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On Lattices of Functions on Topological Spaces
and of Functions on Uniform Spaces.

By Jun’ichi NAGATA.

G. vSILov, I. GELFAND and A. KOLMOGOROFF 'have shown that the
structure of the ring of continuous functions on a bicompact topological
space defines the space up to a homeomorphism ), 2).

We shall give in this paper an extension of their results to comple-
tely regular, not necéssarily bicompact, topological spaces and to uniform
spaces.

In §1 we consider completely regular (not necessarily bicompact)
spaces. In §2 we consider chiefly uniformities (uniform topologies) of
totally .bounded uniform spaces and of metric spaces. In § 3 we discuss
the special case of complete metric spaces.

§1. Let R be a completely regular topological space. We denote by
L (R) the lattice of all functions defined on R, which are bounded, >> 0,
and which are defined as the infimum of certain (a finite or an infinite
-number of) continuous functions, the order being defined as usual. Then
o (@) = inf @y () is the infimum of @, in L (R), which is denoted by
/‘T\cpr. We mean by an ideal -of a lattice a subset I of the lattice such

that fel, gel imply f\/gel, and that feI, f >¢g imply gelI. But
the lattice itself and the null set ¢ are not regarded as ideals in this
paper. ' '

Theorem 1. In order that two completely regular spaces R, and R,
are hohzeomorphic, it is necessary and sufficient that the lattices L (R))
aond I (R) are isomorphic. v

Proof. Since the necessity of the condition is abvious, we shall prove
only the sufficiency.

1) G. Silov, Ideals and subrings of the rings of continuous functions, C. R. URSS,
22 (1939.) )

¢) I. Gelfand and A. Kolmogoroff, On rings of continuous functions on topological
spaces, C. R. URSS, 22 (1939).
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1. Let R be a completely regular space. We call an ideal I of L (R)
an open ideal, when @, ¢ I (for all v) implies [T\<p, ¢I1. And we call an
ideal J a c-ideal, when J can be represented in the form Iy I,. where
I >, >, >...,and I, (n=1,2,3,...) are open ideals. We denote
by € (R) the collection of all minimum c-ideals of L (R). Then we can
show that for any open ideal I, there ewists a point x, (€ R), at which
there exists a number a, >0 such that

pE)< a (peL (R)) implies p€l.

For assume that the assertion is false. Then, for every point 2 (€ R),
we can find a function ¢, (€ L (R)) such that

¢z @) =0, @,¢l.

Since I is an open ideal, 0 =m[”\ ¢, ¢1; hence I = ¢, which is im-
possible. )

2. Now we take such a point z, for I, and denote by «, the sup-
remum of such numbers @, at .. We remark that if f(z) >a«a, and
f (%) is continuous, then f ¢ 1.

For suppose that feI. Let 3, be a number such that f (z,) >3, >
« . By the definition of «, there exists a function «» (€ L (R)) such that
Y (@) =By Y €I Let = ilrlf g,» where g, are continuous. ~ Since
Vr (@) < f (%), 9y () < f (&,) for a certain y. Hence in a certin aneigh-
bourhood V (x,) of (@) < g, (@)<f(®). Let + (x) < A(@eR).
Then there exists a continuous function 2 on R such that

h(z) =0,

h(z) =4, gV (2,))
Since keI, it must be f\/hel. But 4 < f\/h, and + ¢ I, contrary to
the fact that 7 is an ideal.

3. Let J be any minimum c-ideal of L (R)(J€2(R)), then J =
I, I, where I, >I, >1,>... ," and I, are open ideals. We denote by
x, the above considered x, for I,, and by «, the «, for I,, then wae cn
conclude that &, =, =2, = ...

For suppose, for instance, that x, = 2. We may construct a conti-
nuous function f on R such that
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f(x,) =0,
f(xl) >a'~’

Then fel, and from the above mentioned remark f¢ 7, but this con-
tradicts the fact that 7, I,. Therefore it must be o, =2, =... .
" We denote this point by x,.

4. Now we denote by J (x)) the totality of functions of L (R), which
vanish at z, and by I (x,) the totality of L (R) such that f (z)<a.
~ Then I, (x,) is an open ideal, and J (#,) = ;1 ! (¢); hence J(x,) is a
* c-ideal. Since J(x )11 I,=J, and J is minimum c-ideal, it must
be J = J (x,). Conversely, let J (2,) = {@ | » (&) =0, p € L(R)}. Suppose
that J (x,) >J, where J is a c-ideal, then as we have shown above, there
exists a J(x,) such that J(x)J J(2,). Hence it must be 2, =2,
and hence J () = J, which means that J () is a minimum c-ideal.

5. Thus we have obtained a one-to-one correspondence between
2 (R) and B. We denote this correspondence by 2. Now we shall intro-

0<f@) < A.

duce ‘a topology in £ (R) by closure as follows.
Let 2 (R) > 2(A), then we de_ﬁne that J,(€2(R)) is a point of the
closiire of 2(A): J, e €(A), when and only when

f 1 J, Jn }#’L(R))

7L

Then J (a,) € €(A), when and only when x € A.
For let x,¢ A, then we may construct a continuous function f such
that.
f@)=a+§¢

Fa) =0, @ed), C=I@sare

Suppose that f(x) >a in a certain nbd (= neighbourhood) V (x) of z .
We construct a continuous function g such that
g (x)) = 07 E ]
0<9@ < a.
9@ =a. @EV@)) 8@ =
Then fe {I J, and geJ(xz); hence a<f\Jgef II J, J(x)}.
’ b} . N

T8 T Q4
Since « is an arbitrary positive number, and all functions of L (R) are

3) We denote by {I, J} the ideal which is generated by I and J.
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bounded, it must be
§ I J, J(z)} = L(R), i.e. J(O«‘..)fm)

U

Conversely, let »,€ 4, and pe{ IT J (), J(x,)}, then there exist
- e d
two functions ¢, and ¢, such that

p.€ M J@), peJ (@) and ¢ < ¢,\J @..
Zed

Let & be an arbitrary small positive number. Since ¢, (z,) = 0, and ¢, (x)
is an infimum of some continuous functions, there exists a nbd U (x,) of
z, in which ¢, (2) is less than &.

Let € A- U(x), then, since ¢, (2) =0,

p @) < Max (@, @), @, (X)) = @, (¥) < €.

This fact shows that ¢ (x) may take an arbitrarily small value; hence
§ I J (@), J@)}+L(R), i.e. J(x,)€Q(A). Therefore & is a homeo-
zed .

morphism between £ (R) and R.

6. Now let L(R) and L (R) be isomorphic, then from this isomor-
phism follows the homeomorphism between the spaces L (R ) and ¥ (R),
this Jast homeomozphism implies the homeomorphism between the spaces
R, and R. Thus Theorem 1 is established.

§2. Let R be a general uniform space, and {,} be the uniformity
of R.*) We say that two subsets A and B of R are u-separated, when
and only when there exists a 9, (of §{I,}) such that

S(4, M,)-B = ¢. %)
Now we can show that the uniformity of a totally bounded uniform space
R may be defined by the notion of ¢ u-separation ’.
v Lemma 1. In order that an open covering M of R is a covering of
the uniformity {WM,| x€X} of R, it is necessary and sufficient that
there exists an open covering WM, such that

(1) M, possesses & finite subcovering,

(2) for every M,cM,, there exists M € M such that M, and M°

are u-separated.®)

4) Cf. J. W. Tukey, Convergence and uniformity in topology. (1940).
5) We denote by M* the complement of M.
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Proof. Suppose that M e {IM,}, then there exists a star-refinement
M, in {IM,}, i.e. M, e {M,}, WM< M. % Since R is totally bounded,
M, possesses a finite subcovering, and, for an arbitrary M, € IM,, we may
choose M ¢ M such that S (Mm,f‘JJt;j'(M . Then M, and M° arec learly
u-separated.

Converse'y, suppose that 9 possesses a covering Y@, with the proper-
ties 1) and 2), then M e {M, }. Aé:éunle that the assertion is false, then
for every I, € {IM,}, M> <L M holds. Hence to every x (of %) corresponds
a point ¢ (2) of R such that

S (g (&), M,) & M (for all M cM).

Then o (2 | X) is a function on the directed system X. Since M, pos-
sesses a finite subcovering, there exists a M, (¢ M), in which ¢ (x) is
cofinal.®y But, S (g (x), M,) - M° = ¢ for every M € M ; hence M, and M°
are not u-separated, 'contrary to the assumption. Therefore 9% must be
an element of {9}, and the Lemma 1 is proved.

Next, let R be a metric space, then we can define the uniformity of
R making use of the notion of “u-separation’ as in the case of totally
bounded unitorm spaec.

Lemma 2. In order that an open covering M of R is a covering of
fM,} it is necessary and sufficient that there éxist two open coverings
M, and M, such that )

1) for every M,eM,, there ewxists an M eI such that M, and
M° are u-separated,

2) MAaM,

3) for every sequence of points {a;} such that

S (@, M) S (M M) =¢ (0 =Fm),
(i) if {b,} and f{c,} are two subsets of {a,}, and {b,} - {c,} = ¢,
then {b,} and )kj S (¢, M,) are u-separated.
(i) f{a;} and ItIS” (a;, M,) are u-separated.

Proof. By Se(a), we mean the set of all points with the distance

less than & from a.

6) Cf. J. W. Tukey, loc. cit.
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1. Let Me {M,}, then we may choose M, and M, from {M,} such
that

M <M, M2 <M,
then the above conditions 1), 2), 3) hold.

- 2. Conversely, suppose that 9% possesses refinements %, and Mm,
with the above properties 1), 2), 3) then M e {9,}. For assume that the
assertion is false. Then, for a sequence of positive numebrs ¢, — 0, we
obtain a sequence of points {a,} such that Se,(e,) M (for all MeM).
We remark that by the condition 1) {a,} cannot be cofinal in any element
M, of M. -

Next, there exists for a only o finite number of a, such that
S (a, M,) - S (@, N,) == ¢.
For, suppose that there exists an infinite number of such a,, then,
since W, 2> <M, such a, would be contained in ‘one and the same ele-

ment M, (€ 9IM,), which contradicts the above mentioned remark.
Therefore we can find an =. such that

S(a,M,)-S(a, M) =¢ B =>n,):
3. In the same way we see that there exist for au, on]yl'a finite
number ot @, such that
S (@nsy, M) - S (a,, M,) == .
Therefore we can find an n, ("> n,) such that
S (n, M) - S (@, M) =¢ (n_>n,).
Repeating the above processes we obtain a sequence of integers =,'<”
n,< ...< m,<.\. such that ‘
S (@ M) - S (@, M) = (0 > ).
For simplicity we rewrite an,an, ... and &n,én, ... as @, @, ... and
&, &, ... respectively, then for this {a,} the condition 3) holds.
4. We then show that there exist an infinite number of n such that
(a) Se,(@,) S (@ M) =¢  (for all m == n).
For, assume the contrary, then we can find an integer N such that, for
each » > N there exists an m, such that



172 Jun’ichi NaGAaTa

"(B) Sen (a‘n') - S (“mm mg) ‘_‘1: ¢°

The sequence {m,} cannot cantain a bounded subsequence {m,,}, for
otherwise we may assume without loss of generality that m,,< =, for
every pair {h, k}, and hence by 3) (i) {a,.,} and 37 S (@m,w, M,) are
k
u-separated, which is easily seen to contradict the last inequality ().
Therefore, we can choose an increasing sequence {= (k)} such that

muk) >n (k—1), n (k) >m,;_,, (k=2, 3...).

Then by (3) f a,,} and 24 S(am,,(k), M) are not u- eeparated while on

the other hand by 3) (i) they must be u-seaprated. This contradiction
assures the validity of the praposition («).
5. We have therefore Se, (a,) H Sc (@m M,) for an infinite number

of », and hence for such =
Ssn (a’n)' Hm=] Sc (a‘m! gﬁg) = SEn (a'n) * Sc (al,;y E,R,) 7*: ¢

(We note that Mp2 < M, < M). Therefore {a,} and II,,., S°(a,, M,) are
not u-separatd, which contradicts 3) (ii). From this we can conclude
that the lemma is valid.

Now let L, (R) be the collection of all function ¢ (2) such that

(1) () is a bounded function on R,

2 @@ =0,

(3) @ (x) is uniformly continuous except at a certain finite number
of points 2, ,, ..., ®,.

4) @) > @) in a certain nbd U, (2,) of 2,(1 =1, 2,...,n). If
we define the order in L, (R) as usual, L, (R) forms a lattice. We have
then the following

Theorem 2. Let R, and R, be two metric spaces or totally bounded
uniform spaces. In order that R, dnd R, are uniformly homeomorphic.
it is necessary and sufficient that the lattices L, (R,) and L, (P) are
zsomorphzc

Proof. Since the necessﬂ:y is obvious, we shall prove only the suffi-
ciency.

We denote by 2, (R) the collection of all minimum c-idea's of L, (R).
We introduce in £, (R) a topology in the same way as in §1. Then, by
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using uniformly continuous functions in place of continuous functions,
we can prove similarly as in § 1 that R and 2, (R) are homeomorphic. (To
a point z, (€ R) corresponds J(x,) = {f|f(x) =0, feL,(R)}). We
denote this homeomorphism by 2,. o
Now we introduce the notion of u-separation in £,(R) as follows.
Two subsets £,(4) and 2, (B) of €, (R) will be called u-separated, if
and only if

{ 11 J, I J}=L,(R).

TeQu)  TeLym
Then 2,(A) and 2, (B) are u-separated if and only if A and B are u-
separated in R.

For let A and B be u-separated, then there exist two open sets U
and V such that AU, BZV,U-V =¢, where A and U° as well as
B and V¢ are u-separated. Therefore we may construct uniformly con-
tinuous functions f and g such that

f@)=0 (zcA),

0<f(@) < a,
=a (zelo, sfn=a
g@) =0 (xeB),
0< ) < «.
=« (@eV, =@z a
Since fe¢ I Jand ge II J, it must be
EER LN ED T e8(B)
= ef I1 J, I1 J}.
“« AN §Su<A> L’u(m}

Since « is an arbitrary positive number, this shows that
f I J, 11 J} = L, (R),

04 LB

that is, ¥,(4) and £, (B) are u-separated.
Conversely, let A and B be not u-separated. Let o be any €lement

ot {-I1 J, IT J}, then there must be o, and ¢, such that
Q04 LB

p<p\Jp, € NJ, g€ IIJ.
04 J

Ry (B
We denote the excepted points of @, and ¢, by ¢, @,...,a, Since ¢,

and ¢, are uniformly coutinuous on R—3; @, we can choose for any
positive number ¢ an M, such that
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| (@) — 9, 0) | <& | (@) — g, (0) | <&
for ae S (b, sJﬁw), a,b¢s a, and such that e, ¢ S (a;, M,) for ¢ - 7.
"~ -+ Now, since A and B are not u-separated, there exist ac A and be B
such that M, >M >a, b. Let A-B = ¢, then a--b and ¢ and b cannot
be’ excepted points at the same time; for instance a is not an excepted
point of », Since b is not an excepted point of ¢, from the second of
the last inequality we have ¢, (¢) < ¢, (b) + ¢ = &, and hence

@) < @, (a')\/ P, (@) = 0\./ Py (@) < 6.
Hence ¢ (#) can take an arbitrarily small value.

Since this fact is obvious when A -B = ¢, we conclude in all cases

that
] i’}thA)J’ Qulcln I} == Ly, (R),
that is, £,(4) and &, (B) are not u-separated.

Now it is easy to prove Theorem 2.

Suppose that R is a metric space or a totally bounded uniform space.
Since in g, (R) the notion of u-separation is introduced, we can introduce
a uniformity in £, (R), by the above mentioned lemmas. Then, since the
u-separation of A and B is equivalent to that of 2,(4) and £,(B), F
and g, (R) are uniformly homeomorphic.

Now, let 2,(R,) and £, (R,) be isomorphic, then £,(R,) and %, (R,)
are uniformly homeomorphic; hence E, and E, are uniformly homeomor-
phic. Thus the proof of Theorem 2. is complete.

Now, let R be a completely regular topological space. We introduce
the weak topology in the ring C (R) of all continuous functions deﬁned
on R, i.e, for a certain feC (R), we choose a finite system of points
¢,...,0,(¢ R) and nbds U, of f(a) (i =1.2....,%), then the set
f9|9)eU, i=12,...n), geC(R)} is called a nbd of f in C(R).
It is obvious that C (R) forms a topological ring. Then we get the follo-
wing. '

‘Theorem 3. In order that two completely regular spaces R, and R,
are homedm'arphic, it is mecessary and sufficient that C(R) and C(R,)
are continuously isomorphic.
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Proof. Since the necessity is obvious, we prove only the sufficiency.
Let R be a completely regular space. We denote by G (R) the collec-
tion of all closed maximum ideals of C (R), then it is obvious that

I(@)=1{f]f(a) =0} cC(R)
Conversely consider any ideal I of € (R).

1. Put Fruym=1{a|2€R, |f(x)| <1/n} (fel), then the inter-
section of any finite number of them is non-vacuous, i.e.

Frpyn Fifoime oo Ffy1/n, =+ .

For, let Min (1/n,) = 1/n, f =f; + fs + ... + f> €1, then, since f < 1/n®
implies f; < 1/n* and | f, | = 1/n, we have

Ffm < qu Ffi,yn < Hf:: Fr,1m

Now if |f(x) | >1/»n* (for any x€ R), it would be I= R which is
impossible, hence Ff, 1/n: 4+ ¢, and it follows that II, Ff, 1/n == ¢
Accordingly {Ff 1a|fel, n=1, 2,...} = F forms a filter. We remark
that on this filter, all functions of I tend to zero. _ o

2. Next we can prove that § has a cluster point. For, suppose
that ¥ has no cluster point. Then for any point 2 of R, there exist a
nbd U,(x) of « and Ff,1/» such that U,(z)- Ff,1yn = $. Now, for
every nbd U (z) contained in U, (x), we cbnstruct a continuous function
Py (@) such that

Py (n) (@) =1, ,
Pyea, (@ =0 (ae U’ (@)),

0 < Ppeay = 1.

Then ¢, €1. (For, if @y, ¢1, Since I is maximum, it would be
§Pray 1} = C (R).
On the other hand, if f€ §{@,, I}, f may be represented in the form
V' @p.,, + 9 (gel). Therefore f must tend to zero on &, which. is a
contradiction. Hence it must be ¢, ,, €1I.) :
Let @, a,...,a, be any finite system of points of R. We construct.

as above = functions ¢, ayy ..., Pya,, where U (a), ..., U (a,) are so
chosen that a, ¢ U (a;) (i ¢ 7).
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Then @ycay, + - .. + Ppean, =pel,
pla)=1 (=1, 2,...,n)
Hence every nbd of 1 (a point of C(R)), meets I, i.e.
lel=1"I
Hence I = R, which is a contradiction. Thus & has a cluster point a.

3. We have therefore I CI(a)= {f|f(a)=0}. Since I is maxi-

mum, we have ‘ |
f = I(a).

Thus we have obtained a one-to-one correspondence between R and
€ (R). We introduce now in € (R) a topology in the same way as in
Q(R) in the proof of Theorem 1, then the above correspondence is a
homeomorphism. Hence a continuous isomorphism between C (R,) and
C (R) implies a homeomorphism between € (R,) and € (R,), and hence a
homeomorphism between R, and R,. Thus the proof of Theorem 3 is
complete. o

In the case of a metric space or of a totally bounded uniform apace
R, we denote by U (R) the topological ring of all bounded uniformly con-
tinuous functions, the topology of U (R) being the weak topology, we can
prove in a similar way the following.

Theorem 4.‘ In order that R, and R, are uniformly homeomorphic,
it is necessary and sufficient that U (R)) and U (R,) are conlinuously
isomorphic.

§ 3. From now on we concern ourselves especially with a complete
metric space B. We consider the lattice of all bounded uniformly con-
tinuous functions defined on R, which are 0. We regard this lattice
as having positive integers as operators and denote it by L (R, i).

Theorem 5. In order that R and R, are uniformly homeomorphic,
it is necessary and suficient that L (R,1) and L (R,1) are operator
isomorphic. . ‘

Proof. Since the necessity is obvious, we prove only the sufficiency.

We mean by an open cut a subset I of L (R, i) such that
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f- €1 (for all o) imply N\f, ¢I (if N\ f, exists).
7 T

Further we mean by a c-ideal J a maxinum operator idéal) in L(R,1)
such that J = 1I; I, where I, >I,>,...,and I, are open cuts.
1. Let ' ;
I(@)=1{f]|f(@) =0}, acR,
J.(@)={f | ga: xeSyn(a) f(x)< 1/n}.

To see th‘at J,(a) is an open cut, we prove that: if f, ¢J, (a) (for all v)
and f = /\f, has meaning, then f¢J, (a). For, suppose on the contrary
T

that feJ, (a), then there would exist 2, such that

f)<1/n, @,€S1n(a).
Since f is continuous, it must be f(x)<1/n in a certain nbd U (x)
(C Syn(a)) of . We construct here a function g such that

g@)=a (f&)<a<l/n),
g@) =0 (xelU'(x))
0<g@<a gel (R, ).

Then f\/geL(R, i), f\Ug@)=a >f(x) i.e. f\/g >f. Take any
fr» then, since f, ¢J, (a), we get f, () >1/n">g (x) (@€ U (x,) T Si/n(a)).
Therefore f, >f\/ g, i.e. f\/ g is a iower bound of {f,}, which con-
tradicts the fact that f is the infimum of {f,}. Thus we have f¢J, (a).
Therefore J, (¢) is an open cut.

2. 1t is clear that

I(a) = II; J, (a).

and I (a) is a maximum operator ideal. Hence I (a) is a c-ideal.
Conversely let J be any c-ideal. Then J may be represented in the
form  J = II; I, where I, >I,D,...,I,areopencuts. (n=1, 2,...,).
For I, there exists an open set U such that, if there exists a point
x of U at which f(x) vanishes, then feI,. For otherwise, there would
exist for each open set U of R a point x, and a functon f, (¢ L (R, 1))
such that

xzyeU, fo(@,) =0, fo 1,
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Since {x,} is dense in R, it must be /\f, = 0¢ 17, which is impossible.
3. We dénote by U, the sum of all open sets. U, which have the

above mentioned property about I,. Then it is clear that U, > U, >... .
Now we can show that {U,} is a Cauchy filter. To this end we

remark first that there do not exist sequences {a,} and {b,} such that

a,, b,eU, and that {a,} and {b,} are u-separated.
For let {a,} and {b,} be u-separated, where a, b, < U,, then there exist
open sets U and V such that
fa,} U, {b,} TV, U V =¢.
fa,} and U° as well as {b,} and V° are u-separated. We construct uui-
formly continuous functions f and ¢ such that
fla)=0m=12...)
f@)=1(@el),
g9b,)=0m=1, 2,...),
g@ =1 (xeV),

0<f@=<1,

0<g@<<L L

Then, since f,gell; I,=J, wehavel =f\/geJ. Hence J = L (R, 1),
which is impossible.

Now assume that U, is not a Cauchy filter, and, that, for a certain
&>>0, each U, is contained in no Se¢(a) (a€ R). Then there would exist
a, b,€ U, such that Se/2(a)- Se/2(b) = .

If Se/2(a)- U, = ¢ (for all n), since Se (a,)-U, =+ ¢ (for all =), we
can select {x,} and {y,} so that

2,€8¢2(a) U, and y, €8¢ (a) U,

Then f{x,} and {y,} are u-separated, which contradicts the above men-
tioned remark. Hence there exists an #, such that

,, Uny - Sesz(@) = ¢, Uny - Se2(b) = ¢.
We choose further a,, b, € Un, so that
Se/2(a,) Se/2(b.) = ¢.

We can obtain successively in the same way a sequence of pairs of points
a,b;a,b,;a,b,; ... such that
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@, & Ses2 (bm) (for all u, m)

i.e. {a,}.and {b,} are u-separated, where a¢,, b,c U,. But this contradicts
the above mentioned remark. Thus {U,} is a Cauchy filter.

4. Since R is complete, {U,} has a limit point a.
If weset A, =i{f|daxecU,:f(x)=0}, then it is clear that

11, A, I ().

Further we can show that J =11, I, I(a). Assume that there
exists a function f such that f(e¢)= 0, f € J. Since f(x) is continuous,
there exists a nbd U () of @, in which 7 (x)>>¢&>>0. We choose a nbd
U, (a) so that U, (a) and U° (a) are u-separated, and construct a uniformy
continuous function g such that

g@)=0(@eU,(a))

g(@) =¢ (xel(a)) 0<g@)<e.

Since « is a limit point of {U,{, it must be
Uy(a)-U,=-¢ (for all =n).

Hence gell; A, J. Hence f\/geJ, f\/g >¢& Since Jis an opera:
tor ideal and L (R, i) consists of bounded functions, it must be J = L (R, i),
which is a contradiction. Hence J C I(e). But, since J is maximum,
the last inclusion becomes an identity : J = I ().

5. If we denote by L (R, ) the set of all c-ideals, the above argu-
ment shows that there is a one-to-one correspondence between R and
(R, D).

When we introduce a uniformity in £ (R, i) in the same way as in
the case of Theorem 3, this correspondence becomes a uniform homeo-
morphism. Hence an operator isemorphism between L (R,, i) and L (R, i)
generates a uniform homeomorphism between £ (R,, i) and ¢ (R, i), and
this in turn generates a uniform homeomorphism between R, and R,.
Thus the proof of Theorem 5 is complete.

Next we consider the topological ring of all bounded uniformly con-
tinuous functions defined on R, whose - topology is the strong one, and
denote it by U, (R).

Theorem 6. In order that R, and R, are uniformly homeomorphic,
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it is necessary and sufficient, that U,(R) and U,(R) are continuously
isomorphic.

Proof. Since the necessity is obvious, we prove only the sufficiency.
Let R be a coimplete metric space. We denote by 11, (R) the collection
of all ideals I of U, (R) such that

1) I is algebraically a maximum ideali,

2) I is a principal closed ideal.
(A closed ideal I is called principal, when it is generated by an element.)

1. We shall show that I(a)={f|f(a) =0, feU,(R)}el, (R).

It is clear that I (e) is an algebraical maximum ideal.

Further I(a) is generated by p (e, ) =f(x)eI (p = distance). To
see this we define, for an arbitrary gel (a), a sequence of functions
g, () by

g (@) =g @) (p (x, Nu) =1/m),
9,(@) =mnp@, N,)-g @) 0<p@ N, <1l/n),
9o (@) =0 (@ eN,),

where N,=f{x|pa 2)<1/n}.

Then it is easily verified that g, () is bounded and uniformly continuous,
and hence g, €I (a).
Next we construct a sequence of functions &, (x) such that

“h, (%) =g, @)/f@&) (@¢EN,),
= 0 ) (LU € Nn)’

then h, is obviously uniform continuous and g, = h, - f converges to g in
U, (R).

Hence I (a) is generated by an element f.

2. Conversely let I be any ideal of 1, (R) and suppose that f is the
only generator of I. Then f must tend to zero on a certain sequence
fa,}.

Now we sall show that every function of I tends to zero on {a,}.

Let gel, and {g,-f} converges to g in U, (R).

For an arbitrary positive number & we choose #» and p, such that

| guf (@) — g @) | < &/2(xeR), | g,f(a,)]| < &2(m=p)
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then for » > p,

9@ | <196, — 9.7 @) +1|9.7(@) | <&/2+¢/2=¢
i.e. g tends to zero on {a,}.

3. We can see that {a,} has ¢ Cauchy subsequence. Assume the
contrary, then we can select two u-separated subsequences {b,} and {c,}
of {a,} in the same way as in the case of Theorem 5.

If we set 7{b,} = {f|f tends to zero on {b,} }, then I{b,} is an
ideal and 7 I§b,}. And if we construct a bounded uniformly conti-
nuous function f (2) such that

f,) =0

fleo=1 n=1,2,...),
then fel{b,} and f¢I. Hence I : I{b,}, which contradicts the fact
that 7 is maximum.

4. Hence f{a,} has a Cauchy subsequence, and so a cluster point.
from the completeness of R. Hence every function of 7 must vanish at
a, i. €.

I CI(a)or I=1I(a), I being maximum.
Thus we get a one-to-one correspondence between R and 1, (R), and,
introducing a uniformity in the usual wa¥, we further get a uniform
homeomorphism between R and U, (R).

Thus a continuous isomorphism hetween U, (R)) and U, (R, gene-
rates a uniform homeomorphism between 1, (R,) and 1, (R,), and this in
turn generates a uniform homeomorphism between R, and R, and the
proof of Theorem 6 is complete.
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