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Abstract
Given a homogeneous almost Ké&hler manifol, J,g) with nonpositive
curvature operator, we prove thatgfis an Einstein metric having negative sectional
curvature, then the almost complex structdrenust be integrable. Furthermore, such
(M, J,0) eventually has constant negative holomorphic sectionalature and hence
is holomorphically isometric to a complex hyperbolic space

1. Introduction

Let (M, g) be a Riemannian manifold, and I¢(2 TpM denote the exterior algebra
over the tangent spacg;,M of M at p € M, equipped with the inner produdt, )
defined by

(XAY,ZAW) =g(X, Z)g(Y, W) —g(X, W)g(Y, Z), X,Y,Z,W e TpM.

The curvature tensdR of M gives rise to the curvature operater A\°ToM — A*T,M
defined by

(1) (ROXAY), Z AW) = g(R(X, Y)W, 2)

for any X,Y,Z,W e TpM. It is immediate to see that the curvature operatais self-
adjoint with respect tof , ), so that the eigenvalues @t are all real. We say that
M has nonpositive curvature operator if all eigenvaluesRadire nonpositive.

In 1991, T. Wolter conjectured that a simply connected haenegus Einstein man-
ifold M with nonpositive curvature operator is symmetric ([6]). WAfe concerned with
this conjecture wherM admits an almost Kéhler structure.

More precisely, an almost complex manifold/(J) equipped with an almost
Hermitian metricg with the closed fundamental 2-form(X,Y) = g(X, JY) is called
an almost Kahler manifold, and it is called a Kahler manifidld is integrable, that is,
the Nijenhuis tensolN of J defined byN(X,Y)=[JX,JY]—J[IX,Y]—J[X,JY]—
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[X, Y] vanishes identically. We say that an almost Kéhler madifel = (M, J, g) is
homogeneous if the group of almost complex isometriedoécts transitively onM.

The aim of this paper is to study the geometry of homogenetmosh Kahler
manifolds with nonpositive curvature operator. We notd thare exist many examples
of Kéhler symmetric spaces with nonpositive curvature afmer

In connection with the Goldberg conjecture [1], it is pldalsithat a simply con-
nected homogeneous almost Kahler Einstein manifold withpositive curvature op-
erator is a Kahlerian symmetric space. In this paper, assurtiie negativity of the
sectional curvature, we prove the following

Theorem. Let (M, J,g) be a homogeneous almost Kéhler Einstein manifold with
nonpositive curvature operatoif the sectional curvature of M is negativéhen J is
integrable and(M, J, g) is holomorphically isometric to a complex hyperbolic space

((CHn, Jo, go)

2. Preliminaries

Let M = (M, J,g) be a homogeneous almost Kéhler manifold with nonpositive
curvature operatoR < 0. Then it is immediate from (1) that the nonpositivity Bf
implies that M, g) has nonpositive sectional curvatuke < O everywhere. Hence, by
a result of Heintze [3], we may identifi¥l with a solvable Lie groupG with a left
invariant almost complex structur& and a left invariant metri¢ , ). Note that, since
M is almost Kahler, the left invariant metric, ) is a Kahler metric onG with the
closed fundamental 2-formd(X, Y) = (X, JY).

Assume now thatNl,g) has negative sectional curvatuke < 0 everywhere. Then
M is known to be simply connected (see [4]), so ti\tis identified with a simply
connected solvable Lie grou@.

Let g be the Lie algebra of5 consisting of left invariant vector fields oB. The
left invariant almost complex structuré and the left invariant metri¢ , ) on G in-
duce an endomorphisih and an inner product , )} on g satisfying the following con-
ditions:

(i) J?=-1d,

(i) (IX,Y)=—(X,JY),

(i) (X, Y] JZ)+([Y,Z], IX)+([Z,X],IY)=0

for any X,Y, Z € g. Moreover, the Levi-Civita connectioN is given by

VY = }[X, Y]+ U(X,Y),
@ >
U(X,Y) = ~3(@dX)"Y + (@dY)"X)

for all X,Y € g, where ad is the adjoint representation gofind * denotes transpose
with respect to , ). As a result, the curvature tensB(X,Y)Z = [Vx, Vv]Z —V[xy;Z
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is determined by the bracket product, so that we have

(R(X, Y)Y, X) = [U(X, Y)II* = (U(X, X), U(Y,Y)) — Zn[x, Y112
€)
— SOG D YIL ) = SV, Y. X, X0,

Since G, ( , )) has negative sectional curvatuke < 0, the derived algebra =
[g, g] of g gives rise to a subspace of condimension IginMoreover, there is a unit
vector A in g orthogonal ton such that if we denote byp and S the symmetric and
the skew-symmetric part of the restriction Agh: n — n, thenD and D?+[D, §] are
both positive definite (see Heintze [3]). Also, it followifn (2) that

@) VAA=0, VaX=SX VyxA=-DX

for any X € n.

Suppose further that,( , )) is an Einstein manifold, that is, the Ricci tensor Ric
of G satisfies RicX, y) = c(x, y) for some constant. Then it is proved by Heber [2]
that D and S are derivations ofi, and commute with each otheD §= SD). Moreover,
by a straightforward computation we see that

(5) R(A, X)Y = —VD)(Y
for any X,Y € n.

3. Proof of Theorem

Let (M, J, g) be a homogeneous almost Kahler manifold with nonpositive/a:
ture operatorR < 0. Since we assume that it has negative sectional curvatue0
everywhere, we may identifyM, J, g) with (G, J, (, )), whereG is a simply con-
nected solvable Lie group] is a left invariant almost complex structure and ) is
a left invariant Kahler metric ort.

Let g be the Lie algebra ofs. Note that sinceg is solvable,n is nilpotent, so
that the centeg of n is nontrivial. Recall thagg admits an inner product, ) and an
endomorphismJ on g satisfying Conditions (i), (ii) and (iii) in Section 2. Alsg is
decomposed into the direct sugn= R{A} ® n, where A is a unit vector orthogonal to
the derived algebra = [g, g].

Let b be an orthogonal complement gfin n. It is proved in Heintze [3] that if
(G,J,(, )) is a Kéhler manifold with negative curvature, thend,( , )) is isomorphic
to the Lie algebra of a solvable Lie group of holomorphic isbnes which acts simply
transitively on the complex hyperbolic spac&H", Jo, 9o). In particular, §, J,( , ))
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satisfies the following condition:

g=R{Al®b D3 3=R{IJA
(6) [A X] = %AX+SX, [A JA = AJA
[X,Y]I=2(IX, Y)IA [X,JA=0
for any X,Y € b and somekx € R (for details, see [3]).

On the other hand, in the case whe®, 0, ( , )) is almost Kahler, we may prove
the following

Proposition 1. Let (G, J,(, )) be a homogeneous almost Kahler manifold with
nonpositive curvature operatoSuppose that , ) is an Einstein metric with negative
curvature Then(g, J, ( , )) satisfies Conditior(6).

Proof. From Conditions (i) through (iii) together with thact thatD is positive
definite, it follows that; = R{J A} (for details, see [5]). Sinc® and S are both deriva-
tions of n, we see thag and b are invariant byD and S, respectively. Hence there
existsA > 0 such that ad\(J A) = LJA

Let u; < --- < us be the eigenvalues ob|, and b, the eigenspace associated
with ., for eacha = 1,...,s. By virtue of Condition (iii) with X, € b,, JX, and
A, we then obtain

(7 (JA [Xay IXa]) = (IXe, DIXy) + (Xo, DXo) > 0.

Hence, for anya € {1,...,s}, there existsa* € {1,...,s} such thatu, + pe = A.
Indeed, it holds thaji, + sr1—« = A, SiNCE wWe assumgy < - -+ < Us.
Let X € bs be an unit vector, and define a quadratic functibron R by

f(x) = (RXKAA X +IXAJA),XAAX+IXAJTA), xeR.

Using (5), we see that is given by

f(X) = X2(R(AA X), AA X) +2X(R(AA X), IXA JA) + (RIXAIA), IXAIA)
= X2(R(A, X)X, A) + 2x(R(A, X)J A, IX) + (R(IX, JAIA, IX)
= —x%(Vpx X, A) — 2X(Vpx J A, I X)
+(VixViad A= ViaVixIJA = VixaaJ A IX)
= —XCus(Vx X, A) = 2Xus(Vx I A IX) — (Viad A VixIX) +|V;xI A
= —x2u2 + xpus(IA [X, IX]) — A(IX, DIX) +[Viad X|?,

where | - | denotes the norm defined hy, ).
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Then, using Condition (iii), for the discriminar®® of f, we obtain

D = pZ(IA X, IX]? = 4(=pd) (=1 {IX, DIX) +|V;aI X|)
> p2((IA X, IX]? — 4r(IX, DIX) +4(V3aI X, X)?)
= u2(2(IA [X, IX])? — 4r(IX, DIX))
= 2u2{((IX, DIX) + us)® — 24(I X, DIX)}
= 2u5{({IX, DIX) — (A — ps)* + A(2us — A)}.

Since the curvature operatd® is assumed nonpositivef (x) must be nonpositive for
all x e R, and henceD < 0. Note that, ifs > 2, then 2us — A > 0, which implies that
D > 0. Therefores=1, andD|, has only one eigenvalue/2i. Note that p, b] C 3,
since D is derivation.

Let {E1, JE,..., En, JEn} be an orthonormal basis df with respect to( , ).
Using Condition (iii) for Ej, JE and A, we obtain E;, JE] = AJA for eachi =
1,...,m. Also, it follows that

(R(X, JA)JA X) = (VxViaJA—ViaVxIJA— Vx4 A X)

1
= MVx A X) + (Vy3aX, VxJA) = —§A2|X|2 +|VxJ AP

m 2

> (VX IA EEj +(VxIA JEHIE)

1
= — A% X+
2 :
j=1

m 2

Z(-- JA[X, EE —%(JA,[X,JEJ-])JE])

1
2 =

- A2|X| + > Z(ux Ejl1Z+1[X, JE]P)

j=1
for any X € b. Then the Ricci curvature Rid(A, J A) in the directionJ A is given by
Ric(JA JA)

= (R(A,IAJA A+ ((R(E, JANJA E) + (RUE, JAJIA JE))

i=1

_x2+Z<“A2+ 4 Z(|[E., EjlI” +I[E, JE;IP)

-] S(19E, B+ IE, JE,-1|2)>
j=1
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= —(m+1)xz+%;(|[a, EjlP+I[Ei, JEI*+I[IE, Ej]I*+I[IE, IE]P)
m+2

=K % S (IE, B2 +I[E, JEIP+I[IE, E]2+I[IE, JE]P).
i7]

On the other hand, we also see that the Ricci curvatureARi) in the direction
A is given by

m

(R(A, E))E;, A +Z(R(A, JE)JE, A) +(R(A, JAJA A)

i=1

RIc(A, A) =

-

1l
[y

o

A A
(_§<VE. Ei,A - E(VJEJE, A)) —MViadA A

—})\2— }AZ —A\2= _m_+2)\2
4 4 2 '

i=1

-

1l
iy

Therefore, we obtain

Ric(JA, JA) — Ric(A, A)
8 1
® - LU EF + (5 JEF+ 6, £ + 196, IEP

Since G is Einstein, we have Rig, A) = Ric(JA JA). Hence it follows from the
above equations that

1
2 D (LB B+ I[E JEI+ 136, P +I1IE, IEID =0,
i#]
which implies that E;, Ej] = [JE, JE;] = [Ei, JE;]=0 for i # j. Finally, we re-

mark that X, Y] = 2(JX,Y)JA for any X,Y € b. Indeed, it follows from the above
observations that

[X,Y]= [Z«x, EVE + (X, JE)JIE), Y (Y, E)E; + (Y, JE)J Ej)i|
i i
=3 (X, ENY, JENE, JE]+ (X, JENY, ENJE, E)

=AY (G ENY, JE) — (X, JE)(Y, EN)IA
=A(IX Y)JA

Consequently, g, ( , ), J) satisfies Condition (6). ]
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Lemma 2. Let (G,J,(, )) be a simply connected homogeneous almost Kéhler
manifold If (g, J,(, )) satisfies Condition(6), then J is integrable Moreovey
(G,J3,(,)) is holomorphically isometric to a complex hyperbolic spd€a", Jy,do).

Proof. If (g,J,( , )) satisfies Condition (6), it can be verified by a straightfarg
computation that the Nijenhuis tensbr of J vanishes identically (see [5, Lemma 4]).
HenceJ is integrable. Moreover, the sectional curvature @f ( , )) is given by

(R(Y, X)X, Y) = —%AZ (X, X)(Y, Y) = (X, Y)?) — ZAZ(J X, Y)?
1, 3

=—Zx2-2)2IX,Y)?,
2 il )

where X,Y € g are orthonormal vectors. In particular, substitutihgl for Y, we obtain
1 2 3 2 2 2
(R(IX, X)X, IX) = —ZA — Zk (IX, IX) = =17,

which shows that the holomorphic sectional curvature isstamt curvature—i2.
Hence G,J,(, )) must be holomorphically isometric to a complex hyperbapace
(CH", Jo, go) with constant holomorphic sectional curvature.?. ]

It follows from Proposition 1 together with Lemma 2 thas,(J, ( , )) is holo-
morphically isometric to a complex hyperbolic space. Thisnpletes the proof of
Theorem.
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