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Abstract
In this paper we introduce a general notion of a symmetric cone, valid for the

finite and infinite dimensional case, and prove that one can deduce the seminegative
curvature of the Thompson part metric in this general setting, along with standard
inequalities familiar from operator theory. As a special case, we prove that every
symmetric cone from a JB-algebra satisfies a certain convexity property for the
Thompson part metric: the distance function between pointsevolving in time on two
geodesics is a convex function. This provides an affirmativeanswer to a question of
Neeb [22].

1. Introduction

Let A be a unitalC�-algebra with identitye, and let A+ be the set of positive
invertible elements ofA. It is known thatA+ is an open convex cone in the space
H(A) of hermitian elements. The geometry ofA+ has been studied by several au-
thors. One approach has been to endowA+ with a natural Finsler structure and metric
and use these for a substitute for the Riemannian geometry commonly considered in
finite-dimensional examples. One particular focus in this geometry has been the study
of appropriate non-positive curvature properties. One prevalent notion of non-positive
curvature is a purely metric one, that of convexity of the metric. In [3], [4] and [9],
Andruchow-Corach-Stojanoff and Corach-Porta-Recht haveshown the convexity of the
distance function along two distinct geodesics and its equivalence to the well-known
Loewner-Heinz inequality. In [22], Neeb established an appropriate differential geomet-
ric notion of seminegative (equal non-positive) curvaturefor certain classes of Finsler
manifolds.

Our approach is somewhat different from either of the preceding. We replace the
differential geometric structure by the structure of a symmetric space endowed with a
midpoint operation and study seminegative curvature via convexity of the metric. In
[16] we obtained the convexity of the metric for symmetric spaces with weaker metric
assumptions than those enjoyed by the Finsler metric onA+.

The Finsler distance or length metric onA+ used in the earlier referenced papers
agrees with the Thompson metric, which is widely known and has many applications in
general convex cones of normed spaces ([27], [24]). The geodesic line passing through
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a andb is given bya,b(t) = a1=2(a�1=2ba�1=2)ta1=2 and the Thompson metric is defined
by d(a, b) = maxflogka�1=2ba�1=2k, logka1=2b�1a�1=2kg. The convexity theorem states
that for a, b, c, d 2 A+, the real functiont 7! d(a,b(t), c,d(t)) is convex. For Riemann-
ian manifolds this convexity condition is equivalent to themanifold having non-positive
curvature in the Riemannian sense. In general, however, it is a weaker notion than the
more prevalent metric notion of a CAT0-space arising from Alexandrov’s metric notion
of spaces of non-positive curvature; see Section II.1.18 and the following appendix in
[8] (cf. [5], [10]).

The main purpose of this paper is to extend the convexity result on A+ to much
more general cones endowed with a symmetric structure that appropriately interacts
with the conal structure. A special case is the symmetric cone arising as the set of
invertible squares of a Jordan-Banach algebra (JB-algebra). Our general results applied
to this particular case provide an affirmative answer to a question raised by Neeb [22].
A subsidiary goal of the paper is to present a very general framework, that of a general
notion of a symmetric cone, in which one can derive and study various inequalities,
such as those familiar from operator theory.

2. Symmetric spaces with midpoints

We recall from ([14], [15]) the underlying algebraic structure with which we work
and basic properties thereof. A℄-symmetric set(called dyadic symsetsin [14]) con-
sists of a binary system (X, �), with left translationSx y := x � y representing the point
symmetry throughx, satisfying for alla, b, c 2 X:
(S1) a � a = a (Saa = a);
(S2) a � (a � b) = b (SaSa = idX);
(S3) a � (b � c) = (a � b) � (a � c) (SaSb = SSabSa);
(S4) the equationx � a = b (Sxa = b) has a unique solutionx 2 X, called themidpoint
or meanof a and b, and denoted bya ℄ b.
The axioms bear close resemblance to the Loos axioms for a symmetric space [21].
A binary system (X, �) satisfying (S1), (S2), and (S3) also satisfies (S4) if and only
if it is a quasigroup. Thus the preceding structures are alsoreferred to assymmetric
quasigroups. Systems satisfying only Axioms (1)–(3) are calledsymmetric sets(or in-
volutive quandlesin knot theory circles).

A pointed ℄-symmetric set is a triple (X, �, "), where (X, �) is a ℄-symmetric set
and " 2 X is some distinguished point, called the base point. In this setting we define

x0 = ", x�1 := S"x, x2 := Sx", x1=2 := " ℄ x

and inductively from these definitions all dyadic powers aredefined so that the follow-
ing rules are satisfied:

(xr )s = xrs, xr ℄ xs = x(r +s)=2.
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If we consider the dyadic rationalsD endowed with the℄-symmetric structurea � b =
2a� b (the reflection ofb througha), then a ℄ b = (a + b)=2, the usual midpoint, and
the mapt 7! xt : D ! X is both a�-homomorphism and℄-homomorphism. From this
fact the preceding rules (and others) easily follow.

The displacement groupG(X) (also called the transvection group) of a℄-symmetric
set X is the group generated under the composition by all transformations of the form
Sx Sy, x, y 2 X. It follows from Axioms (S2) and (S3) that these are automorphisms
and thus there is a group action (g, x) 7! g.x : G(X) � X ! X with G(X) acting as
automorphisms. IfX is pointed with base point", then G(X) is generated by allSx S"
and X embeds intoG(X) as a twisted subgroup (closed underg � h = gh�1g) via the
quadratic representation Q: X ! G(X) defined by Q(x) = Sx S". The imageQ(X)
is a pointed℄-symmetric set under the preceding�-operation and the quadratic repre-
sentation is an isomorphism betweenX and Q(X). In particular, Q(X) is uniquely
2-divisible andQ(x ℄ y) = Q(x) ℄ Q(y), Q(x1=2) = Q(x)1=2 ([14, Theorem 5.4]). For
x, y 2 X, we write interchangeably as convenient

x.y = Q(x)y = Q(x)(y).

REMARK 2.1. The following useful calculation rules are derived in [14] or can
easily be derived by the methods there:
(1) Q(Q(x)y) = Q(x)Q(y)Q(x) or (x.y).z = x.(y.(x.z)).
(2) (Q(x))�1 = Q(x�1).
(3) (Q(x)y)�1 = Q(x�1)y�1 or (x.y)�1 = x�1.y�1.
(4) Sxr xs = xr � xs = x2r�s, Q(xr )xs = xr .xs = x2r +s, xr ℄ xs = x(r +s)=2.

Lemma 2.2 (Riccati lemma). In a pointed ℄-symmetric set X, the geometric
mean a℄ b is the unique solution in X of the Riccati equation

Q(x)a�1 = b

and is given by

a ℄ b = Q(a1=2)(Q(a�1=2)b)1=2 = a1=2.(a�1=2.b)1=2
(cf. the last paragraph in p.21). Furthermore, the geometric mean operation satisfies
(i) a ℄ b = b ℄ a,
(ii) (a ℄ b)�1 = a�1 ℄ b�1,
(iii) g.(a ℄ b) = (g.a) ℄ (g.b) for any g2 G(X).

Lemma 2.3. In a pointed℄-symmetric set X,

a ℄ Q(b)a�1 = b, 8a, b 2 X.
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Proof. The lemma follows from the fact thatx = Q(b)a�1 if and only if b = a℄x,
which follows by the Riccati lemma.

3. Symmetric spaces with convex metrics

We now impose metric and topological structure upon℄-symmetric sets.

DEFINITION 3.1. A pointed symmetric space with convex metricis a pointed℄-symmetric setP equipped with a complete metricd( � , � ) satisfying for allx, y 2 P
and g 2 G(P)
(i) d(g.x, g.y) = d(x, y),
(ii) d(x�1, y�1) = d(x, y),
(iii) d(x1=2, y1=2) � (1=2) d(x, y),
(iv) x 7! x2 : P ! P is continuous.
A symmetric space with convex metricis a ℄-symmetric set equipped with a complete
metric that is a pointed symmetric space with convex metric with respect to some
pointing.

EXAMPLE 3.2. Let R be equipped with the standard℄-symmetric operationx �
y := 2x� y and the usual metric. Thenx ℄ y = (x + y)=2, the usual midpoint operation,
and the metric is convex. Thus (R, �, 0) is a pointed symmetric space with convex
metric.

We recall some basic results about symmetric spaces with convex metrics from [16].

Theorem 3.3 ([16]). Let P be a symmetric space with convex metric. Then for
distinct x, y 2 P, there exists a unique continuous homomorphism�x,y (called an
s-geodesic) of ℄-symmetric sets fromR into P satisfying�x,y(0) = x and �x,y(1) = y.
Furthermore, the maps

(x, y) 7! x � y : P � P ! P, (t , x, y) 7! �x,y(t) := x ℄t y : R� P � P ! P

are continuous.

The elementx ℄t y is called thet-weighted meanof x and y. Note thatx ℄ y =
x ℄1=2 y.

Theorem 3.4 ([16]). Let P be a symmetric space with convex metric. For every
pair (�,  ) of s-geodesics, the real function

t 7! d(�(t),  (t))

is a convex function.
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REMARK 3.5. We note that the uniques-geodesic line satisfying�x,y(0) = x and�x,y(1) = y is

�x,y(t) = x ℄t y = x1=2.(x�1=2.y)t

and �y,x(1� t) = �x,y(t), t 2 R ([16]). In particular,

(3.1) (Q(y)x)t = Q(y)Q(x1=2)(Q(x1=2)y2)t�1.

Indeed,

Q(y�1)(Q(y)x)t = y�2 ℄t x = x ℄1�t y�2

= Q(x1=2)(Q(x�1=2)y�2)1�t

= Q(x1=2)(Q(x1=2)y2)t�1.

4. Convex cones with convex metrics

Let V be a Banach space and let� henceforth denote a non-empty open convex
cone of V : t� � � for all t > 0, � +� � �, and� \ �� = f0g, where� denotes
the closure of�. We further assume that� is a normal cone: that is, there exists a
constantK with kxk � Kkyk for all x, y 2 � with x � y. For a normal cone�, the
relation

x � y if and only if y� x 2 �
is a partial order. We writex < y if y� x 2 �.

Any member" of � is an order unit for the ordered space (V , �), and the cone
is normal if and only if the order unit norm determined by" is compatible, i.e., de-
termines the topology ofV . In this case 0� x � y implies kxk � kyk with respect to
the order unit norm, that is, we may assume without loss of generality that K = 1. We
henceforth make this assumption. In fact, fory 2 V , " � y=M 2 � for a sufficiently
large M, and henceM" � y � �M". Moreover, y = M[(y=M + ")� "] 2 ���, i.e.,
V = ���. By Proposition 1.1 in [24], for a normal cone�, the order unit norm is
compatible. The normality condition of the order unit follows from its definition. See
[24], [12, Section 1.2], and [29, Section 14] for more details.

A.C. Thompson [27] (cf. [23], [24]) has proved that� is a complete metric space
with respect to the Thompson part metric defined by

d(x, y) = max

�
log M

�
x

y

�
, log M

�
y

x

��

where M(x=y) := inff� > 0: x � �yg. The Thompson metric can be alternatively real-
ized as an appropriately defined Finsler length metric. Since � is an open subset of
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V , it carries a natural structure of (real) differentiable manifold and its tangent space
Tx� can be identified toV = fxg � V (cf. [13]). For x 2 � and v 2 V = Tx�, we
define the Finsler metric by the order unit norm forv:

jvjx := infft > 0: �t x � v � t xg.
The Thompson part metricd(x, y) agrees with the Finsler distance fromx to y:

d(x, y) = inf

�Z 1

0
j 0(t)j (t) dt :  2 S,  (0) = x,  (1) = y

�
(4.1)

where S denotes the set of piecewiseC1 maps : [0, 1] ! � ([24, Theorem 1.1]).

Lemma 4.1. Let � be an open convex normal cone in a Banach space V. Sup-
pose that there is a pointed℄-symmetric structure on� such that the displacements
Q(x): �! � are positively homogeneous for all x2 �. Then (�x)�1 = (1=�)x�1 and�t" = (�")t for all � > 0 and all dyadic rationals t. Moreover�x ℄t �x = �1�t�t x for
all x 2 �, �, � > 0 and all dyadic rationals t. Furthermore, the following conditions
are equivalent:
(i) (�x)1=2 =

p�x1=2 for all x 2 � and � > 0;
(ii) (�x)t = �t xt for any dyadic rational t and x2 � and � > 0;
(iii) Q(�x) = �2Q(x) for any x2 � and � > 0.

Proof. Let A be the set of all dyadic rationalst such that�t" = (�")t . It is im-
mediate that 0, 12 A. Set x = �". Then for any dyadic rationalt by homogenity of
Q(x) and Remark 2.1

xt+1 = Q(xt=2)x = Q(xt=2)(�") = �Q(xt=2)" = �xt .

A simple induction then yields for any positive integern, xt+n = �nxt (for example,
xt+2 = Q(x1=2)xt+1 = Q(x1=2)(�xt ) = �Q(x1=2)xt = �xt+1 = �2xt ). It follows that xn =�nx0 = �n" and thusA includes all positive integers.

For a positive integern and t = �n, " = x�n+n = �nx�n. Thus x�n = ��n" and A
includes the negative integers as well.

The preceding results apply to any� > 0, in particular to� = �1=2m
. Thus for

y = �", y2m
= �2m" = �". It follows that (�")1=2m

= y = �1=2m", i.e, 1=2m 2 A. For any
integern,

(�")n=2m
= ((�")1=2m

)n = (�1=2m")n = (�")n = �n" = �n=2m",
where the penultimate equality follows from the first two paragraphs for� = �.
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Suppose that� and � are positive real numbers. We recall from Remark 3.5 that
x ℄t y = x1=2.(x�1=2.y)t = Q(x)1=2(Q(x)�1=2y)t . Then the preceding result implies that

�" ℄t �" = Q(�")1=2(Q(�")�1=2(�"))t = Q(�")1=2� ��Q(�")�1=2(�")�t

= Q(�")1=2� ��"
�t

= Q(�")1=2� ��
�t" =

� ��
�t

Q(�")1=2"
=

� ��
�t�" = (�1�t�t )"

and for x 2 �,

�x ℄t �x = Q(x1=2)(�" ℄t �") = Q(x1=2)((�1�t�t )") = (�1�t�t )Q(x1=2)" = (�1�t�t )x.

Next, we show that

(4.2) (�x)�1 = ��1x�1.

It follows from (�")�1 = ��1", �x = �Q(x1=2)" = Q(x1=2)(�") and Remark 2.1 that

(�x)�1 = (Q(x1=2)(�"))�1 = Q(x�1=2)(�")�1 = Q(x�1=2)(��1") = ��1Q(x�1=2)" = ��1x�1.

We next prove the equivalence of the conditions in the statement. Assume (�x)1=2 =p�x1=2 for x 2 � and � > 0. To prove (iii), we first calculate

x ℄ �y = x1=2.(" ℄ �(x�1=2.y)) = x1=2.(�(x�1=2.y))1=2 = x1=2.(
p�((x�1=2).y)1=2)

=
p�x1=2.(" ℄ x�1=2.y) =

p�(x ℄ y).

By the Riccati lemma,z = Q(�x)y implies that�x = z ℄ y�1 or x = (1=�)(z ℄ y�1) =
((1=�2)z) ℄ y�1, and again by the Riccati lemma we have (1=�2)z = Q(x)y or z =�2Q(x)y. This shows thatQ(�x) = �2Q(x) for any x 2 � and � > 0.

(iii) implies (ii). SupposeQ(�x) = �2Q(x) for x 2 � and � > 0. From (�x)2 =
Q(�x)" = �2Q(x)" = �2x2 and by a simple induction (�x)n = �nxn for any positive
integern. Indeed, if (�x)k = �kxk for k = 1, 2, : : : , n, then

(�x)n+1 = Q(�x)(�x)n�1 = �2Q(x)(�n�1xn�1) = �n+1xn+1.

By (4.2), (�x)�n = ((�x)�1)n = (��1x�1)n = ��nx�n for any positive integern. Further-
more, (�1=2m

x1=2m
)2m

= �x and hence (�x)1=2m
= �1=2m

x1=2m
for any integerm. For any

integern,

(�x)n=2m
= ((�x)1=2m

)n = (�1=2m
x1=2m

)n = �n=2m
xn=2m

.

Therefore (ii) follows, and the trivial implication (ii) implies (i) completes the proof.
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The next theorem gives the main result of this paper. Note that all powers are
computed in the given℄-symmetric structure of the cone.

Theorem 4.2. Let� be an open convex normal cone in a Banach space V. Sup-
pose that there is a pointed℄-symmetric structure on� satisfying
(i) x1=2 � (" + x)=2.
(ii) the squaring map x7! x2 = Q(x)" is continuous(in the relative norm topology
of �).
(iii) every basic displacement Q(x) is continuous and linear(that is, additive and
positively homogeneous) on �.
Then� is a symmetric space with convex metric with respect to the Thompson metric
that satisfies the equivalent conditions(i), (ii) and (iii) of Lemma 4.1.Furthermore, (i)
the order-reversing property of inversion, (ii) the harmonic-geometric-arithmetic mean
inequality, and (iii) the Loewner-Heinz inequality all hold: for a, b 2 �,
(i) b�1 � a�1 if a � b,
(ii) 2(a�1 + b�1)�1 � a ℄ b � (1=2)(a + b), and
(iii) a1=2 � b1=2 if a � b.

Proof. The proof proceeds in steps.
STEP 1. Each Q(x) extends to an invertible bounded linear operator on V that

is an order-isomorphism. Let T: �! � be linear (additive and positive homogeneous)
and continuous. Let : ���! V be defined by (x, y) = x� y. Then is an open
mapping that is surjective sinceV = ��� (see the second paragraph of this section).
One verifies directly thatT extends to a map, again calledT , from V to V defined
by T(x � y) := T(x)� T(y) and that the following diagram commutes:

It is straightforward to verify thatT : V ! V is an additive homomorphism and homo-
geneous with respect to positive scalars. Since an additivehomomorphism is homo-
geneous for the scalar�1, it follows that T is linear. Since is open, it is a quotient
map and thusT : V ! V is continuous, hence bounded, sinceT � T is continuous.
For T = Q(x), we conclude from hypothesis (iii) thatQ(x) extends (uniquely) to a
bounded linear map. Since members ofG(�) are compositions of basic displacements,
the same conclusion holds for them.

Since Q(x)�1 = Q(x�1), Q(x) is invertible with inverseQ(x�1) on �. It follows
readily that their extensions are inverses. SinceQ(x) preserves�, by continuity it
also preserves�, and thus is order-preserving onV . Since Q(x�1) is similarly order-
preserving, it follows thatQ(x) is an order-isomorphism. It follows that any member
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of G(�) is an order-isomorphism, being a composition of such. Hence each member
of G(�) is an isometry for the Thompson metric, since the latter is defined from the
order. Thus Axiom 3.1 (i) is satisfied.

STEP 2. The inversion x7! x�1 = S"x is order reversing.
Suppose that 0< x � y. Then by the Riccati lemma 2.2 we have

Q(y ℄ x)y�1 = x � y = Q(x ℄ y)x�1.

SinceQ(y℄x) = Q(x℄y) is an order-isomormisphism by Step 1, the conclusion follows.
STEP 3. The harmonic-geometric-arithmetic mean inequality holds:

�
x�1 + y�1

2

��1 � x ℄ y � x + y

2
.(4.3)

Since each displacement is linear and order preserving on� and preserves the geo-
metric mean operation by Lemma 2.2, we have

x ℄ y = (Q(x1=2)") ℄ (Q(x1=2)Q(x�1=2)y)

= x1=2.(" ℄ (x�1=2.y))

(i)� x1=2.

�" + x�1=2.y

2

�

=
x + y

2
,

the geometric-arithmetic mean inequality. The harmonic-geometric mean inequality fol-
lows from the order reversing property of inversion (Step 2)and the geometric-arithmetic
mean inequality

x ℄ y
Lemma 2.2

= (x�1 ℄ y�1)�1

Step 2� �
x�1 + y�1

2

��1

.

STEP 4. The squaring map x7! x2 is continuous for the Thompson metric. There-
fore Axiom 3.1 (iv) is satisfied. Indeed, this is a consequence of the agreement of the
norm topology with that of Thompson metric ([24, Proposition 1.1]).

STEP 5. Inversion is an isometry with respect to the Thompson metric. Therefore
Axiom 3.1 (ii) is satisfied. Let x, y 2 � and let� > 0 such thatx � �y. Then since
Q(y1=2) is linear and preserves the order, we have

y�1=2.x � y�1=2.(�y) = �".
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The order reversing property of the inversion implies that

(y�1=2.x)�1 = y1=2.x�1 � (�")�1 Lemma 4.1
=

1�".
Again by linearity,

x�1 � y�1=2.

�
1�"
�

=
1� y�1.

This string shows thatM(y�1=x�1) = M(x=y) and henced(x�1, y�1) = d(x, y).
STEP 6. For a 2 �, define fa : �! � by fa(x) = (1=2)(x + Q(a)x�1). Then

lim
n!1 f n

a (x) = a, 8x 2 �.

(See [20, Theorem 7] for symmetric cones of Euclidean Jordanalgebras.)
First, we observe that the mapfa is continuous (inversion, the displacements, and

the linear operations are continuous). Suppose that the iteration has a limit point, say
b. Then by continuity,b = fa(b) = (1=2)(b + Q(a)b�1) and thenb = Q(a)b�1. By the
Riccati lemma,a = b ℄ b = b. The convergence is proved by several substeps.

(i) f n
a (x) � a: By the G-A (geometric-arithmetic mean) inequality and Lemma 2.3,

f n
a (x) =

1

2
( f n�1

a (x) + Q(a) f n�1
a (x)�1) � f n�1

a (x) ℄ Q(a) f n�1
a (x)�1 = a.

(ii) Q(a) f n
a (x)�1 � a: By linearity, the invertibility of Q(a), and the equality

(Q(a)x)�1 = Q(a)�1x�1,

Q(a) f n
a (x)�1 = Q(a)

�
1

2
( f n�1

a (x) + Q(a) f n�1
a (x)�1)

��1

=

�
1

2
(Q(a)�1 f n�1

a (x) + f n�1
a (x)�1)

��1

=

�
1

2
((Q(a) f n�1

a (x)�1)�1 + f n�1
a (x)�1)

��1

H-G� (Q(a) f n�1
a (x)�1) ℄ f n�1

a (x)
Lemma 2.3

= a.

(iii) k f n
a (x)� ak � 1=2n�1k fa(x)� ak: By (i) and (ii),

0� f n
a (x)� a =

1

2
( f n�1

a (x)� a)� 1

2
(a� Q(a) f n�1

a (x)�1) � 1

2
( f n�1

a (x)� a),

and then by the normality of the cone,

k f n
a (x)� ak � 1

2
k f n�1

a (x)� ak.
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STEP 7. The Loewner-Heinz inequality holds:

(4.4) 0< a � b implies a1=2 � b1=2.

By Step 6, it is enough to show statementAn: f n
a1=2(") � f n

b1=2(") for all n = 0, 1, 2,: : :
whenever 0< a � b (cf. [20, Corollary 9]). However, for the induction to proceed
smoothly, we prove additionally statementBn: Q(a1=2) f n

a1=2(")�1 � Q(b1=2) f n
b1=2(")�1.

The statementA0 reduces to" � " and B0 asserts that

a = Q(a1=2)("�1) � Q(b1=2)("�1) = b,

which is true by hypothesis. Suppose thatAk and Bk hold for k = n� 1. Then

f n
a1=2(") =

1

2

�
f n�1
a1=2 (") + Q(a1=2) f n�1

a1=2 (")�1
�

� 1

2

�
f n�1
b1=2 (") + Q(a1=2) f n�1

a1=2 (")�1�
� 1

2

�
f n�1
b1=2 (") + Q(b1=2) f n�1

b1=2 (")�1�
= f n

b1=2("),
where the two inequalities are applications ofAn�1 and Bn�1 respectively.

Showing

(4.5) Q(a1=2) f n
a1=2(")�1 � Q(b1=2) f n

b1=2(")�1

is equivalent (by inverting) to showing

(4.6) Q(a�1=2) f n
a1=2(") � Q(b�1=2) f n

b1=2(").
However, since

Q(a�1=2) f n
a1=2(") =

1

2
(Q(a�1=2) f n�1

a1=2 (") + f n�1
a1=2 (")�1)

Q(b�1=2) f n
b1=2(") =

1

2
(Q(b�1=2) f n�1

b1=2 (") + f n�1
b1=2 (")�1)

and since f n�1
a1=2 (")�1 � f n�1

b1=2 (")�1 (by induction hypothesisAn�1 and inversion), (4.6)
follows from

(4.7) Q(a�1=2) f n�1
a1=2 (") � Q(b�1=2) f n�1

b1=2 (")
or

(4.8) Q(a1=2) f n�1
a1=2 (")�1 � Q(b1=2) f n�1

b1=2 (")�1,
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which is true by the inductive hypothesisBn�1.
STEP 8. (�a)1=2 =

p�a1=2 for any � > 0 and a2 �, and therefore the equivalent
conditions of Lemma 4.1are satisfied. To prove this we use mainly the facts that
(Q(x)y)�1 = Q(x�1)y�1 (Remark 2.1) and (�x)�1 = ��1x�1 (Lemma 4.1). By Step 6, it
is enough to show statementAn: f n

(�a)1=2(") =
p� f n

a1=2(��1=2") for all positive integersn.

Set b = (1=p�)". The statementA1 follows by a direct computation:

f(�a)1=2(") =
1

2
(" + Q(�a)1=2") =

1

2
(" + �a) =

p�
2

(b + Q(a1=2)b�1) =
p� fa1=2(b).

To proceed by induction, we need also to include the following in our induction:

Bn : Q(�a)1=2(� f n
a1=2(b))�1 = Q(a1=2)( f n

a1=2(b))�1, n = 1, 2, : : : .(4.9)

StatementBn is true for n = 1 because

Q(�a)1=2(� fa1=2(b))�1 =
2�Q(�a)1=2� "p� +Q(a1=2)(

p�")��1

=
2�Q(�a)1=2� "p� +

p�a

��1

=
2�
�

(�a)�1p� +
1p�Q(�a)�1=2(�a)

��1

=
2� (��3=2a�1+��1=2")�1

=2(��1=2a�1+�1=2")�1 =2Q(a1=2)(��1=2"+Q(a1=2)(�1=2"))�1

= Q(a1=2)( fa1=2(b))�1.

Next, suppose thatBn holds. This implies that

(4.10) �Q(a1=2)Q(�a)�1=2Q(a1=2)( f n
a1=2(b))�1 = Q(a1=2)( f n

a1=2(b))�1.

Indeed, Q(a1=2)( f n
a1=2(b))�1 = Q(�a)1=2(� f n

a1=2(b))�1 = (1=�)Q(�a)1=2( f n
a1=2(b))�1 implies

that �Q(�a)�1=2Q(a1=2)( f n
a1=2(b))�1 = ( f n

a1=2(b))�1. Then

Q(�a)1=2(� f n+1
a1=2 (b))�1 = 2Q(�a)1=2(� f n

a1=2(b) + �Q(a1=2)( f n
a1=2(b))�1)�1

= (Q(�a)�1=2(� f n
a1=2(b)) + �Q(�a)�1=2Q(a1=2)( f n

a1=2(b))�1)�1

= 2(Q(a�1=2)( f n
a1=2(b)) + �Q(�a)�1=2Q(a1=2)( f n

a1=2(b))�1)�1

= 2Q(a1=2)( f n
a1=2(b) + �Q(a1=2)Q(�a)�1=2Q(a1=2)( f n

a1=2(b))�1)�1

(4.10)
= 2Q(a1=2)( f n

a1=2(b) + Q(a1=2)( f n
a1=2(b))�1)�1

= Q(a1=2)( fa1=2( f n
a1=2(b)))�1 = Q(a1=2)( f n+1

a1=2 (b))�1,

where the third equality follows from statementBn and taking inverses.
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Finally, suppose additionally thatAn holds, that is, f n
(�a)1=2(") =

p� f n
a1=2(b). Then

f n+1
(�a)1=2(") = f(�a)1=2( f n

(�a)1=2(")) = f(�a)1=2(p� f n
a1=2(b))

=
1

2
(
p� f n

a1=2(b) + Q(�a1=2)(
p� f n

a1=2(b))�1)

=

p�
2

( f n
a1=2(b) + Q(�a)1=2(� f n

a1=2(b))�1)

(4.9)
=

p�
2

( f n
a1=2(b) + Q(a1=2)( f n

a1=2(b))�1)

=
p� fa1=2( f n

a1=2(b)) =
p� f n+1

a1=2 (b).

STEP 9. For x, y 2 �,

d(x1=2, y1=2) � 1

2
d(x, y).

ThereforeAxiom 3.1 (iii) is satisfied. It is enough to show thatM(x=y) � M(x1=2=y1=2)2.
This follows from the Loewner-Heinz inequality and Step 8:

M(x=y) = inff� > 0: x � �yg
� inff� > 0: x1=2 � (�y)1=2 =

p�y1=2g
= infft2 : x1=2 � ty1=2g
= M(x1=2=y1=2)2.

5. Symmetric cones

Our earlier results motivate the following definition.

DEFINITION 5.1. Let� be an open normal convex cone in a Banach spaceV
equipped with a℄-symmetric structure making it a℄-symmetric set. Then� is a℄-symmetric coneif the following conditions are satisfied:
(i) x ℄ y � (x + y)=2 for all x, y 2 �;
(ii) the following maps are continuous:

(x, y) 7! x � y : ���! �, (t , x, y) 7! �x,y(t) := x ℄t y : R����! �;

(iii) Every member of the displacement groupG(�) extends to a bounded linear order-
preserving operator onV .
(iv) �x ℄t �y = �1�t�t (x ℄ y) for all �, � > 0, x, y 2 � and t 2 R.
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The next result follows essentially from Theorem 4.2.

Corollary 5.2. Let � be an open convex normal cone in a Banach space V.
Suppose that there is a pointed℄-symmetric structure on� satisfying
(i) 2x � " + x2

(ii) the squaring map x7! x2 = Q(x)" is continuous(in relative norm topology of�),
(iii) every basic displacement Q(x) is continuous and linear(that is, additive and
positively homogeneous) on �.
Then� is a pointed symmetric space with convex metric, the Thompson metric whose
metric topology agrees with the relative topology, and also a℄-symmetric cone. Converse-
ly, a ℄-symmetric cone satisfies these three conditions with respect to any pointing.

Proof. Assume conditions (i)–(iii). Note that sincex 7! x2 is a bijection, we can
rewrite hypothesis (i) in the form
(i0) x1=2 � (" + x)=2.
Thus the hypotheses of Theorem 4.2 are satisfied. Hence the geometric-arithmetic mean
inequality holds, i.e., condition 5.1 (i) is satisfied. Property 5.1 (ii) follows directly
from Theorem 4.2 and Theorem 3.3. By Step 1 of the proof of Theorem 4.2, each
member ofG(�) extends to an invertible bounded linear operator onV that is an order
isomorphism, so Property 5.1 (iii) is valid. Property 5.1(iv) follows for dyadic rationals
t from Step 8 of Theorem 4.2 and Lemma 4.1:

�x ℄t �y = Q((�x)1=2)(Q((�x)�1=2)�y)t

= Q(�1=2x1=2)(�Q(��1=2x�1=2)y)t

= �Q(x1=2)(��1�Q(x�1=2)y)t

= �(��1�)t Q(x1=2)(Q(x�1=2)y)t

= �1�t�t (x ℄t y).

That it holds for allt 2 R then follows from continuity.
Step 9 of the proof of Theorem 4.2 establishes that the Thompson metric is a con-

vex metric, and Step 4 that its metric topology agrees with the relative topology.
Conversely assume that we choose some point" in the ℄-symmetric cone�. Then

using 5.1 (i), we have

2x = 2(" ℄ x2) � 2

�" + x2

2

�
= " + x2,

and thus hypothesis (i) is satisfied. Hypotheses (ii) and (iii) follow immediately from
5.1 (ii) and 5.1 (iii) resp., sincex2 = x � ".
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EXAMPLE 5.3. Let A be a unitalC�-algebra with identitye, and letA+ be the
set of positive invertible elements ofA. It follows readily from Corollary 5.2 and stan-
dard basic facts from the theory ofC�-algebras thatA+ is a ℄-symmetric cone. To see
this we need the standard basic facts thatA+ is an open normal convex cone in the
closed subspaceH(A) of hermitian elements, that each element ofA+ has a unique
square root inA+, and thatx2 � 0 for every x 2 H(A). The setA+ is a twisted sub-
group (closed under (x, y) 7! xy�1x) with unique square roots of the multiplicative
group of invertible elements ofA, hence a pointed℄-symmetric set with respect to
x � y = xy�1x and distinguished point the identitye. Furthermore, the powers com-
puted in the algebra agree with those computed in (A+, �, e) [14]. Hence condition (ii)
of Corollary 5.2 holds. Condition 5.2 (i) is equivalent to (e�x)2 � 0, thus valid. Since
Q(x)y = x(y�1)�1x = xyx, condition 5.2 (iii) holds.

The next lemma is elementary, but will prove useful for our purposes.

Lemma 5.4. Let A be a subset of[0, 1] that contains0 and 1, is closed under
the operation of taking midpoints, and is closed under sequential limits. The A= [0, 1].

Theorem 5.5 (Loewner-Heinz, [2]). Let � � V be a℄-symmetric cone. If x1 �
x2 and y1 � y2 for x1, x2, y1, y2 2 �, then x1 ℄t y1 � x2 ℄t y2 for 0� t � 1.

Proof. If x1 ℄t y1 � x1 ℄t y2 and x1 ℄t y2 � x2 ℄t y2, then we obtain our desired
conclusion by transitivity. Thus (using commutivity of℄ and x ℄t y = y℄1�t x) it suffices
to show thatb� c implies a℄t b� a℄t c. By Corollary 5.2 we may choose any member
of � for our distinguished point, so without loss of generality we assumea = ". For
t = 1=2, ℄t = ℄, and we have by the Loewner-Heinz inequality (Theorem 4.2)

" ℄ b = b1=2 � c1=2 = " ℄ c,

so the theorem is valid fort = 1=2.
Let b � c in �. There exists a�-homomorphism (and hence℄-homomorphism)�b : R ! � such that�b(0) = " and �b(1) = b; then by definitionbt = " ℄t b = �b(t).

Consider the setA of all t 2 [0, 1] such thatbt = " ℄t b � " ℄t c = ct . For t = 0, we
have " � " and for t = 1 we haveb � c, so 0, 12 A. Suppose thatt1, t2 2 A. Then
for t = (t1 + t2)=2,

bt = b(t1+t2)=2 = bt1 ℄ bt2 � ct1 ℄ ct2 = ct ,

where the inequality follows from the caset = 1=2 established above. By closedness
of the relation� and continuity of℄t , A is closed under limits of sequential limits.
Thus by Lemma 5.4A = [0, 1].
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Theorem 5.6. The general harmonic-geometric-arithmetic mean inequality holds
in any ℄-symmetric cone�, that is, for x, y 2 � and t 2 [0, 1]:

((1� t)x�1 + ty�1)�1 � x ℄t y � (1� t)x + ty.

Proof. Let A be the set of allt 2 [0, 1] for which the HGA-inequality holds. For
t = 0 (resp.t = 1) it reduces tox � x � x (resp.y � y � y) so 0, 12 A. By closedness
of the order and continuity of the operations,A is sequentially closed.

Let Ht := ((1� t)x�1 + ty�1)�1, Gt := x ℄t y, and At := (1� t)x + ty for 0� t � 1.
Suppose thatt , s 2 A. Then by elementary computation and the standard HGA-inequality
(Theorem 4.2),

H(t+s)=2 =

�
(Ht )�1 + (Hs)�1

2

��1

s,t2A� �
(Gt )�1 + (Gs)�1

2

��1

H-G� Gt ℄ Gs

2.1 (4)
= G(t+s)=2.

By an analogous computation, or by taking inverses, one obtains thatG(t+s)=2 � A(t+s)=2.
By Lemma 5.4A = [0, 1], yielding the theorem.

The HGA-inequalities provide an approximation scheme forx ℄ y.

Lemma 5.7. For x, y in a ℄-symmetric cone�, x ℄ y = H (x, y) ℄ A(x, y), where
H (x, y) is the harmonic mean and A(x, y) is the arithmetic mean of x and y.

Proof. We have

Q(x ℄ y)H (x, y)�1 = Q(x ℄ y)
x�1 + y�1

2
=

1

2
(x ℄ y.x�1 + y ℄ x.y�1)1 =

1

2
(y + x) = A(x, y).

From the Riccati lemma it follows thatx ℄ y = H (x, y) ℄ A(x, y).

Theorem 5.8. For x, y in a ℄-symmetric cone� in a Banach space V, define
H1 = H (x, y), the harmonic mean, and A1 = A(x, y), the arithmetic mean. Inductively
define Hn+1 = H (Hn, An) and An+1 = A(Hn, An). Then for each n,

Hn � Hn+1 � x ℄ y � An+1 � An,

and Hn ! x ℄ y, An ! x ℄ y.



METRIC CONVEXITY OF SYMMETRIC CONES 811

Proof. By Lemma 5.7 and induction, we haveHn ℄ An = x ℄ y for eachn. The
asserted inequality then follows from the HGA-inequality.We fix " 2 � and endowV
with the order-unit norm for the order unit"; the topology of this norm agrees with that
of the original Banach space norm. In this norm the arithmetic mean of two points is
halfway between them in distance, and 0� x � y implies kxk � kyk, henceky� zk �kx � zk wheneverz� y � x. From these facts we conclude that

kHn+1� An+1k � kHn � An+1k =
1

2
kHn � Ank,

and thuskHn � Ank � 2�nkx � yk for eachn. HencekHn � x ℄ yk � kHn � Ank �
2�nkx � yk for eachn, so Hn ! x ℄ y. Similarly An ! x ℄ y.

The previous results have been obtained in symmetric cones of Euclidean Jordan
algebras [20].

Theorem 5.9 (The Furuta inequality, [11]). Let � be a ℄-symmetric cone in a
Banach space V and let0< b� a. If 0� p, q, r 2 R satisfies p+ 2r � (1 + 2r )q and
1� q, then

b(p+2r )=q � (br .ap)1=q.

Proof. The proof is the same as given in [28] for Banach�-algebras with contin-
uous involution, where the Loewner-Heinz inequality (Theorem 5.5), the order preserv-
ing property of the quadratic representations, the order reversing property of inversion
(Theorem 4.2), and the equality (3.1) are applied as the maintools.

6. JB-algebras and symmetric cones

In this section we illustrate and apply our previously results in the context of
JB-algebras. A basic reference for the theory of JB-algebras, particulary the results
we need in what follows, is the book of Hanche-Olsen and Størmer [12].

A Jordan algebra is a vector spaceZ with a commutative multiplicationxy such
that x(x2y) = x2(xy) holds for x, y 2 Z. An involution on a complex Jordan algebraZ
is an antilinear involutive mapz 7! z� with (zw)� =w�z� for all z,w 2 Z. A JB-algebra
V is a real Jordan algebra with unite endowed with a complete normk � k such that

kzwk � kzk kwk, kz2k = kzk2, kzk2 � kz2 +w2k.
A JB�-algebra is a complex Banach spaceZ endowed with the structure of a Jordan

algebra with involution� such that

kzwk � kzk � kwk, kfzz�zgk = kzk3
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for z, w 2 Z, where fxy�zg = (xy�)z + x(y�z) � y�(xz). There is a one-to-one corre-
spondence between JB-algebras and JB�-algebras: For any JB�-algebraZ, the hermit-
ian partV := fx 2 Z: x� = xg is a JB-algebra under the restricted norm. Conversely, for
every JB-algebraV the complexified algebraZ := V + iV has a unique norm making
Z equipped with the canonical involution a JB�-algebra ([30], [7], [12], [25]).

Let V be a JB-algebra. Forx 2 V we write L(x)(y) = xy, the multiplication op-
erator. We consider the set

� := fx 2 V : Spec(L(x)) � (0,1)g.
Then� is an open convex cone ofV (see [29, Section 21], particularly [29, Proposi-
tion 21.19], also [12, Section 3.3]) and is realized as

� = exp(V) := fexp(x) : x 2 Vg.
The Banach algebra norm agrees with the order unit norm

jxje := infft > 0: te� x � 0g,
or equivalently� is a normal cone ([1, Theorem 2.2], [12, Proposition 3.3.10], or [29,
Proposition 21.19]). The quadratic representation of the Jordan algebra is defined by
P(z) = 2L(z)2 � L(z2). It is well-known that for eachz 2 �, P(z) 2 G(�), the linear
automorphism group of�. In fact, there is a polar decompositionG(�) = P(�) Aut(V)
where Aut(V) denotes the Jordan automorphism group ofV (see [29, Corollary 22.29]).
We further note ([29, Proposition 22.27]) that Aut(V) = fg 2 G(�): g(e) = eg. The basic
properties

P(z)z�1 = z, P(z)�1 = P(z�1), P(P(z)w) = P(z)P(w)P(z)

([29, Corollary 19.9 and Proposition 19.18]) yield a pointed symmetric set structure
x� y = P(x)y�1 with " := e as base point on the set of invertible elements, in particular
on the cone� (see p.67 of [21]; see also the discussion in Section 3.9 of [12]). In
symmetric set notation,P(a) = Q(a) and the symmetric set inversea�1 := e� a agrees
with the Jordan inverse ofa.

Next, we show that the pointed symmetric space (�, " = e) is ℄-symmetric. Let
x, y 2� such thatx2 = y2. Then by the commutativity of Jordan products, 0 =x2+y2 =
L(x + y)(x � y). Since L(z) is invertible for all z 2 � ([29, Proposition 21.19 and
Corollary 21.22], [12, Lemma 3.2.10]),x� y = 0. This implies that each element of�
has a unique square root in�. Note that ifa = exp(x), x 2 V then a1=2 = exp((1=2)x).
Moreover, if a, b 2 � then the quadratic equation

P(x)a�1 = b
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has a unique solution in�. Note thatx = P(a1=2)(P(a�1=2)b)1=2 2 � solves the equa-
tion (cf. [14] and [19]). Suppose thatx and y are solutions in�. Then

(P(a�1=2)x)2 = P(P(a�1=2)x)" = P(a�1=2)P(x)P(a�1=2)"
= P(a�1=2)(P(x)a�1)

= P(a�1=2)b = P(a�1=2)(P(y)a�1)

= P(a�1=2)P(y)P(a�1=2)"
= (P(a�1=2)y)2

and henceP(a�1=2)x = P(a�1=2)y, so x = y. We conclude that the open convex cone� is a ℄-symmetric set under the operationx � y = P(x)y�1. In this case the dyadic
powerat of a = exp(x) agrees with exp(t x) and the geometric meana℄b of a andb is

a ℄ b = P(a1=2)(P(a�1=2)b)1=2.

Corollary 6.1. Let V be a JB-algebra and let� be the associated symmetric
cone. Then� is a symmetric space with convex metric with respect to the Thompson
metric. In particular, the harmonic-geometric-arithmetic mean inequality(4.3) and the
Loewner-Heinz inequality(4.4) hold and the distance function between points evolving
in time on two geodesics is a convex function.

Proof. Let x 2 �. Since the subalgebra generated bye and x is isometrically
(order and algebra)-isomorphic toC(X) for some compact Hausdorff space ([1, Propo-
sition 2.3]), the inequality

" ℄ x = x1=2 � e+ x

2

holds. The squaring mapx 7! x2 is continuous (Banach algebra product). The qua-
dratic representationP(x) is obviously a bounded linear operator. This shows that the
pointed ℄-symmetric set� satisfies the three conditions of Theorem 4.2. The last as-
sertion then follows from Theorem 3.4.

The last assertion of the preceding corollary provides a positive answer to a ques-
tion of Neeb [22]. Neeb considers a JB�-algebraZ and the associated symmetric cone� in the real JB-subalgebraV = fz 2 Z : z� = zg with the Finsler structure on� given
by jvjex = ke�L(x)vk for x, v 2 V ([22, Example 6.6]). The geodesic line passing
through  (0) = ex and  (1) = ey is given by  (t) = eL(x)(e�L(x)ey)t . One of Neeb’s
questions concerns the convexity of the real function with respect to the Finsler metric
distance

(6.1) t 7! d(x,  (t))
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where x 2 � and  is a geodesic. FromP(expu) = exp 2L(u) for u 2 V ([29, Corol-
lary 22.8]), we see that forx, y 2 �,

jvjx = jvjelog x = ke�L(log x)vk = ke2L(log x�1=2)vk = kP(x�1=2)vk
(log x is well-defined for anyx 2 � from the fact that the closed unital subalgebra
generated byx is an abelianC�-algebra, [29, Lemma 20.33]) and the geodesic line
passing throughx and y is

 (t) = P(x1=2)(P(x�1=2)y)t = x ℄t y.

Since the JB�-algebra norm agrees with the order unit norm,

jvjx = infft > 0: �te� P(x�1=2)v � teg = infft > 0: �t x � v � t xg.
This implies that the Finsler distance is exactly the Thopmson part metric fromd (4.1)
and hence the function (6.1) is convex.

REMARK 6.2. The harmonic-geometric-arithmetic mean inequality and the
Loewner-Heinz inequality with applications to the Finslergeometry of finite dimensional
symmetric cones are studied in [17], [18], [19] and [20]. It has recently been discovered
by Bhatia [6] that the non-positive curvature property of the convex cone of positive def-
inite matrices holds for metrics inherited from symmetric gauge functions.

EXAMPLE 6.3. The hermitian elementsx = x� of any C�-algebra form a
JB-algebra with respect to the symmetric productx Æ y := (xy + yx)=2. In this case�
is the cone of positive elements of Example 5.3. Spin factors[12, Chapter 6], which
arose in the study of anticommutation relations in physics,provide another type of ex-
ample. Given a real Hilbert spaceH , let A = H�R1 have the normka+�1k = kak+j�j
and define a product inA by

(a + �1) Æ (b +�1) = ((�a + �b) + (ha, bi + ��)1.

Then A is a JB-algebra, and hence its corresponding cone� satisfies the hypotheses,
and hence conclusions of Theorem 4.2.

7. Hermitian Banach �-algebras

DEFINITION 7.1. Let Z be a unital Banach algebraZ with a continuous invo-
lution � and let X consist of the self-adjoint elements ofZ. Let e denote the unit
element ofZ. The unital Banach algebraZ is calledhermitian if � (x) � R andkxk =
supj� (x)j for every x = x�. We let

� := fx = x� : � (x) � (0,1)g.
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We note that by the Shirali-Ford theorem [26]� (zz�) � [0, 1) for every z 2 Z.
If z is invertible then� (zz�) � (0,1).

Theorem 7.2. Let Z be a hermitian Banach algebra. Then� is a ℄-symmetric
cone of X.

Proof. It is shown in [29, Corollary 14.16] that� is an open convex cone ofX
and the order unit norm with respect toe coincides with the given normk � k, which
implies the normality of�.

For a 2 �, we denotea1=2 := exp((1=2) loga) where log denotes the principal
branch of the complex logarithm. Then (a2)1=2 = a ([28, Lemma 6]) and therefore
each element in� has a unique square root in�. Moreover, if a, b 2 � then ab�1a =
(ab�1=2)(ab�1=2)� is contained in the cone� since it is invertible and� (zz�) � [0,1).
This shows that� is a uniquely 2-divisible twisted subgroup ofG(Z), the group of
invertible elements ofZ.

The conditions of Corollary 5.2 hold; the verification is similar to the case for
C�-algebras (Example 5.3).
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