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Abstract
We study the existence and the asymptotic stability of a stationary solution to

the initial boundary value problem for a one-dimensional hydrodynamic model of
semiconductors. This problem is considered, in the previous researches [2] and
[11], under the assumption that a doping profile is flat, whichmakes the stationary
solution also flat. However, this assumption is too narrow tocover the doping profile
in actual diode devices. Thus, the main purpose of the present paper is to prove the
asymptotic stability of the stationary solution without this assumption on the doping
profile. Firstly, we prove the existence of the stationary solution. Secondly, the
stability is shown by an elementary energy method, where theequation for an energy
form plays an essential role.

1. Introduction

The present paper is concerned with the existence and the asymptotic stability of a
stationary solution to the initial boundary value problem for a one-dimensional hydro-
dynamic model of semiconductors. The motion of electrons insemiconductors is gov-
erned by the system of equations

�t + (�u)x = 0,(1.1a)

(�u)t + (�u2 + p(�))x = ��x � �u,(1.1b)

�xx = � � D.(1.1c)

We study the asymptotic behavior of a solution to this systemover bounded domain� := (0, 1). Here, the unknown functions�, u and� stand for the electron density, the
electron velocity and the electrostatic potential, respectively. Thus, the productj := �u
means the current density. The pressurep is assumed to be a function of the electron
density� given by

(1.2) p = p(�) = K� ,
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where the constantsK and  are supposed to satisfyK > 0 and  � 1. The case = 1 is important from the physical point of view. The doping profile D 2 B0(�) is
a function of the spatial variablex 2 � := [0, 1] and satisfies

(1.3) inf
x2� D(x) > 0.

The initial and the boundary data are prescribed as

(�, u)(0, x) = (�0, u0)(x),(1.4)

�(t , 0) = �l > 0, �(t , 1) = �r > 0,(1.5)

�(t , 0) = 0, �(t , 1) =�r > 0,(1.6)

where�l , �r and�r are constants. In addition, the compatibility conditions on �(t , x)
with orders 0 and 1 are supposed to hold at (t , x) = (0, 0) and (t , x) = (0, 1). Namely,

(1.7) �(0, 0) =�l , �(0, 1) =�r , (�u)x(0, 0) = 0, (�u)x(0, 1) = 0.

This initial boundary value problem is considered in the region where the subsonic
condition (1.8a) and positivity of the density (1.8b) hold

inf
x2�(p0(�)� u2) > 0,(1.8a)

inf
x2� � > 0.(1.8b)

Thus, we need to suppose that the initial data (1.4) satisfy these conditions

(1.9) inf
x2�(p0(�0(x))� u2

0(x)) > 0, inf
x2� �0(x) > 0.

We construct the solution in the neighborhood of the initialdata (1.9) as the condi-
tions (1.8) hold. Notice that the subsonic condition is equivalent to that one charac-
teristic speed of the hyperbolic equations (1.1a) and (1.1b) is negative and another is
positive, that is,

(1.10) �1 := u�pp0(�) < 0, �2 := u +
p

p0(�) > 0.

Hence the subsonic condition implies that two boundary conditions (1.5), (1.6) are nec-
essary and sufficient for the wellposedness of this initial boundary value problem.

The initial boundary value problem (1.1) and (1.4) for (�, j , �) is rewritten as

�t + jx = 0,(1.11a)

jt +

�
p0(�)� j 2

�2

��x + 2
j� jx = ��x � j ,(1.11b)
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�xx = � � D(1.11c)

with the initial data (�0, j0) := (�0, �0u0), which is derived from (1.4). In Section 2,
we discuss the existence of the solution to (1.1) satisfyingthe conditions (1.8). Appar-
ently, (1.1) is equivalent to (1.11), if the density� is positive. Thus once we prove
the existence of a solution to the initial boundary value problem (1.11), (1.4), (1.5)
and (1.6) for (�, j , �) with � > 0, the existence of the solution to the problem (1.1),
(1.4), (1.5) and (1.6) immediately follows. Integrating (1.11c) and using the boundary
condition (1.6), we obtain an explicit formula of the electrostatic potential

(1.12)

�(t , x) = 8[�](t , x)

:=
Z x

0

Z y

0
(� � D)(t , z) dzdy+

��r � Z 1

0

Z y

0
(� � D)(t , z) dzdy

�
x.

The main purpose of the present paper is to show the asymptotic stability of a
stationary solution, which is a solution to (1.1) independent of a time variablet , sat-
isfying the same boundary conditions (1.5) and (1.6). Hence, the stationary solution
(�̃, ũ, �̃) verifies the system of equations

(�̃ũ)x = 0,(1.13a)

(�̃ũ2 + p(�̃))x = �̃�̃x � �̃ũ,(1.13b)

�̃xx = �̃ � D(1.13c)

and the boundary condition

�̃(0) = �l > 0, �̃(1) = �r > 0,(1.14)

�̃(0) = 0, �̃(1) = �r > 0.(1.15)

The equation (1.13a) means the productj̃ := �̃ũ is constant. Substituting̃j = �̃ũ
in (1.13b) and dividing (1.13b) by ˜�, we have the system equations for (j̃ , �̃, �̃)

j̃ x = 0,(1.16a)

�F�� (�̃, j̃ )�̃x = �̃x � j̃�̃ ,(1.16b)

�̃xx = �̃ � D,(1.16c)

where

(1.17) F(�, j ) :=
j 2

2�2
+ h(�), h(� ) :=

Z �
1

p0(� )� d� .
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Differentiating (1.16b) inx yields that

(1.18)

��F�� (�̃, j̃ )�̃x

�
x

� j̃�̃2
�̃x � �̃ = �D.

Integrating (1.16b) over the domain�, we have the current-voltage relationship

(1.19) �r = F(�r , j̃ )� F(�l , j̃ ) + j̃
Z 1

0

1�̃ dx.

Moreover, owing to the equation (1.16c) and the boundary condition (1.15), �̃ is given
by the formula

(1.20) �̃(x) =
Z x

0

Z y

0
(�̃ � D)(z) dzdy+

��r � Z 1

0

Z y

0
(�̃ � D)(z) dzdy

�
x,

which corresponds to (1.12) for the non-stationary problem.
In showing the existence and the asymptotic stability of thestationary solution, the

strength of the boundary data, which is defined by

(1.21) Æ := j�r � �l j + j�r j,
plays a crucial role. The existence of the stationary solution (�̃, ũ, �̃) is summarized
in the next lemma.

Lemma 1.1. Let the doping profile and the boundary data satisfy conditions (1.3),
(1.5) and (1.6). For an arbitrary �l , there exists a positive constantÆ1 such that ifÆ � Æ1, then the stationary problem(1.13), (1.14)and (1.15) has a unique solution
(�̃, ũ, �̃)(x) satisfying the conditions(1.8) in the spaceB2(�).

Proof. This lemma follows from Lemmas 2.1 and 2.3.

In order to discuss the asymptotic stability of the stationary solution constructed
in Lemma 1.1, we employ the function space

X
j
i ([0, T ]) :=

i\
k=0

Ck([0, T ]; H j +i�k(�)) for i , j = 0, 1, 2,

Xi ([0, T ]) := X0
i ([0, T ]) for i = 0, 1, 2,

in which the norms are denoted as in Notation below. The main theorem, the stability
of the stationary solution, is summarized in the next theorem.
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Theorem 1.2. Let (�̃, ũ, �̃) be the stationary solution of(1.13), (1.14)and (1.15).
Suppose that the initial data(�0,u0) 2 H2(�) and the boundary data�l , �r and�r sat-
isfy (1.5), (1.6), (1.7)and (1.9). Then there exists a positive constantÆ2 such that ifÆ + k(�0 � �̃, u0 � ũ)k2 � Æ2, the initial boundary value problem(1.1), (1.4), (1.5)
and (1.6) has a unique solution(�, u, �)(t , x) 2 X2([0,1)). Moreover, the solution
(�, u, �)(t , x) verifies the additional regularity� � �̃ 2 X2

2([0,1)) and the decay
estimate

(1.22) k(� � �̃, u� ũ)(t)k2 + k(� � �̃)(t)k4 � Ck(�0 � �̃, u0� ũ)k2e��t ,

where C and� are positive constants independent of a time variable t.

Related results. The hydrodynamic model of semiconductors was introduced by
Bløtekjær [1]. Recently, not only engineers but also mathematicians interested in this
model. From the mathematical point of view, the text book [13] is the good reference
for the derivation of the hydrodynamic model of semiconductors. It is important to
study the initial boundary problem over bounded domain withthe Dirichlet boundary
condition since semiconductor devices are minute.

Degond and Markowich [2] investigated the stationary solution to the one-
dimensional hydrodynamic model of semiconductors with theDirichlet boundary con-
dition. They proved the existence of the stationary solution, satisfying the subsonic
condition (1.8a). We reconsider the existence of the stationary solution in the present
paper since the research in [2] shows the existence for a given current densityj̃ , al-
though physical interest is to investigate the amount of thecurrent densityj̃ for a given
boundary voltage�r . Li, Markowich and Mei [11] studied the asymptotic stability of
the stationary solution. However, they assumed that the doping profile is flat, that is,jD(x) � �l j � 1. This assumption is too narrow to cover physical problems since the
typical example of the doping profile does not satisfy this assumption (see [4]). For
instance, the doping profiles ofn+ � n� n+ diodes have two steep slops. Matsumura
and Murakami [14] started to study the physically meaningfuldoping profile. Pre-
cisely, they proved the asymptotic stability of the stationary solution without flatness
assumption on the doping profile. However, they studied thisproblem with the peri-
odic boundary condition, which makes it the full space problem overR. Consequently,
our main concern goes to the problem to show the asymptotic stability of the station-
ary solution under the Dirichlet boundary condition without the flatness assumption on
the doping profile.

Other kinds of hyperbolic-elliptic coupled systems, rather than (1.1), arise as mod-
els for radiating or self-gravitational fluid flow, (see [3, 7, 8, 9, 10, 12] for example).
Especially, the model for the self-gravitational flow, the other Euler-Poisson equation,
is studied in [3, 10, 12]. The stability of traveling waves isconsidered in [9] for radi-
ating gas dynamics. In researches [7, 8], general systems ofhyperbolic-elliptic coupled
equations are considered. We have to mention that we borrow several ideas from these
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papers [7, 8] although they do not cover the semiconductor model (1.1). Hence, it
is an important open problem to generalize the results in [7,8] to the system includ-
ing (1.1).

After completing the present paper, we have learned that the almost same theorem
as Theorem 1.2concerning the stability of the stationary solution had been proved in-
dependently by Y. Guo and W. Strauss in[5]. However, we think that the present paper
is still worth of publication since the estimates are derived by different methods and the
paper [5] does not discuss on the existence and the regularity of the solution. Further-
more, it follows the research[2] for the existence of the stationary solution and thus it
does not state the result in terms of the electrostatic potential. As we have addressed
above, such a consideration is important for the researches, especially in physics and
technology.

Outline of the paper. The remaining part of the present paper is organized as
follows. In Section 2, we begin detailed discussions with the proof of the existence and
the uniqueness of the stationary solution. The existence isproved in Subsection 2.1 by
the Schauder fixed-point theorem. The uniqueness follows from the maximum prin-
ciple. In Subsection 2.2, we obtain the elliptic estimate and then we establish the
unique existence of the time local solution by using an iteration method for solving
the non-linear hyperbolic equations. Here we omit the discussion on the solvability
of the linearized hyperbolic problem in Subsection 2.2. andpostpone it until Appen-
dix. Section 3 is devoted to showing the asymptotic stability of the stationary solution.
First, we introduce the energy form to obtain the basic estimate. Next, we derive the
system of the equations for the perturbation from the stationary solution. Then an el-
ementary energy method yields the higher order estimates. Therefore, combining the
existence of the time local solution and the a priori estimate in the H2-Sobolev space,
we complete the proof of the existence of the the time global solution. Finally, by
using the uniform estimates previously obtained, we show the exponential convergence
of the solution, for the non-stationary problem, to the corresponding stationary solution
in Subsection 3.4.

Notation. For a nonnegative integerl � 0, H l (�) denotes thel -th order Sobolev
space in theL2 sense, equipped with the normk�kl . We noteH0 = L2 andk�k := k�k0.
Ck([0, T ]; H l (�)) denotes the space of thek-times continuously differentiable functions
on the interval [0,T ] with values in H l (�). For a nonnegative integerk � 0, Bk(�)
denotes the space of the functions whose derivatives up tok-th order are continuous
and bounded over�, equipped with the norm

j f jk :=
kX

i =0

sup
x2� j� i

x f (x)j.
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2. Preliminary observation

2.1. Unique existence of stationary solution. This subsection is devoted to the
discussion on the existence and the uniqueness of the stationary solution. Firstly, we
show the existence of the stationary solution by applying the Schauder fixed-point the-
orem. Secondly, we obtain the estimates of the stationary solution, as it is necessary
in showing the uniqueness of the stationary solution. Finally, the uniqueness of the
stationary solution is proved by the maximum principle.

Apparently, (1.13) is equivalent to (1.16) if density ˜� is positive. Hence once we
show the existence and the uniqueness of the solution to the problem (1.16), (1.14)
and (1.15) with ˜� > 0, the existence and the uniqueness of the solution to the prob-
lem (1.13), (1.14) and (1.15) immediately follow. We use thefollowing constants to
discuss the properties of the stationary solution.

Cm := min

��l , �r , inf
x2(0,1)

D(x)

�
, CM := max

��l , �r , sup
x2(0,1)

D(x)

�
,

Cb := �r � fh(�r )� h(�l )g.
The existence of the stationary solution is stated in the next lemma. The main idea

of this proof is essentially same as in [11].

Lemma 2.1. Let the doping profile and the boundary data satisfy conditions (1.3),
(1.5) and (1.6). Moreover, suppose that the following inequalities hold:q KC

+1
m > 2Cb

�
C
�1
M +

q
C
�2
M + 2Cb(��2

r � ��2
l )

��1

,(2.1a)

C
�2
M + 2Cb(��2

r � ��2
l ) � 0 if �l < �r .(2.1b)

Then the stationary problem(1.16), (1.14)and (1.15) has a solution(�̃, j̃ , �̃) 2 B2(�)
satisfying the condition(1.8). Furthermore, it holds that j̃ ⋚ 0 if and only if Cb ⋚ 0.

Proof. Firstly, we define the mappingT : q 7! Q over W := f f 2 B1(�); Cm �
f � CMg by solving the linear problem��F�� (q, Jq)Qx

�
x

� Jq

q2
Qx � Q = �D, x 2 �,(2.2a)

Q(0) = �l , Q(1) = �r(2.2b)

with the constantJq defined by solving the current-voltage relationship (1.19)with
(q, Jq) in place of ( ˜�, j̃ ). Namely, it is given by

(2.3) Jq := 2Cb

8<
:
Z 1

0
q�1 dx +

s�Z 1

0
q�1 dx

�2

+ 2Cb(��2
r � ��2

l )

9=
;
�1
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due to the assumption (2.1b) for the case�l < �r . Now, we show that the mapping
T is well-defined. Estimating (2.3) by using the assumption (2.1), we see that there
exists a certain constantc such that

(2.4)
�F�� (q, Jq) � c > 0.

The estimate (2.4) implies the pair (q, Jq) satisfies the subsonic condition (1.8a). We
have from (2.1a) that

(2.5) jJqj, sup
x2�̄
�����F�� (q, Jq)

���� � C,

where C is a certain positive constant independent ofq. The above estimates (2.4)
and (2.5) mean that the equation (2.2a) is elliptic. Hence, by applying the standard
theory for the linear elliptic equations, we see that the problem (2.2) has a unique so-
lution Q 2 B2(�). Moreover, we have the estimatesCm � Q � CM by the maximal
principle for the elliptic equation (2.2a). Thus, we have seen that the mappingT is
well-defined.

Then we show the estimate by the standard energy method

(2.6) kQxk � C1,

where C1 is a certain constant depending onc, �l , �r and D, but independent ofq.
In fact, from (2.2a) we have the equation��F�� (� + A)x

�
x

� Jq

q2
(� + A)x � (� + A) = �D,(2.7)

A(x) := �l (1� x) + �r x, � := Q� A.

Multiply (2.7) by � , integrate the resultant equality over (0, 1) and then estimate the
resultant integration. These procedures yield the desiredestimate (2.6). For the details
of the derivation of (2.6), see [11].

Letting T1 be the restriction ofT on W1 := f f 2W;k fxk � C1g, we see from (2.6)
that the restrictionT1 is a mapping ofW1 into itself. NamelyT1: W1!W1. Moreover,
the straight forward computation shows that the mappingT1 is continuous. Ifq 2 W1,
then we have the estimate

(2.8) kQxxk � C2,

where C2 is a certain constant depending onc, �l , �r and D, but independent ofq.
In fact, multiplying (2.7) by�xx and integrating the result over (0, 1), we have the
estimate (2.8) (see [11] for the details).
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The image of the mappingT1, i.e., T1(W1), is contained in the setW2 := f f 2
B2(�)\W1; k fxxk � C2g, which is a compact convex subset inB1(�). Moreover, let
T2 be a restriction ofT1 on W2. Then, T2 is a continuous mapping ofW2 into itself.
Consequently, we see that there exists a fixed-point ˜� = T2(�̃) 2 W2 by the Schauder
fixed-point theorem (see Theorem 11.1 in [6] for example). Apparently, the function�̃ is a solution to the scalar equation (1.18) with the boundarydata (1.14).

We construct the solution to (1.16), (1.14) and (1.15) from the �̃ as follows. De-
fine a constantj̃ := J�̃ by (2.3) and then define a functioñ� by the formula (1.20),
i.e., �̃ := 8[�̃]. Finally, it is a straight forward computation to confirm that (�̃, j̃ , �̃) 2
B2(�) is a desired solution to the stationary problem (1.16), (1.14) and (1.15). Fur-
thermore, we see that̃j ⋚ 0 holds if and only ifCb ⋚ 0 due to (2.3). Thus, the proof
is completed.

The above lemma ensures the existence of the stationary solution. In order to
show its uniqueness, we need an additional assumption (see Lemma 2.3). We obtain
several estimates for the stationary solution in the next lemma before discussing the
uniqueness.

Lemma 2.2. Let (�̃, j̃ , �̃) be a stationary solution inB2(�) to the problem(1.16),
(1.14) and (1.15) satisfying the condition(1.8). Then the solution(�̃, j̃ , �̃) verifies the
estimates.

Cm � �̃ � CM ,(2.9)

j�̃j2 � CM + �r ,(2.10)

j j̃ j � JM := CM
�
KC

+1
M j��2

r � ��2
l j + jCbj�,(2.11)

j�̃xj0 � C
2
M fCM (CM + �r ) + JM g

KC
+1
m � J2

M

,(2.12)

j�̃xxj0 �
�
K ( � 1)C


M + 2J2

MC
�1
m

�j�̃xj20 + C
2
M (j�̃j0 + CM )(CM + �r )

KC
+1
m � J2

M

.(2.13)

Moreover, for an arbitrary �l , there exists a positive constantÆ1 such that if Æ � Æ1,
then the stationary solution satisfies the estimates in the Hölder space:

j(�̃, �̃)j2 � C,(2.14)

jũj2 =

���� j̃�̃
����
2

� CÆ,(2.15)

where C is a positive constant independent of�r and �r .

Proof. Applying the maximum principle to the elliptic equation (1.18) yields the
estimate (2.9), since the stationary solution satisfies thesubsonic condition (1.8a). Note
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that �̃ is given by the formula (1.20) or equivalently

(2.16) �̃(x) =
Z 1

x

Z 1

y
(�̃ � D)(z) dzdy+ �r x � �Z 1

0

Z 1

y
(�̃ � D)(z) dzdy

�
(1� x).

By estimating the formula (1.20) forx 2 [0, 1=2] and the formul (2.16) forx 2 (1=2, 1],
we obtain the estimate (2.10) due to the estimate (2.9) and the assumption (1.3). Ow-

ing to the subsonic condition (1.8a) and the estimate (2.9),the inequalityC
,2
M p0(CM )�

j̃ 2 > �̃2 p0(�̃)� j̃ 2 > 0 holds. Namelyj̃ 2 < KC
+1
M , which yields the estimate (2.11)

with the aid of the current-voltage relationship (1.19). The estimates (2.12) and (2.13)
immediately follow from the equation (1.16b) and the estimates (2.9), (2.10) and (2.11).
The estimate (2.14) apparently follows from (2.9), (2.10),(2.12) and (2.13). The straight
forward computation with (2.11), (2.12) and (2.13) also yields (2.15).

Even though Lemma 2.1 shows the existence of a stationary solution, the stronger
assumption than in Lemma 2.1 is necessary for its uniqueness.

Lemma 2.3. Suppose that the doping profile and the boundary data(1.14) and
(1.15) satisfy (1.3), (1.5)and (1.6) as well as

(2.17)  KC
+1
m > J2

M + 2CM (CM + �r )JM .

If the solution (�̃, j̃ , �̃) to the stationary problem(1.16), (1.14)and (1.15) exists in
B2(�) and satisfies(1.8), then the solution is unique.

Proof. Let ( ˜�1, j̃ 1, �̃1) and (�̃2, j̃ 2, �̃2) be solutions to the stationary problem
(1.16), (1.14) and (1.15). We can assumej̃ 1 � j̃ 2 without loss of generality. Since
(�̃1� �̃2)(0) = (�̃1� �̃2)(1) = 0, the mean value theorem shows that (�̃1� �̃2)x(x1) = 0
holds for a certainx1 2 [0, 1]. Thus, we may assume without loss of generality that
(�̃1� �̃2)x attains the nonnegative maximum at a certainx0 2 [0, 1].

We show that the maximum of (�̃1 � �̃2)x is zero by the contradiction. Firstly,
suppose that (̃�1� �̃2)x(x0) > 0 with 0< x0 < 1. Then it holds that (̃�1� �̃2)x(x0) > 0,
(�̃1� �̃2)(x0) = (�̃1� �̃2)xx(x0) = 0 and ( ˜�1� �̃2)x(x0) = (�̃1� �̃2)xx(x0) � 0. Substitute
(�̃1, j̃ 1, �̃1) and (�̃2, j̃ 2, �̃2) in (1.13b) and then take the difference of these two resultant
qualities to see that the following inequality holds atx0,

(2.18) (j̃ 1 � j̃ 2)

�
1� ( j̃ 1 + j̃ 2)

�̃1x�̃2
1

�
+

�
p0(�̃1)� j̃ 2

�̃2
1

�
(�̃1� �̃2)x = �̃1(�̃1� �̃2)x.

Combining the condition (2.17) with the estimates (2.11) and (2.10) yields the inequality�̃2
1 p0(�̃1) > �̃1�1x( j̃ 1 + j̃ 2) � j̃ 1 j̃ 2, which shows 1� ( j̃ 1 + j̃ 2)�̃1x=�̃2

1 > 0 with the
aid of the condition (1.8) and the equation (1.16b). Hence, the left hand side of the



HYDRODYNAMIC MODEL OF SEMICONDUCTORS 649

equation (2.18) is non-positive. On the other hand, the right hand side of the equa-
tion (2.18) is positive. This is a contradiction.

Hence, the remained possibility is that (�̃1� �̃2)x attains the positive maximum at
the boundaryx = 0 or 1. We treat the former case that it attains atx = 0 only since the
latter case is handled similarly. If ( ˜�1 � �̃2)x(0) � 0, the similar observation as above
with (�̃1� �̃2)(0) = 0 yields (2.18), which is contradiction. If ( ˜�1� �̃2)x(0)> 0, we see
from (�̃1 � �̃2)(0) = 0 that there exists a positive constantÆ1 such that if 0< x < Æ1,
then (�̃1 � �̃2)(x) > 0 holds. Thus (̃�1 � �̃2)xx(x) = (�̃1 � �̃2)(x) > 0 holds for 0<
x < Æ1, and then (̃�1� �̃2)x(0)< (�̃1� �̃2)x(x) for 0< x < Æ1, which also contradicts
to the assumption that (�̃1� �̃2)x attains the positive maximum at the boundaryx = 0.
So, the maximum of (̃�1 � �̃2)x must be zero.

Thus, we have shown (�̃1 � �̃2)x � 0. Since (̃�1 � �̃2)(0) = (�̃1 � �̃2)(1) = 0,�̃1 � �̃2. Owing to the equation (1.16c), we see ˜�1 � �̃2. Since (2.18) holds for an
arbitrary x0 2 (0, 1), we havej̃ 1 � j̃ 2. The proof is completed.

Consequently, Lemma 1.1 holds apparently from Lemmas 2.1 and 2.3 since the
smallness ofÆ implies all assumptions in Lammas 2.1 and 2.3 hold.

2.2. Time local solution to non-stationary problem. This subsection is devoted
to the discussion on the unique existence of the solution locally in time to the initial
boundary value problem. The existence of the time local solution is proved by the
similar method as in [7] and [8] with using the standard iteration method.

Lemma 2.4. Suppose the initial data(�0, u0) 2 H2(�) and the boundary data�l , �r and �r satisfy (1.9), (1.5), (1.6)and (1.7). Then there exists a constant T1 > 0
such that the initial boundary value problem(1.1), (1.4), (1.5)and (1.6) has a unique
solution (�, u, �)(t , x) 2 X2([0, T1]) satisfying the condition(1.8).

In order to define the successive approximation sequence forsolving the prob-
lem (1.11), (1.4), (1.5) and (1.6), we study the linearized system for the unknown
(�̂, ĵ ):

�̂t + ĵx = 0,(2.19a)

ĵ t +

�
p0(�)� j 2

�2

��̂x + 2
j� ĵx = ��x � j ,(2.19b)

with the initial data (1.4) and the boundary data (1.5), where the function� in (2.19b)
is defined by (1.12), i.e.� = 8(�). The functions (�, j ) in the coefficients in (2.19)
are supposed satisfy

(�, j ) 2 X2([0, T ]), (�, j )(0, x) = (�0, j0),(2.20)

�(t , x) � m,

�
p0(�)� j 2

�2

�
(t , x) � k for (t , x) 2 [0, T ] ��,(2.21)
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k(�, j )(t)k2 + k(�t , jt )(t)k1 + k(�t t , jt t )(t)k � M for t 2 [0, T ],(2.22)

whereT , m, k and M are positive numbers. We denote byX2(T ; m, k, M) the set of
functions (�, j ) satisfying (2.20), (2.21) and (2.22). Hereafter we abbreviate
X2(T ; m, k, M) by X2( � ) without confusion. Due to (1.12),

� 2 C2([0, T ]; H2(�)), k� i
t �(t)k2 � M for i = 0, 1, 2, t 2 [0, T ].

Then the next lemma shows that for suitably chosen constantsT , m, k and M, the
set X2( � ) is invariant under the mapping (�, j )! (�̂, ĵ ) defined by solving the prob-
lem (2.19), (1.12), (1.4) and (1.5). The solvability of thislinear problem is discussed
in Appendix. Then we have the next lemma. Since it is proved bythe similar method
as in [7, 8], we omit the details.

Lemma 2.5. Suppose that the initial data(�0, j0) 2 H2(�) and the boundary
data �l and �r satisfy (1.9) and (1.5). In addition, assume the compatibility condi-
tions (1.7) hold. Then there exist positive constants T, m, k and M with the following
property: If (�, j ) 2 X2( � ), then the problem(2.19), (1.12), (1.4)and (1.6) admits a
unique solution(�̂, ĵ )(x, t) in the same set X2( � ).

Using above lemma, we can prove Lemma 2.4.

Proof of Lemma 2.4. We define the successive approximation sequencef(�n, j n)g1n=0

by (�0, j 0) = (�0, j0) and

�n+1
t + j n+1

x = 0,(2.23a)

j n+1
t +

�
p0(�n)� � j n

�n

�2��n+1
x + 2

j n

�n
j n+1
x = �n�n

x � j n,(2.23b)

�n = 8[�n](2.23c)

with the initial and the boundary conditions

(�n+1, j n+1)(0, x) = (�0, j0)(x),(2.24)

�n+1(t , 0) = �l , �n+1(t , 1) = �r(2.25)

for n = 0, 1, : : : , where8 in (2.23c) is defined by (1.12). By virtue of Lemma 2.5,
the sequencef(�n, j n)g is well defined and satisfies (�n, j n) 2 X2( � ). Lemma 2.5 also
implies that the estimate

k(�n, j n)(t)k2 + k(�n
t , j n

t )(t)k1 + k(�n
tt , j n

tt )(t)k � M

holds for t 2 [0, T ]. Moreover, applying the standard energy estimate for the lin-
ear symmetric hyperbolic system satisfied by the difference(�n+1 � �n, j n+1 � j n),



HYDRODYNAMIC MODEL OF SEMICONDUCTORS 651

we see thatf(�n, j n)g is the Cauchy sequence inX1([0, T ]). Consequently, there ex-
ists a function (�, j ) 2 X1([0, T ]) such that (�n, j n) ! (�, j ) strongly in X1([0, T ])
as n ! 1. Moreover, it holds (�, j ) 2 X2([0, T ]) by the standard theory for the
hyperbolic equations (see [15] for example). For the function � thus obtained, de-
fine � := 8[�] as (1.12). It is easy to see that (�, j , �) is the desired solution to
the problem (1.11), (1.4), (1.5) and (1.6) as well as satisfies (1.8). Thus the proof
of Lemma 2.4 is completed.

3. A priori estimate

3.1. Preliminary computation. In order to prove the stability of the stationary
solution in Theorem 1.2, we regard the solution (�, u, �) as a perturbation from the
stationary solution ( ˜�, ũ, �̃). Thus, we introduce new unknown functions as

 (t , x) := �(t , x)� �̃(x), �(t , x) := u(t , x)� ũ(x), !(t , x) := �(t , x)� �̃(x).

Multiplying (1.1b) by 1=� and using the equation (1.1a), we have

(3.1) ut + uux + (h(�))x = �x � u.

Similarly, we have from (1.13b) that

(3.2) ũũx + (h(�̃))x = �̃x � ũ.

Subtracting (1.13a) from (1.1a), (3.2) from (3.1) and (1.13c) from (1.1c), respectively,
we obtain the equations for the perturbation ( , �, !) as

 t + f(�̃ + )(ũ + �)� �̃ũgx = 0,(3.3a)

�t +
1

2
f(ũ + �)2� ũ2gx + fh(�̃ + )� h(�̃)gx � !x + � = 0,(3.3b)

!xx =  .(3.3c)

The initial and the boundary conditions to the system (3.3) are derived from (1.4),
(1.5), (1.6), (1.14) and (1.15) as

 (x, 0) = 0(x) := �0(x)� �̃(x), q�(x, 0) = �0(x) := u0(x)� ũ(x),(3.4)

 (t , 0) = (t , 1) = 0,(3.5)

!(t , 0) =!(t , 1) = 0.(3.6)

Since ( ˜�, ũ, �̃) 2 X2([0, T ]) and ! satisfies (3.3c), the local existence of the solution
( ,�,!) to the initial boundary value problem (3.3), (3.4), (3.5) and (3.6) follows from
Lemmas 1.1 and 2.4.
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Corollary 3.1. Suppose that the initial data( 0, �0) belongs to H2(�) and (�̃ + 0, ũ + �0) satisfies(1.9). Then there exists a constant T2 > 0, such that the ini-
tial boundary value problem(3.3), (3.4), (3.5)and (3.6) has a unique local solution
( , �, !) 2 X2([0, T2]) �X2([0, T2]) �X2

2([0, T2]) with the property that(�̃ + , ũ + �)
satisfies(1.8).

Owing to Corollary 3.1, it suffices to derive an a priori estimate (3.7) in order to
show the existence of the solution globally in time.

Proposition 3.2. Let ( , �, !)(t , x) 2 X2([0, T ]) � X2([0, T ]) � X2
2([0, T ]) be a

solution to (3.3), (3.4), (3.5)and (3.6). Then there exists a positive constant�0 such
that if N(T) + Æ � �0, then the following estimate holds for t2 [0, T ].

(3.7) k( , �)(t)k22 + k!(t)k24 +
Z t

0
k( , �)(� )k22 + k!(� )k24 d� � Ck( , �)(0)k22,

where C is a positive constant independent of T.

The remainder of the present paper is devoted to showing the uniform estimate (3.7).
To this purpose, it is convenient to use notations

N(t) := sup
0���t

k( , �)(� )k2, M2(t) :=
Z t

0
k x(� )k2 + k�x(� )k2 d� .

3.2. Basic estimate. This subsection is devoted to the derivation of the basic
estimate. First, we define an energyE as

(3.8) E :=
1

2
�u2 +

Z �
1

h(� ) d� +
1

2
(�x)2.

Using the equality (3.1), we see that the energyE satisfies the equation

(3.9) Et + �u2 = �1

2
f�ugxu2� �u2ux � fh(�)�ugx + f�u�gx + f�xt�gx.

In order to show the basic estimate, we define the energy formE as

(3.10) E :=
1

2
�(u� ũ)2 +9(�, �̃) +

1

2
f(� � �̃)xg2, 9(�, �̃) :=

Z �
�̃ h(� )� h(�̃) d� .

Notice thatE is equivalent toj( ,�,!x)j2 if j( ,�,!x)j< c, since9(�, �̃) is equivalent
to j j2. Namely, there exist positive constantsc1 and C1 such that

(3.11) c1j( , �, !x)j2 � E � C1j( , �, !x)j2
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if j( , �, !x)j � c. Multiply the equation (3.3b) by�u� �̃ũ. Apply the integration by
parts with respect tot and x to the first and the second terms of the left hand side,
respectively. Moreover, after integrating the third term ofthe left hand by parts with
respect tox, substitute the equation (3.3b) in the resultant. Rewrite the fourth term by
similar method with using (3.3c). These computations yieldan equation for the energy
form E :

Et + �̃�2 = R1x + R2,(3.12a)

R1 := !!xt + !(�� � �̃�̃)� fh(�)� h(�̃)g(�u� �̃ũ) + fh(�)� h(�̃)g ũ,(3.12b)

R2 := ��1

2
(u2� ũ2)(�u� �̃ũ)

�
x

�  �u + (�u� �̃ũ)x�ũ

+

�
1

2
(u2 � ũ2)x � !x + �� ũ� fh(�)� h(�̃)g( ũ)x.

(3.12c)

Applying the Sobolev inequality onR2 with the estimates (2.14) and (2.15), we have
the following estimate:

(3.13) jR2j � C(N(T) + Æ)j( ,  x, �, �x, !x)j2.

We show Lemma 3.3 to drive the basic estimate.

Lemma 3.3. Suppose the same assumptions as inProposition 3.2hold. Then the
following estimates hold for t2 [0, T ].

k� i
t!(t)k22 � Ck� i

t (t)k2 for i = 0, 1, 2,(3.14)

j� i
t!(t)j21 � Ck� i

t (t)k2 for i = 0, 1, 2,(3.15)

k!xt(t)k2 � C(N(T) + Æ)k (t)k2 + Ck�(t)k2,(3.16)

where C is a positive constant independent of T.

Proof. The estimate (3.14) follows easily from (3.3c), (3.6) and the Poincaré in-
equality. Applying the Sobolev inequality on the estimate (3.14), we have the esti-
mate (3.15). Substituting (3.3c) in (3.3a) yields the equality f!xt +(�̃+ )(ũ+�)��̃ũgx =
0. Thus, a functionk(t) := !xt + (�̃ + )(ũ + �)� �̃ũ is independent ofx. Hence, we
obtain the following inequality from the boundary condition !t (t , 0) =!t (t , 1) = 0.

(3.17)
Z 1

0
f(�̃ + )(ũ + �)� �̃ũg2 � (!xt)

2 dx = k2(t) � 0.

The estimate (3.16) follows easily from the inequality (3.17), the estimates (2.14) and
(2.15) and the assumptionN(T) + Æ � �0.
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Next, we prove Lemma 3.4, which gives the basic estimate.

Lemma 3.4. Suppose the same assumptions as inProposition 3.2hold. Then
there exists a positive constant�0 such that if N(T) + Æ � �0, then the following esti-
mate holds for t2 [0, T ].

(3.18) k( ,�,!x)(t)k2+
Z t

0
k( ,�,!x)(� )k2d� � Ck( ,�,!x)(0)k2+C(N(T)+Æ)M2(t),

where C is a positive constant independent of T.

Proof. First, integrating (3.12a) over [0,t ]�� and substituting the estimate (3.13)
to handle the integration ofR2, we have

Z 1

0
E(t , x) dx +

Z t

0

Z 1

0
�̃�2 dxd� =

Z 1

0
E(0, x) dx +

Z t

0

Z 1

0
R2 dxd�(3.19a)

� Z 1

0
E(0, x) dx + C(N(T) + Æ)�M2(t) +

Z t

0

Z 1

0
 2 + �2 + (!x)2 dxd��(3.19b)

since
R 1

0 R1x dx = 0 owing to the boundary conditions (3.5) and (3.6). Multiplying (3.3b)
by !x, integrating the resultant equality over [0,t ] � �, applying the integration by
parts, and then using the equation (3.3c) and the boundary condition (3.5), we ob-
tain that Z 1

0
f��!xg(t , x) dx +

Z t

0

Z 1

0
(h(�̃ + )� h(�̃)) + (!x)2 dxd�

=
Z 1

0
f��!xg(0, x) dx +

Z t

0

Z 1

0
�!x � �!xt +

1

2
(2ũ� + �2)x!x dxd�

(3.20a)

� Z 1

0
f�2 + (!x)2g(0, x) dx +

Z t

0

Z 1

0
C�2 +

1

2
(!x)2 dxd�

+ C(N(T) + Æ)�M2(t) +
Z t

0

Z 1

0
 2 + (!x)2 dxd��.

(3.20b)

In deriving the above inequality, we have also used the Schwarz and the Sobolev in-
equalities as well as the estimates (2.14), (2.15), (3.15) and (3.16). Multiply (3.20) by�, where� is a positive constant to determined, and then add the resultant inequality
to (3.19). Then use the inequalityj��!xj � �2 + (!x)2 and take� and N(T) + Æ are
sufficiently small. These procedures yield the desired estimate (3.18).

3.3. Higher order estimates. This subsection is devoted to the derivation of the
higher order estimates. It is necessary to justify these computations by the discussion
using the mollifier with respect to time variablet since the regularity of the solution
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( , �) constructed in Corollary 3.1 is not enough. However we omitthis discussion as
it is a well known argument. In the following computations, we differentiate the equa-
tions with respect tot to make use of the equalities (� i

t , � i
t!)(t , 0) = (� i

t , � i
t !)(t , 1) =

0 for i = 0, 1, 2. Thus, it is convenient to use a notation

A2
i (t) :=

iX
j =0

k(� j
t  , � j

t �)(t)k2 for i = 1, 2.

Differentiating (3.3b) with respect tot , we have the following equation

� i
t �t + (ũ + �)� i

t �x + fh0(�̃ + )� i
t gx � � i

t!x + � i
t � = Fi for i = 1, 2,(3.21a)

F1 := �(ũ + �)x�t , F2 := �(ũ + �)x�t t � 2�t�xt � fh00(�̃ + )( t )
2gx.(3.21b)

The absolute values ofF1 and F2 are estimated as

(3.22) jF1j � C(N(T) + Æ)j�t j, jF2j � C(N(T) + Æ)(j�t t j + j�t xj + j t xj),
whereC is a positive constant independent ofT . In deriving (3.22), we have also used
the estimates (2.14) and (2.15) and the following inequality,

(3.23) j t (t)j0 + j�t (t)j0 � C N(T),

whereC is a positive constant independent ofT . In fact, we see that ( , �) 2 X2([0, T ])
satisfies (3.23) by applying the Sobolev inequality on the equations (3.3a) and (3.3b)
with using the estimates (2.14) and (2.15). Next, differentiating (3.3a) with respect to
t , we have

f(�̃ + )� i
t �gx = �� i

t t � (ũ + �)� i
t x + Gi

= �� i
t!xxt � (ũ + �)� i

t x + Gi for i = 0, 1, 2,
(3.24a)

G0 := �ũx + � x, G1 := �(ũ + �)x t , G2 := �(ũ + �)x t t � 2( t�t )x.(3.24b)

The estimates (2.14), (2.15) and (3.23) give that

jG0j � C(N(T) + Æ)(j�j + j j), jG1j � C(N(T) + Æ)j t j,
jG2j � C(N(T) + Æ)(j t t j + j�t xj + j t xj),

whereC is a positive constant independent ofT .

Lemma 3.5. Suppose the same assumptions as inProposition 3.2hold. Then
there exists a positive constant�0 such that if N(T) + Æ � �0, then the following esti-
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mate holds for t2 [0, T ] and i = 1, 2

(3.25)

k(� i
t , � i

t �t , � i
t!x)(t)k2 +

Z t

0
k(� i

t , � i
t �, � i

t!x)(� )k2 d�
� C

�
A2

i (0) + A2
i�1(t) +

Z t

0
A2

i�1(� ) d��,

where C is a positive constant independent of T.

Proof. The estimate

(3.26) k� i�1
t  x(t)k2 + k� i�1

t �x(t)k2 + k� i
t!(t)k22 � C A2

i (t) for i = 1, 2

holds from the smallness ofN(T) + Æ and the equations (3.3), (3.21a) and (3.24a) for
i = 1. In deriving (3.26), we have also used the estimates (2.14) and (2.15). Multi-
ply (3.21a) by ( ˜� + )� i�1

t � for i = 1, 2 and integrate the resultant equality over� to
obtain that
(3.27)Z 1

0
f� i

t �t +(ũ+�)� i
t �x +� i

t �g(�̃+ )� i�1
t � dx+

Z 1

0
fh0(�̃+ )� i

t �� i
t!gx(�̃+ )� i�1

t � dx

=
Z 1

0
Fi (�̃+ )� i�1

t � dx.

We rewrite the first term on the left hand side of (3.27) by applying the integration by
parts with respect tot as

(the first term)

=
d

dt

Z 1

0
(�̃ + )� i

t �� i�1
t � dx� Z 1

0
f(�̃ + )� i�1

t �gt� i
t � dx

+
d

dt

Z 1

0
(�̃ + )(ũ + �)� i�1

t �� i�1
t �x dx� Z 1

0
f(�̃ + )(ũ + �)� i�1

t �gt� i�1
t �x dx

+
d

dt

Z 1

0

1

2
(�̃ + )(� i�1

t �)2 dx� Z 1

0

1

2
 t (� i�1

t �)2 dx.

(3.28)

Using the boundary conditions� i
t (t , 0) = � i

t (t , 1) = � i
t!(t , 0) = � i

t!(t , 1) = 0 and ap-
plying the integration by parts with respect tox, we rewrite the second term on the
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left hand side of (3.27) as

(3.29)

(the second term)

= � Z 1

0
f(�̃ + )� i�1

t �gxfh0(�̃ + )� i
t � � i

t!g dx

=
Z 1

0
h0(�̃ + )(� i

t )2 + h0(�̃ + )(ũ + �)� i
t � i�1

t  x � h0(�̃ + )Gi�1� i
t dx

+
Z 1

0
(� i

t!x)2� (ũ + �)� i
t!� i�1

t  x + Gi�1� i
t! dx,

where we have also used the equation (3.24a).
Substitute the equalities (3.28) and (3.29) in the equality(3.27) and then integrate

the resultant equality over (0,t). The result is

I (i )
1 (t) +

Z t

0

Z 1

0
h0(�̃ + )(� i

t )2 + (� i
t!x)2 dxd�

=
Z t

0

Z 1

0
(�̃ + )(� i

t �)2 dxd� + I (i )
1 (0) +

Z t

0
J(i )

1 (� ) d� ,

(3.30a)

I (i )
1 (t) :=

Z 1

0
(�̃ + )

�� i
t �� i�1

t � + (ũ + �)� i�1
t �� i�1

t �x +
1

2
(� i�1

t �)2

�
dx,(3.30b)

J(i )
1 (t) :=

Z 1

0
�t (�̃ + )� i�1

t �� i�1
t �x + t (ũ + �)� i�1

t �� i�1
t �x + t� i

t �� i�1
t � dx

+
Z 1

0
(ũ + �)(�̃ + )� i

t �� i�1
t �x � h0(�̃ + )(ũ + �)� i

t � i�1
t  x dx

+
Z 1

0
h0(�̃ + )Gi�1� i

t + (ũ + �)� i
t!� i�1

t  x + Gi�1� i
t! dx

+
Z 1

0

1

2
 t (� i�1

t �)2 + (�̃ + )Fi � i�1
t � dx.

(3.30c)

Applying the Schwarz and the Sobolev inequalities, we estimate the first term on the
left-hand side of the equality (3.30a) as

(3.31) jI (i )
1 (t)j � �k(� i

t �, � i
t )(t)k2 + C�A2

i�1(t),

where we have also used the estimates (2.14), (2.15) and (3.26) as well as the small-
ness assumptionN(T) + Æ � �0. In (3.31), � is an arbitrary positive constant andC�
is a constant depending only on�. Substitutet = 0 and� = 1 in the estimate (3.31) to
obtain that

(3.32) jI (i )
1 (0)j � C A2

i (0).
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Moreover, apply the Schwarz and the Sobolev inequalities to the first term of J(i )
1 (t)

with using the estimates (2.14), (2.15), (3.23) and (3.26) as well as the smallness as-
sumptionN(T) + Æ � �0 to obtain that����

Z 1

0
�t (�̃ + )� i�1

t �� i�1
t �x dx

���� � Cj�t (t)j0 j(�̃ + )(t)j0 k(� i�1
t �, � i�1

t �x)(t)k2
� C(N(T) + Æ)A2

i (t) + C A2
i�1(t).

The other terms inJ(i )
1 (t) are estimated by the similar method sincej(ũ + �)(t)j1 �

C(N(T) + Æ). Consequently, we have

(3.33) jJ(i )
1 (t)j � C(N(T) + Æ)A2

i (t) + C A2
i�1(t).

Substituting the estimates (3.31), (3.32) and (3.33) in theequation (3.30a) yields the
inequality
(3.34)

��k(� i
t �, � i

t )(t)k2 +
Z t

0

Z 1

0
h0(�̃+ )(� i

t )2 +(� i
t!x)2 dxd��Z t

0

Z 1

0
(�̃+ )(� i

t �)2 dxd�
� C�A2

i�1(t)+C
Z t

0
A2

i�1(� ) d� +C

�
A2

i (0)+(N(T)+Æ) Z t

0
A2

i (� ) d��.

Next, multiply (3.21a) by ( ˜�+ )� i
t � for i = 1, 2 and integrate the resultant equality

over � to obtain that

(3.35)

Z 1

0
(�̃ + )� i

t �� i
t �t dx +

Z 1

0
(ũ + �)(�̃ + )� i

t �� i
t �x dx +

Z 1

0
(�̃ + )(� i

t �)2 dx

+
Z 1

0
(�̃ + )fh0(�̃ + )� i

t � � i
t!gx� i

t � dx

=
Z t

0

Z 1

0
(�̃ + )Fi � i

t � dxd� .

We rewrite the first term on the left-hand side of the equality(3.35) by applying the
integration by parts with respect tot as

(3.36) (the first term) =
d

dt

Z 1

0

1

2
(�̃ + )(� i

t �)2 dx� Z 1

0

1

2
 t (� i

t �)2 dx.

Use the boundary conditions� i
t (t , 0) =� i

t (t , 1) = 0 and apply the integration by parts
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to rewrite the second term on the left-hand side of the equality (3.35) as

(3.37)

(the second term)

= � Z 1

0
(ũ + �)� i

t �f� i
t t + (ũ + �)� i

t x + (�̃ + )x� i
t � � Gi g dx

=
d

dt

Z 1

0
�(ũ + �)� i

t �� i
t dx +

Z 1

0
f(ũ + �)� i

t �gt� i
t dx

+
Z 1

0
f(ũ + �)2� i

t �gx� i
t � (ũ + �)(�̃ + )x(� i

t �)2 + (ũ + �)Gi � i
t � dx

=
d

dt

Z 1

0
�(ũ + �)� i

t �� i
t dx +

Z 1

0
f((ũ + �)2)x + �t g� i

t �� i
t dx

� Z 1

0
(ũ + �)(�̃ + )x(� i

t �)2� (ũ + �)Gi � i
t � dx

+
Z 1

0
f� i

t �t + (ũ + �)� i
t �xg(ũ + �)� i

t dx,

Note that we have used the equation (3.24a) too in deriving the first equality above. By
using the boundary conditions� i

t (t , 0) = � i
t (t , 1) = 0 and applying the integration by

parts with respect tox, we rewrite the last term on the right-hand side of (3.37) as

(3.38)

Z 1

0
(ũ + �)f� i

t �t + (ũ + �)� i
t �xg� i

t dx

=
Z 1

0
(ũ + �)f(�h0(�̃ + )� i

t )x + � i
t !x � � i

t � + Fi g� i
t dx

=
Z 1

0

1

2
fh0(�̃ + )(ũ + �)gx(� i

t )2� h00(�̃ + )(�̃ + )x(ũ + �)(� i
t )2 dx

+
Z 1

0
(ũ + �)f� i

t!x � � i
t � + Fi g� i

t dx.

where we have used the equation (3.21a) to obtain the first equality.
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The last term on the left-hand side of the equality (3.35) is rewritten by the bound-
ary conditions� i

t (t , 0) = � i
t (t , 1) = � i

t!(t , 0) = � i
t!(t , 1) = 0 and the integration by

parts as

(3.39)

(the last term)

= � Z 1

0
f(�̃ + )� i

t �gxfh0(�̃ + )� i
t � � i

t!g dx

=
Z 1

0
h0(�̃ + )� i

t � i
t t + h0(�̃ + )(ũ + �)� i

t x� i
t � h0(�̃ + )Gi � i

t dx

+
Z 1

0
�� i

t!� i
t!xxt � (ũ + �)� i

t!� i
t x + Gi � i

t! dx

=
d

dt

Z 1

0

1

2
h0(�̃ + )(� i

t )2 dx� Z 1

0

1

2
h00(�̃ + ) t (� i

t )2 dx

+
Z 1

0
�1

2
fh0(�̃ + )(ũ + �)gx(� i

t )2� h0(�̃ + )Gi � i
t dx

+
d

dt

Z 1

0

1

2
(� i

t!x)2 dx +
Z 1

0
f(ũ + �)� i

t!gx� i
t + Gi � i

t! dx,

where we have also used the equation (3.24a) again. Substitute the equalities (3.36),
(3.37), (3.38) and (3.39) in the equality (3.35) and integrate the resultant equality over
(0, t) to obtain that

I (i )
2 (t) +

Z t

0

Z 1

0
(�̃ + )(� i

t �)2 dxd� = I (i )
2 (0) +

Z t

0
J(i )

2 (� ) d� ,

(3.40a)

I (i )
2 (t) :=

Z 1

0

1

2
(�̃ + )(� i

t �)2 +
1

2
h0(�̃ + )(� i

t )2 +
1

2
(� i

t!x)2 � (ũ + �)� i
t � i

t � dx,

(3.40b)

J(i )
2 (t) :=

Z 1

0

1

2
 t (� i

t �)2 +
1

2
h00(�̃ + ) t (� i

t )2 dx

+
Z 1

0
Gi h

0(�̃ + )� i
t � f(ũ + �)� i

t!gx� i
t � Gi � i

t! dx

+
Z 1

0
(ũ + �)(�̃ + )x(� i

t �)2� (ũ + �)Gi � i
t � � �t� i

t �� i
t + (�̃ + )Fi � i

t � dx

+
Z 1

0
fh0(�̃ + )(�̃ + )x� i

t � 2(ũ + �)x� i
t �g(ũ + �)� i

t dx

+
Z 1

0
(ũ + �)f� i

t � � � i
t!x � Fi g� i

t dx.

(3.40c)
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The 4th term inI (i )
2 (t) is estimated, with the aid of the estimates (2.14) and (2.15) as

(3.41)

����
Z 1

0
f�(ũ + �)� i

t � i
t �g(t , x) dx

���� � C(N(T) + Æ)k(� i
t , � i

t �)(t)k2.

Moreover I (i )
2 (0) and J(i )

2 (t) are estimated similarly as the estimation ofI (i )
1 (0) and

J(i )
1 (t). Thus the estimates

(3.42) jI (i )
2 (0)j � C A2

i (0), jJ(i )
2 (t)j � Cf(N(T) + Æ)A2

i (t) + A2
i�1(t)g

hold. Finally substituting (3.41) and (3.42) in (3.40a) gives the inequality
(3.43)

1

2

Z 1

0
f(�̃ + )(� i

t �)2 +h0(�̃+ )(� i
t )2 +(� i

t!x)2g(t , x) dx�C(N(T)+Æ)k(� i
t , � i

t �)(t)k2
+
Z t

0

Z 1

0
(�̃+ )(� i

t �)2 dxd�
� C

Z t

0
A2

i�1(� ) d� +C

�
A2

i (0)+(N(T)+Æ) Z t

0
A2

i (� ) d��.

Multiplying (3.43) by 2, adding the resulting inequality to (3.34) and then letting both
N(T) + Æ and � be small enough, we arrive at the desired estimate (3.25).

Using the estimate (3.25) thus obtained, we complete the proof of Proposition 3.2.

Proof of Proposition 3.2. Using the smallnessN(T) + Æ, the equations (3.3a) and
(3.3b), we have the estimate

(3.44) ck( , �)(t)k2i � A2
i (t) � Ck( , �)(t)k2i for i = 1, 2.

Moreover, the estimate

(3.45) k!(t)k4 � Ck (t)k2
holds from (3.3c). Hence we obtain the a priori estimate (3.7) by combining (3.18)
with (3.25) and using the smallness ofN(T) + Æ again.

3.4. Decay estimate. Since the existence of the time global solution to the prob-
lem (1.1), (1.4), (1.5) and (1.6) is proved owing to the continuation argument on Corol-
lary 3.1 and Proposition 3.2, it is sufficient to show decay estimate (1.22) in order to
complete of the proof of Theorem 1.2.

Proof of Theorem 1.2. Multiply (3.20a) by�, (3.30a) with i = 1 by �2, (3.40a)
with i = 1 by 2�2, (3.30a) with i = 2 by �3, (3.40a) with i = 2 by 2�3, where �
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is a positive constant to the determined. Then sum up (3.19a)and these results to
obtain that

Ẽ(t) +
Z t

0
F̃(� ) d� = Ẽ(0) for t 2 [0,1),(3.46a)

Ẽ(t) :=
Z 1

0
E � �f�!xg dx + �2

�
I (1)
1 (t) + 2I (1)

2 (t)
�

+ �3
�
I (2)
1 (t) + 2I (2)

2 (t)
�
,(3.46b)

F̃(t) :=
Z 1

0
�̃�2 + �f(h(� )� h(�̃)) + (!x)2g dx

+
2X

i =1

� i +1
Z 1

0
(�̃ + )(� i

t �)2 + h0(�̃ + )(� i
t )2 + (� i

t!x)2 dx

� Z 1

0
R2 + ���!x � �!xt +

1

2
(2ũ� + �2)x!x

�
dx� 2X

i =1

� i +1(J(i )
1 + 2J(i )

2 )(t).

(3.46c)

Now we take� and N(T) + Æ sufficiently small in this order so that 0< N(T) + Æ ��3 � �2 � � � 1. This procedure yields that both quantitiesẼ(t) and F̃(t) are
equivalent tok( , �,  t , �t ,  t t , �t t )(t)k2. Hence Ẽ(t) and F̃(t) are also equivalent tok( , �)(t)k22 due to (3.44). These facts are confirmed by applying the Schwarz and the
Sobolev inequalities as well as the estimates (2.14) (2.15), (3.16), (3.23) and (3.26).

Since Ẽ(t) and F̃(t) are equivalent, there exists a certain positive constant� such
that � Ẽ(t) � F̃(t). Then differentiate (3.46a) and substitute this inequality in the re-
sultant inequality to obtain the ordinary differential inequality

(3.47)
d

dt
Ẽ(t) + � Ẽ(t) � 0 for t 2 [0,1).

As the quantityẼ(t) is also equivalent tok( , �)(t)k22, solving (3.47) yields that

(3.48) ck( , �)(t)k22 � Ẽ(t) � Ẽ(0)e��t � Ck( , �)(0)k22e��t ,

wherec and C are positive constants independent oft . The inequality (3.48) and the
elliptic estimate (3.45) yield the decay estimate (1.22). Consequently, the proof of The-
orem 1.2 is completed.

4. Appendix

In this section we discussed the solvability of the linearized problem (2.19), (1.12),
(1.4) and (1.5). For this purpose, we firstly study the systemof equations

A0

� vw
�

t

+ A1

� vw
�

x

+ B

� vw
�

= F ,(4.1a)
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A0 =

0
� p0(�)� j 2

�2
0

0 1

1
A, A1 =

0
BBB�

0 ��p0(�)� j 2

�2

�

��p0(�)� j 2

�2

�
2 j�

1
CCCA ,(4.1b)

B =

0
� 0 0

��p0(�)� j 2

�2

�
x

�
2 j�
�

x

1
A, F =

�
0

(��x� + j )x

�
(4.1c)

with the initial and the boundary data

v(0, x) = (�0)x(x), w(0, x) = �( j0)x(x),(4.2)

w(t , 0) =w(t , 1) = 0.(4.3)

Here, notice that the matricesA0 and A1 are symmetric.
The above initial boundary problem is derived from (2.19) asfollows. Differenti-

ating (2.19b) with respect tox and using the equation (2.19a), we see that if ( ˆ�, ĵ ) 2
X2([0, T ]) is a solution to the initial boundary value problem (2.19), (1.12), (1.4) and
(1.5), and then (v, w) = (�̂x, �̂t ) 2 X1([0, T ]) is a solution to the initial boundary value
problem (4.1), (4.2) and (4.3). So, we consider the existence of solution (v,w) to (4.1),
(4.2) and (4.3). After that, we construct the solution ( ˆ�, ĵ ) to (2.19), (1.12), (1.4)
and (1.5) from the (v, w).

In order to apply Theorem-A1 in [16] to the symmetric liner problem (4.1), (4.2)
and (4.3), we use approximation sequencesfBi g1i =0 � C2([0, T ]; H2(�)) such thatBi

converges toB strongly in X1([0, T ]) as i tends to infinity. Similarly takefFi g1i =0 �
C1([0, T ]; H1(�)) such thatFi ! F strongly in C1([0, T ]; L2(�)). In addition, we
define a successive approximation sequencef(vi , wi )g1i =0 by solving

(4.4) A0

� vi

wi

�
t

+ A1

� vi

wi

�
x

+ Bi

� vi

wi

�
= Fi

with the initial data (4.2) and the boundary data (4.3). The solvability of this sym-
metric liner problem (4.4), (4.2), (4.3) is ensured by Theorem-A1 in [16]. For the
system (4.1), the following estimate holds from the energy method.

k(vi , wi )(t)k1 + k(vi
t , wi

t )(t)k � C for t 2 [0, T ],

whereC is a positive constant, independent ofi = 0, 1,: : : . Similarly, by applying the
Energy method on the equations for (vi �v j ,wi �w j ) together with the above estimate,
we see thatf(vi , wi )g10 is the Cauchy sequence inX1([0, T ]). Hence, there exists a
certain function (v,w) 2 X1([0, T ]) such that (vi ,wi )! (v,w) strongly inX1([0, T ]) as
i !1. Moreover, we see from the standard argument that (v,w) is a unique solution
to the initial boundary value problem (4.1), (4.2), (4.3).
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Next, we proceed to construct the solution ( ˆ�, ĵ ) to the initial boundary value
problem (2.19), (1.12), (1.4) and (1.5). For this purpose, define (�̂, ĵ ) by

�̂(t , x) :=
Z x

0
v(t , x) dx + �l ,(4.5a)

ĵ (t , 0) :=
Z t

0

���p0(�)� j 2

�2

�v +
2 j� w + �x� � j

�
(t , 0) dt + j0(0),(4.5b)

ĵ (t , x) :=
Z x

0
�w(t , x) dx + ĵ (t , 0).(4.5c)

We show that ( ˆ�, ĵ ) 2 X2([0, T ]) is a desired solution to the linearized problem (2.19),
(1.12), (1.4) and (1.5). Apparently, the equalities ˆ�x = v and �̂t =

R x
0 vt dx =

R x
0 wx dx =w = � ĵx hold from (4.1), (4.5) and (4.3). In addition, differentiating (4.5c) with re-

spect tot and using (4.1) and (4.5b), we have the equality

ĵ t (t , x) =
Z x

0
�wt (t , x) dx + ĵ t (t , 0)

=
Z x

0

���p0(�)� j 2

�2

�v +
2 j� w + �x� � j

�
x

(t , x) dx

+

���p0(�)� j 2

�2

�v +
2 j� w + �x� � j

�
(t , 0)

=

���p0(�)� j 2

�2

�v +
2 j� w + �x� � j

�
(t , x)

=

���p0(�)� j 2

�2

��̂x � 2 j� ĵx + �x� � j

�
(t , x),

where we have also usedw =� jx andv = �̂x. Thus, ( ˆ�, ĵ ) satisfies the equation (2.19).
Next, we confirm that ( ˆ�, ĵ ) satisfies initial condition (1.4). Actually, the equalities�̂(0,x) =

R x
0 �0x(x)dx+�l = �0(x) and ĵ (0,x) =

R x
0 j0x dx+ j0(0) = j0(x) holds from (4.5),

(4.2) and the compatibility condition (1.7). Moreover, the boundary condition (1.5)
holds, i.e., ˆ�(t , 0) =�l and �̂(t , 1) =�r , due to (4.5a), ˆ�t (t , 1) =w(t , 1) = 0 and ˆ�(0, 1) =�0(1) =�r . Consequently, ( ˆ�, ĵ ) is the solution to the linearized problem (2.19), (1.12),
(1.4) and (1.5).
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