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On hypergroups of group right cosets
By Yuzo Utumr

In this paper we present certain results for the so-called hyper-
groups of classes, or more precisely, hypergroups of (group) right cosets.
In § 1. we give several definitions. For any hypergroup of right cosets
we give in § 2. a representation by permutations which will .be used to
characterize such hypergroups. By means of some partitions of elements
of a hypergroup of right cosets we may define new hypergroups of
right‘cosets which are treated in §3. Some results on such kind of
partitions for cogroups are given in §4. This investigation is applied‘
to obtain a counter-example for the conjecture of J. E. Eaton that every
cogroup is isomorphic to a hypergroup of right cosets. The author ex-
presses many thanks to Prof. K. Shoda for his kind encouragement
and valuable remarks.

S 1.

A set M is called a hypergroupoid if a product ab is defined to
be a non-empty subset of M for every ¢ and b in M. We define the
product ST for any two subsets S and 7 of a hypergroupoid M as the
set-sum of all products st of sin S and ¢ in 7. An element e of M
satisfying the relation ae : @ for any e in M_is called a right unit of
M. Similarly we define a left unit and a {wo-sided unit. A one-
to-one mapping 6 of M onto itself is called a (frz'g'ht) multiplicator of
M if ab s c implies ab®sc¢® and conversely. The totality of multiplica-
tors of M forms an ordinary group which will be denoted by R(M). A
subgroup T of R {M) is called a {right) lransferor group of M if it satis-
fies the condition : if @b = b’ and ac = ¢’ then there exists a mapping 64
in T such that b°==c¢ and b'°=¢’". If T is a transferor group of M
then any group U between T and R (M) is also a transferor group of M .

Let M and N be two hypergroupoids. A many-to-one mapping ¢ of
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M onto N is called a homomorphism?) if it satisfies the eondition :

1) abac in M implies a°® s¢® in N, and

2) if a’" s ¢" in N then there exist a,, b, and ¢, in M such that
a"=a, b,°=0" ¢,"=c" and a0, 2¢,.

If a homomorphism ¢ of M to N is one-to-one, then ¢ is called an
isomorphism. An isomorphism onto itself is called an automorphism.

Let F be such a family of subsets of a hypergroupoid M that covers’
M, and S, T be elements of F. If we define a product of S and 7' as the
set of elements of F which have a non-empty intersection with ST,
then F forms a hypergroupoid. Particularly if F consists of all the classes
of a partition of M, then F is called a partition hypergroupoid.of M .
We shall consider here the rather important notion of (right) scalar
partition hypergroupoid which conSists of all the elements «, b, ...
of M and the composition of which is given by @ +b = {a}b where {a}
is the class containing « .

A hypergroupoid M is called ,a hypergroup ®) if the following two
conditions are satisfied :

1) The multiplication is associative.

2) For any two elements a -and b of M there exist # and y such
that z¢ b and aysb. '

Let G be an ordinary group and H be its subgroup. The partition
hypergroupoid with respect to the right coset decomposition of G by H
is clearly a hypergroup which is called .a hypergroup of (9group right)
cosets ®) and denoted by Cf/H . A hypergroup M is called a D-hyper-
group*) if M is isomorphic to a G/H. If H contains no subgroup,

except e, which is normal in G, we call the group pair (G, H) irre-

1) Cf. J.E. Eaton, Associative multiplicative systems, Amer. J. of Math., v. 62 (1940),
pp. 222-32.

2) Cf. F. Marty, Sur une généralisation dé la notion de groupe, gttonde Skandinaviska
Matematikerkongressen i Stockholm 14-18 Augusti 1934, pp. 45-9. M. Krasner, Sur la
primitivité des corps Y-adiques, Mathematica, v. 13 (1937), pp. 72-191. M. Dresher and
O. Ore, Theory of Multigroups, Amer. J. of Math., v. 60 (1938), pp. 705-33.

3) It is also called a ¢ hypergroup of classes”. Cf. M. Krasner, loc. cit.

4) It is so-called “hypef'groupp", Cf. M. Krasner, Sur la théorie de la ramification
des idéaux de corps non-galoisiens de nombres algebriques, (Thésé Paris) (1938).
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ducible.5) * The irreducible group pair is not uniquely determind by M
as may be shown easily by examples. Two group pairs (G,, H,) and
(Gy, H,) for a D-hypergroup is called equivalent if G, and H, are iso-
morphic to G, and H, resp. in the same mapping.

A hypergroup is called a (right) cogroup®) if it satisfies the follow-
ing conditions :

1) There exists a left unit e such that ea contains only one element
¢ for any a in C: ea ==

2) If abs=c there exists b’ such that bb’ s e and ¢b’ s a.

3) If ab contains k") elements then ac also contains % elements
for any ¢ in C.

4) If the intersection of ac and be is not empty, then ae=0.

We can easily prove that any D-hypergroup is a cogroup. An ele-
ment o is called e-conjugate to b if @ ¢ be: the e-conjugation is evident-
ly an equivalence relation. A left unit e of a cogroup is a two-sided
unit ; it is uniquely determined and b = ¢ if and only if basc. Then
b is called an inverse of «. If a is e-conjugate to «’ then abse
follows from «’b 2 e. Conversely, if ab:e and a'bse¢ then a is e-
conjugate to a’.

8 2.

Lemma 1. Let M and N be two hypergroupoids, and M be homo-
morphic to N by a homomorphism 6. Let M, be the parilition hyper-
groupoid of M with respect to the partition given by the equivalence
which is defined in M by the homomorphism 6. Then M, is isomorphic
to N. |

This can be proved in the usual way.

5) The group pair is called “representation” by M. Krasner. Cf. M. Krasner, La
caracterisation des hypergroupes de classes et la probléme de Schreier dan les hypergroupes,
C. R. Acad. Sci. Paris, v. 212 (1941), pp. 948-50 : Errata, ibid. v. 218 (1944), pp. 483-4:
Rectification 4 ma note précédente et quelques nouvelles contributions a la théorie des hy-
pergroupes. ibid. v. 218 (1944), pp. 542-4. I could not see these papers, but saw only
reviews by R. Hull and D. C. Muldoch.

6) Cf. J. E. Eaton, Theory of cogroups, Duke Math. J., v. 6 (1940), pp. 101-7. J. E.
Eaton has discussed his cogroups in finite case only, but here we drop this restriction and
add one axiom which is the theorem 3 of the paper cited above.

7) Here k& may be an infinite cardinal number.
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Theorem 1. A hypergroupoid M with a right unit e is & D-hyper-
group if and only if R (M) is o transferor group of M.

Theorem 2. FEvery irrdeucible group pair of a D-hypergroup M
is equivalent to & group pain (T, T.) where T is o transferor group
of M and T, is the subst of T ‘consisting of all the mappings in T
which make the unit e of M invariant. Conversely, (T, T, is an
irreducible group pair of M for every transferor group T of M.

Proof. Let M be a D-hypergroup and (G, H) be one of its irre-
ducible group pairs. By m, we denote the element of M corresponding
to the coset Ha for every @ in G. Then the mapping

plx): my > Moy

is a multiplicator and all such multiplicators forms a group T. Let e
be the unit of M. We denote by 7., the totality of elements of T" which
map e to m. Then the group pair (G, H) is clearly equivalent to (T,
TS. If MmaMy 3 M, and mem,' s m,’ then HaoHb D He and HaHb' >
He' ; therefore Hahb-—= Hc and Hah'b'== Hc¢' for some 2 and &'
in H. Let y=0b"%"'h'b’. Then Hby-=Hb' and Hey—=Hce!, i.e,
M = my and mf?==my. This implies that T is a transferor
group of M.

Conversely, let M be a hypergroupoid with a right unit e. We
assume the existence of a transferor group 7 of M. Now we prove
that 7 is homomorphic to M . We make o map to e?’, then the mapping is
“onto”. By the assumption acae, we get a’cae® for any ¢ in M.
Thus e ¢ e’e’. Conversely let e’e’ s e?.” Since e’e s ¢?, there exists = in
T such that e"=¢’ and e~ == ¢*. Therefore, by lemma 1,AT/Te is "iso-
morphic to M . Evidently T, contains no subgroup, except e, which is
normal in 7.

S 3.

A partition M == 31 {a} of a D-hypergroup M is called a (right) co-

partition if the scalar partition hypergroupoid of M with respect to the

partition is also a D-hypergroup.
As an immediate consequence of the theorem 1, we prove
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Theorem 3. A pariition M ==3'{a} of ¢ D-hypergroup M is a co-
partition if and only if for each pair a and b with {a} =={b} there
exists a multiplicator 0 of the scalar partition hypergroupoid M* of
M with respect to the partition, such that e’ =e and a"=0.

Proof. Let M == 3!{a} be a copartition. If {a} == {b} then a xe=
{a}e== {ble-=bxe=b. Since axeza, by the theorem 1., there exists
0 in R {M*) such that e¢"=e¢e and a’°= 0.

Conversely, let the condition of the theorem be satisfied. If a «xb:z¢
and axb’s¢’ then there exist a, and «, such that {a,} = {a,}={a},
absc and ab'=¢’. From aeze, and a,esa,, there exist multipli-‘
cators p and o of M such that b°=e, ¢°==a,, ¢’==b' and a,” ==c’.
By the assumption, there is a multiplicator 6 of M* such that e’ =—e

and @, = a,. Hence b°*° =05’ and ¢ — ¢,

Theorem 4. Let H and K be two subgroups of group G such that
HEK =KH. Then HK/H is a scalar partition hypergroupoid of K/
K —~ H with respect to a copartition.

Conversely, if M* be a scalar partition hypergroupoid of a D-hy-
pergroup M with respect to a copartition, then R (M*)= R,(M*)R (M)
and R,(M)=R,M*y ~R (M) in the symmeinic group on M, where
R, (M*) and R,(M) are the totalities of elements in R (M*) and R (M)
resp. which make unit e invariant.

Proof. It is sufficient to prove that (HaH —~ K) (Hb ~ K== HaHb
~ K. The left side of the expression is evidently included in the right
side. Let h,alb-—=F be an arbitrary element in the right side, and
hb—=1Fk' be an element in Hb ~K. Then kk'"' =hahh,' is in
HeH ~K .

To prove the other part of the theorem it is sufficient to prove that
R(M*y=R, M*)RM). Clearly, by the assumption, R (M*) >R (M),
hence R (M*) >R,(M*)R (M). Let 6¢<R (M*). Then there exists p in
R (M) such that e” ==e". Now e ' ==e¢ and 0 p~' ¢ R, (M*), hence R (M+)
B, (M*)E(M).

Theorem 5. The parlilion join of two copartitions of a D-hyper-

group is also a coparitition.
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Proof. Let M, and M, be two scalar partition hypergroupoids with
respect to the given two copartitions resp. And let 7 be the join group
of R(M,) and R (M,) in the symmetric group. Then, by the theorem 3,
we may easily prove that 7' is a transferor group of the scalar ‘partition
hypergroupoid with respect to the join copartition.

Theorem 6. Let A be a subgroup of the automorphism group of
o D-hypergroup M and M ==} {a} be a partition of M to transitive
systems with respect to A. Then M =73} {a} is a copartition.

"_I‘his follows easily from the theorem 3. In fact, every automor-
phism in A is a multiplicator of the scalar partition hypergfoupoid of
‘M with respect to the partition. '

Theorem 7. Let A be a subgroup of the aulomorphism group of
o group G and H = GA be the holomorph of G for A. Lel H=3"AhA
be the double coset decomposition of H by A. Then the partition
G=31(AhA ~ G) of G coincides with the partition into the transitive
systems with respect to A and itis a copartition. The scalar partition
hypergroupoid of G with respect to the copartition is isomorphic to
H/A. , :
Proof. Let G==3! {¢} be the partition of G into the transitive
systems of G with respect to A . In the decomposition H=3}ArA, we
can assume that 2 is in G. If AhAd ~G=2y9,, ¢., then ¢, = a,ha,’
and g, = aha,’ where a;, /', az, ay’ arein A. If g/ = a./"'a,'a,ha,’
then g¢/g,'¢A and ¢'=[{(a,)"'a'} 'asha,’[(,")"a']eG.  Hence
g'9; ¢ A ~G, therefore g,==g'= g,(Ca>7='], Conversely if G=g,,
g. and ¢,°~=g, for @« in A. then ¢g,=«a 'g,xc Ag,A. Hence two par-
titions G = >1(4AhA ~ @) =3 {a} coincide. The second part of the
theorem follows easily from the first part of the proof of theorem 4.

8 4.

Theorem 8, Let C be a cogroup and C=>){a} be its partition
such thot a e {a}. Then the scalar partz‘iion hypergroupoid C* of C
with respect Lo the partition is a cogroup if and only if the partition
satisfies the condilion :

1) {e} =e for the unit ¢ of C, and
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2) {{a}b Y} == {a} (b}~ where { {a} b} is the sel-sum of {c} for
all ¢ which is conlained in a'b~' with a' < {a}, and b is some tnver-
se of b, and {b}~' is the set of all inverses of all elements in{b} .

Proof. By + we denote the multiplication in C', and byl — 1 & the
inverse in C%, that is, ¢ +b = {a} b and a** xa¢se. From the assump-
tion, {a} < {a}e< {a} and hence {a} = {ale=axe. If C* forms a
cogroup, then b xe=Oxe)y. In fact, b7 xe=0" xe=(0 re)y'* >
(bre)' and let x<b'xe, then e (b« e)** and there exist y ¢ b « e such
that {yjxz =y «z:e, hence there exist y' ¢ {y} == y x e=="0 x ¢ such that
y'wze or y' =, therefore x:< b xe)', i.e, btxe(bxre)?, hence
blre=0bre). Now {ej =exe=¢, {{a}D7Y ={(axbVxre=0¢«{"
+e)==ax{bxe) ' = {a} {b}* which prove the first part of the theorem.

Conversely, let the partition C = 2 {a} satisfies the conditions above.
If a—=e in 2), then {67!} == {b}~! by 1), and { {¢}db~'} = {a} {071} by
2). Since every element in a cogroup is an inverse of some element, we
obtain {{a{b} == {a} {0} . We shall prove now that the axioms of co-
groups is satisfied in C*. Since (@ « b) x ¢ = {{a}b} ¢ = {a} {b} ¢ = {a}
(bxc)=a«(«c), the multiplication is associative. Let o, b be two
elements, then there exist « and y such that exsb and ya =56, hence
axxsb and yxasb. exa-={elo=ea=a. If axb=¢c or {a}Dsc
then ¢'bsc for some a'< {a} and afccd™* for some b~!, hence a ¢ {a’}
< {{e}b7Y = {c} {b} 7!, therefore ae {c}b'==cxb’ for some b'ec {b}!
and b «b' = {b}b'=2e. {a} is a set-sum of certain number of e-conju-
gate classes of C: {a} =3l ae. But if ae-=-ae then b ~ab is
empty by the axiom 4 of cogroups. Hence the axiom 3 for C* follows
from the same for C. If ax¢c ~bxczd, then a’'c ~b'csd for some
a'c{a} and b’ ¢ {b} . Hence a’ecb’. axe= {a} >a’'e=0'. Therefore
@ +e {b'} sb, which completes the proof. \

The above restriction ¢ e¢< {a} is not essential in the sense that
the two partitions C =>} {a} = >} {a}e define the same scalar partition
hypergroupoid.

Now let Z == [a] be a cyclic group of order 8. Then the partition

( / L3 \ I b 5 6
\6), b, as, alv); S/28) (LS, @, a’)
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of elements of Z to three classes evidently satisfies the conditions 1)
and 2) in the theorem 8. Hence the scalar partition hypergroupoid Z*
of Z with respect to the partition forms a cogroup. We shall prove now
that Zx is not a D-hypergroup. Obviously, a + a =(e, @ @°), a*a®=
(¢, &°, a°), a+xa®=(a% a*, a"), a+a‘={e, & a°) and a*a®*=(a,
a®. If Z* were a D-hypergroup, then by the theorem 3 there would
exist a multiplicator 6 of Z* such that ¢’ —= e and @’ —=a'. From axa
s a? follows axa*==ax*a’=(a?)’. But (0°) =+ e=e¢’. Hence (¢*) =&’
or a° First, let (a®)’==da’. Then axa®=a«x(a®°s(a®’ since axa’s a’.
But (a%)° = a*=a’. Hence (¢%)’ = a* or «’. On the other hand, a¢* a2 a’,
axat=a+a’s(a®’, (&’ 4 e=¢" and (a°)’ = @’ =(a?)’, whence (¢*)’ = a".
Since a x ¢° 2 d°, ax 0’ = a x(a®)’ 2 (a)’, (a°)’ = a* = a’, thus we get (0°)° =
or ¢° which contradicts to an earlier expression. Next, let (a®)® = a’.
Then, in a similar way, we can prove that (a®)°=a or «® and (a®)° = g?
or ' which is also a contradiction. Therefore Z* is not a D-hypergroup,
while it is a cogroup.

(Received November 12, 1948)

"Added in proof. Letr,s, s/, and t be elements of a D-hypergroup. If s and s’
are e-conjugate, then 7s ~ {¢} and 7s’ ~ {t} contain the same number of elements. But
cogroups have not necessarily, this property. In fact, in Z* defined above, a %' a2\ {a}
==q, but a ¥ a3 ~ {a} ==a* and a7, while {42} == {a3}.' (February 11, 1949)





