,, ... respectively, then for this {an\ the condition 3) holds.

4. We then show that there exist an infinite number of n such that

(00 Sεw (αj S (αw, 9K2) = φ (/or all m Φ w).

For, assume the contrary, then we can find an integer N suph that, for

each n^>N there exists an mn such that
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•03) Sεn (aj Sick,* 3K8Ϊ Φ φ.

The sequence {t»«} cannot cantain a bounded subsequence {wnαo}, for

otherwise we may assume without loss of generality that mn^ < nh for

every pair \h, k ] , and hence by 3) (i) {an(^\ ^nd ΣS(am.n(k>, 3K2) are

u-separated, which is easily seen to contradict the last inequality (/2).

Therefore, we can choose an increasing sequence {n(ty\ such that

mn(k) > w (fc— 1), tt'{fc) > mwα>-u (fc — 2, 3 . . . ).

Then by (β) [αΛ(fc/| and Σ~S(amtlc^, 2Λ ) are not u-separated, while on
&

the other hand by 3) (i) they must be u-seaprated. This contradiction

assures the validity of the proposition (α).

5. We have therefore Sen<αn) C Π Sc(am, ajίo) for an infinite number
mφw ,

of nf and hence for such n

Sεn (αj. 1C, Sc (αm, gjιs) = Sew (αw) 5C (α,, 2» J Φ φ

(We note that 9ϊί2

ΛΔ < 501, < 3H). Therefore {α,} and Π^=1 Sΰ (am, 9W2) are

not u-separatd, which contradicts 3) (ii). From this we can conclude

that the lemma is valid.

Now let Lu (J?) be the collection of all function φ (x) such that

(1) φ(x) is a bounded function on β,

(2) p (a?) ̂  Qi,

(3) φ(x} is uniformly continuous except at a certain finite number

of points xl9 xv ...,#„.
(4) ^ (α?,) > φ O) in a certain nbd ϋt (α% ) of a%- (i = 1, 2, . . . , n). If

we define the order in LU(R] as usual, L t t(Λ) forms a lattice. We have

then the following

Theorem 2. Let R} and R2 be two metric spaces or totally bounded

uniform spaces. In order that Rλ and R2 are imiformly homeomorphic.

it is necessary and sufficient that the lattices LU(R^ and LU(R^ are

isomorphic.

Proof. Since the necessity is obvious, we shall prove only the suffi-

ciency.

We denote by 2U (JS) the collection of all minimum c-idea1s of Lu (R~).

We introduce in 8W (β) a topology in the same way as in § 1. Then, by
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using uniformly continuous functions in place of continuous functions,

we can prove similarly as in § 1 that R and $u (β) are homeomorphic. (To

a point # 0 (e/?) corresponds J(#0) = {/ | /(a?0) = 0, fzLu (/?)}). We

denote this homeomorphism by δtt.

Now we introduce the notion of u-separation in &u (Λ) as follows.

Two subsets Stί (A) and £„ (£) of £„ (Λ) will be called u-separated, if

and only if

{ Π /, Π J\ ̂

Then 8«(A) and 8tt (1?) are u- separated if and only if A and B are u-

separated in R.

For let A and B be u-separated, then there exist two open sets U

and V such that A C U, B<^V,U V = φ, where 4 and Uc as well as

β and Vc are u-separated. Therefore we may construct uniformly con-

tinuous functions / and g such that

, T/CΛ= α (a; G Fc),

Since /e Π / and ge Π /, it must be

e\nJ9U J\.
%uW #«W

Since ^ is an arbitrary positive number, this shows that

LΠ /, Π /} =L t t(Λ),

that is, &V(A) and 8M(S) are u-separated.

Conversely, let A and B be not u-separated. Let φ be any element

ot { Π /, Π /}, then there must be φλ and φ, such that

>- \ / x- TT T V- TT Ύ
<P <C </9, \ / 99r,, <^>A c 11 e/, ^>., ξϊ 11 e/

We denote the excepted points of φ{ and φ. by α, α , . . . , an. Since ^A

and 93. are uniformly coutinuous on 72—Σΐ β<f

 we c^n choose for any

positive number s an ς$ίlx such that
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1 Pi («) - V i f y I <έ, I W(ft) - ̂  (6) I <€ "

for a £ S (6, 3JΪJ, α, 6 £ v; α<f and such that at£S (ap mx} for i Φ .

• Now, since A and JB are not u-separated, there exist aeA and beB

such that 2JΪ3. 3 M 3 α, 6. Let A - # = φ, then α Φ b and α and 6 cannot

be excepted points at the saηie time; for instance a is not an excepted

point of <p>. Since 6 is not an excepted point of φ, from the second of

the last inequality we have φ> (α) < φ., (6) + ε = <?, and hence

φ (O) < φ, (O) \J φ2 (θ) = 0\J φa (d) < δ.

Hence φ (a?) can take an arbitrarily small value.

Since this fact is obviouφ when A B = φ, we conclude in all cases

that

i l l /, Π.V} φLw(/2),
S?«C 4) £tt<β)

that is, S t t(A) and S« (Z?) are not u-separated.

Nov/ it is easy to prove Theorem 2.

Suppose that -B is a metric space or a totally bounded uniform space.

Since in 8W (JB) the notion of u-separation is introduced, we can introdμce

a uniformity in 8tt (72), by the above mentioned lemmas. Then, since the

u-separation of A and B is equivalent to that of SW (A) and 8w(β), Λ

and S«(Λ) are uniformly homeomorphic.

Now, let Stt(Λ,) and S?ί(β2) be isomorphic, then S^CΛJ and Stt(/22)

are uniformly homeomorphic hence jBA and R2 are uniformly homepmor-

phic. Thus the proof of Theorem 2. is complete.

Now, let R be a completely regular topological space. We introduce

the weak topology in the ring C (Λ) of all continuous functions defiiied

on Ry i.e., for a certain /eC(β), we choose a finite system of points

a,..., an (e β) and nbds 17, of /.(α,) (i = 1. 2.. . . , n), then the set

l!7 I 9 O*) € Z74 (ί - 1, 2,. . . w), ^ e C (R)} is called a nbd of / in C (R).

It is obvious that C(R\ forms a topological ring. Then we get the follo-

wing.

Theorem 3. In order that two completely regular spaces Rl and R2

are homeomorphic, it is necessary and sufficient that C(R\and C(/22)

are continuously isomorphic.
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Proof. Since the necessity is obvious, we prove only the sufficiency.

Let R be a completely regular space. We denote by (£ (R) the collec-

tion of all closed maximum ideals of C(R), then it is obvious that

Conversely consider any ideal / of (£ (Λ).

1. Put F/, ι/w == { x I α? c #, I / (α?) [ ^ 1/w } (/ e /), then the inter-

section of any finite number of them is non-vacuous, i.e.

Ffι,l/n Ff2, l/ns ' Ffp, ϊjnp φ φ.

For, let Min (1/w,) = 1/w, / =/ί + /U + . . .+/, e /, then, since / ̂  1/n-

implies /« <: 1/V and | /, c; 1/n, we have

Ff, i/tf C Π^, Ffit ι/n C πLi Fft, \;m

Now if | f(«) |>1/^ (for any α; G β), it would be I=R which is

impossible, hence Ff, ι/W2 φ φ, and it follows that πf=1 F/<f ι/Λ< Φ φ.

Accordingly [Ff, ι/n \ f € /, w = 1, 2, . ." . '} ="g forms a filter. We remark

that on this filter, all functions of / tend to zero.
2. Next we can prove that g has a cluster point. For, suppose

that g has no cluster point. Then for any point x of R, there exist a

nbd ΌH(X) of a? and F f t ι / n such that ί/0 (α) - Ff, ι/n = φ. Now, for

every nbd U (x) contained in I70(α?), we construct a continuous function

that

' = ^ 1
^ •*••

Then φu(x}el. (For, if ψufa)£I, Since / is maximum, it would be

[φσ(a}, I\ =C(Λ).

On the other hand, if f e ί^^^,, /}, / m a y be represented in the form

ψ 9^3; f flf (ere/). Therefore / must tend to zero on g, which is a

contradiction. Hence it must be φu(x^L}

Let a , α , . . . , αΛ be any finite system of points of jB. We construct

as above n functions φ^ ζai), . . . , φ^on^ where U (a\ . . . , U (αrt) are so

chosen that at £ U (α^) (i £ /).
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Then φ u(ai) + . . . + Φικ"ιo =φ G /,

Hence every nbd of 1 (a point of C (72) ), meets /, i. e.

1 6 7 = 7.

Hence / = 72, which is a contradiction. Thus g has a cluster point α.

3. We have therefore 7 C7(α) = {/ | f(a) = 0). Since / is maxi-

mum, we have

Thus we have obtained a one-to-one correspondence between R and

(£ (72). We introduce now in (£ (72) a topology in the same way as in

8(72) in the proof of Theorem 1, then the above correspondence is a

homeomorphism. Hence a continuous isomorphism between C(Rl} and

C (72 ) implies a homeomorphism between (£ (72J and (£ (72 J, and hence a

homeomorphism between 72i and 72r Thus the proof of Theorem 3 is

complete.

In the case of a metric space or of a totally bounded uniform apace

72, we denote by 17(72) the topological ring of all bounded uniformly con-

tinuous functions, the topology of 17(72) being the weak topology, we can

prove in a similar way the following.

Theorem 4. In order that R\ and R, are uniformly homeomorphic,

it is necessary and sufficient that Z7(72J and U (722) are continuously

isomorphic.

§ 3. From now on we concern ourselves especially with a complete

metric space 72. We consider the lattice of all bounded uniformly con-

tinuous functions defined on 72, which are > 0. We regard this lattice

as having positive integers as operators and denote it by L(72, i).

Theorem 5. In order that R and 72, are uniformly homeomorphic,

it is necessary and sufficient that L (72 , ί) and L (72 , 1) are operator

isomorphic.

Proof. Since the necessity is obvious, we prove only the sufficiency.

We mean by an open cut a subset I of L (722, i) such that
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/ e 7, / ̂  g imply g e 7,

/r jί / (for all γ) imply f \ f r £ I (it f\ fr exists).
r r

Further we mean by a c -ideal J a maxinum operator ideal) in L(R, ί)

such that / = nj° 7M, where Iλ ^> 72 ^> , . . . , and ln are open cuts.

1. Let

^ (α) = { / I 3 x ' x £ Sι/n (α), / (a?) < 1/n} .

To see that Jn (α) is an open cut, we prove that : if fr £ Jn (a) (for all 7)

and f = Γ\fr has meaning, then / £ Jn (a). For, suppose on the contrary
Y

that / G Jn (α), then there would exist xt such that

Since / is continuous, it must be f(x)<^l/n in a certain nbd 17 (a?)

(CSι/«(α)) of α?,. We construct here a function ^ such that

fif(α) -0 (« e C7C (a? ) ),

0 < g (a?) ̂  «, fir 6 L (R, i).

Then f\JgeL(R, i), f\jg(xj = a>f (xά i.e. f\J g>f. Take any

/r, then, since /r g /w (α), v/e get fr (x) ^>l/n>g (a?) (α; G ?7 ( ι̂}) C 5ι/« (α) ).

Therefore fr ^f\J g, i.e. f\J g is a lower bound of {/r}, which con-

tradicts the fact that / is the infimum of {/r}. Thus we have f £ J n ( a ) .

Therefore Jn(a) is an open cut.

2. It is clear that

and I (a) is a maximum operator ideal Hence 7(α) is a c-ideal.

Conversely let / be any c-ideal. Then / may be represented in the

form J = πΓ In, where Λ )̂ /a 35> •' > 4 are open cuts, (n = 1, 2, ...,).
For In there exists an open set U such that, if there exists a point

x of U at which f(x) vanishes, then /G7 M . For otherwise, there would

exist for each open set U of 72 a point x , and a functoή fπ ( e L (R, 1) )

such that
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Since [xv\ is dense in R, it must be Λ/σ = 0 £4, which is impossible.
u

3. We denote by UΛ the sum of all open sets £7, which have the

above mentioned property about /„. Then it is clear that #O £^O . . .

Now we can show that [Un] is a Cauchy filter. To this end we

remark first that there do not exist sequences [a#] and \bn\ such that

<*>*> bn£Un, and that [άn\ and {bn\ are u-separated.

For let \aa\ and {&„} be u-separated, where αrt, bneUn, then there exist

open sets U and V such that

\**}<U, {6.}<F, U V = φ.

[an\ and Uc as well as |6J and Vc are u-separated. We construct uui-

formly continuous functions / and g such that

. π ^ / r- , , 1 , τrc. 0 ̂ / (a?)
/ (α?) = 1 . (a? e ί/c),

r(6J = 0(n = l, 2 , . . . ) ,

Then, since /, g e πΓ /„ — /, we have 1 = f\J geJ. Hence / = L (R, I),

which is impossible.

Now assume that Un is not a Cauchy filter, and, that, for a certain

6 ^> 0, each t7n is contained in no Sε (a) (a e R). Then there would exist

αp 6j € f/r such that Sε/2 (α ) - Sε/2 (6t) = φ.

If Sε/2 (α,) Un 4- φ (for all w), since Se (αj - Un φ φ (for all ri), we

can select \xn\ and {?/w} so that

/w e S

Then {α;,,} and {?/„} are u-separated, which contradicts the above men-

tioned remark. Hence there exists an n> such that

ϋ^ Se/2 (α ) = φ, ϋ^ S£/2 (6,) = φ.

We choose further α2, 62 e l/»a so that

Se/2 (<O Se/2 (6,) = φ

We can obtain successively in the same way a sequence of pairs of points

a19 61 a , &3 α , 6Λ ... such that
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an i Sε/2 (bm) (for all ny m)

i.e. {cy.and \bn\ are u-separated, where αn, 6n e I7n. But this contradicts

the above mentioned remark. Thus {Ϊ7nj. is a Cauchy filter.

4. Since R is complete, \Un\ has a limit point α.

If we set An = \f \ &xe Un :/(#) = 0], then it is clear that

Further we can show that / = πΓ /„ C 7 (α) Assume that there

exists a function / such that /(α) Φ 0, / e /. Since /(a?) is continuous,

there exists a nbd Ϊ7(α) of α, in which /(#)>£>0. We choose a nbd

I/o (α) so that I70(α) and ί/c (α) are u-separated, and construct a uniformy

continuous function g such that

gW = 0(xtUϋ(a)),
g ( x } = £ (λ eί7c(α)), ^ » W ^ - C

Since a is a limit point of {Un\9 it must be

ffoM ffnΦ Φ (for all w).

Hence 5r e πΓ An C ^ Hence f\J g^J, f\J g ~^s. Since / is an opera-

tor ideal and L(R, i) consists of bounded functions, it must be J = L(R, i),

which is a contradiction. Hence / C^ 7 (a). But, since / is maximum,

the last inclusion becomes an identity: / = 7(α)..

5. If we denote by S (72, 1) the set of all c-ideals, the above argu-

ment shows that there is a one-to-one correspondence between R and

£ (Λ, i).
When we introduce a uniformity in & (72, i) in the same way as in

the x case of Theorem 3, this correspondence becomes a uniform homeo-

morphism. Hence an operator isomorphism between L (72P i) and L (7έ, i)

generates a uniform homeomorphism between 8(7^,1) and S(722, i), and

this in turn generates a uniform homeomorphisaα between 72, and 722.

Thus the proof of Theorem 5 is complete.

Next we consider the topological ring of all bounded uniformly con-

tinuous functions defined on 72, whose topology is the strong one, and
denote it by E7,(72).

Theorem 6. In order that Rl and 72, are uniformly homeomorphic,
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it is necessary and sufficient^ that Us (R ) and Us (R ) are continuously

isoMorphic.

Proof. Since the necessity is obvious, we prove only the sufficiency.

Let R be a complete metric space. We denote by Us (β) the collection

of all ideals / of U8 (R) such that

1) 7 is algebraically a maximum ideal,

2) / is a principal closed ideal.

(A closed ideal / is called principal, when it is generated by an element.)

1. We shall show that / (α). = {/ 1 / (α) = ft / G ff. (Λ)} e U, (Λ).

It is clear that / (a) is an algebraical maximum ideal.

Further /(α) is generated by p (α, a?) = /(a?) € / (/> — distance*). To
see this we define, for an arbitrary gel (a), a sequence of functions

On OO by

ff» (α) = 0 0*0 (p (a?, ΛΓW) ̂  1/w),

ff» (*) = * P (α;, ΛΓJ - g (x) (0 < /α (α?, ΛΓJ ̂  1/w),

where Nn — \x \ p (α, #)

Then it is easily verified that gn (a?) is bounded and uniformly continuous,

and hence gwe/(α).

Next we construct a sequence of functions hn (x) such that

-0

then ΛΛ is obviously uniform continuous and gn = hn f converges to g in

Hence /(α) is generated by an element /.
2. Conversely let / be any ideal of U8 (/?) and suppose that / is the

only generator of /. Then / must tend to zero on a certain sequence

Now we sail show that every function of I tends to zero on \ap\.

Let gel, and \gn f \ converges to g in 17, (Λ).

For an arbitrary positive number 6, we choose n and pό such that

0 («) I < e/2 (x € Λ), I gnf(aj \ < 6/2 (p ^>p ),
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then for p >p.

[ 0(αp) < 1 flf(αp) - g n f ( a p ) \ + \ g n f ( a p ) \ <£/2 4- 6/2 =8,

i. e. g tends to zero on {ap \.

3. We can see that \ap} has a Cauchy subsequence. Assume the

contrary, then we can select two u-separated subsequences \bn] and {cn\

of \ap\ in the same v/ay as in the case of Theorem 5.

If we set / \bn\ = \f f tends to zero on \bn\ }, then / \bn] is an

ideal and /C^ {&»}• And if we construct a bounded uniformly conti-
nuous function /(#) such that

/(&») = O

/(cj-l (w = l, 2,. . .),

then / € / { 6 w } and /g7. Hence I \ I \bn\, which contradicts the fact
that / is maximum.

4. Hence \ap\ has a Cauchy subsequence, and so a cluster point

from the completeness of R. Hence every function of / must vanish at
α, i. e.

7 d / (α) or 7 — 7 (α), 7 being maximum.

Thus we get a one-to-one correspondence between R and U,(JB), and,

introducing a uniformity in the usual way, we further get a uniform

homeomorphism between R and U,(Λ).

Thus a continuous isomorphism between US(R}} and J7, (Λ2) gene-

rates a uniform homeomorphism between Us (ΛJ and Uβ (Λ2), and this in

turn generates a uniform homeomorphism between Rλ and R2J and the

proof of Theorem 6 is complete.
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