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Abstract
We provide in this paper a counterexample to the Benson-Ratcliff conjecture

about a cohomology class invariant on coadjoint orbits on nilpotent Lie groups.
We prove that this invariant never vanishes on generic coadjoint orbits for some
restrictive classes. As such, it does separate up to invariant factor, unitary
representations associated to generic orbits in some cases.

1. Introduction

Let G be a connected Lie group with Lie algebrag and letg� be the vector dual
space ofg. The left invariant forms onG yield a sub-complex of the de Rham complex�(G) which can be identified with the exterior algebra

V
(g�). We denote byH�(g) the

cohomology of this complex which agrees with the algebraic notion of the Lie algebra
cohomology with trivial real coefficients. LetO � g� be a coadjoint orbit of dimension
2q. For any l 2 O, viewed as an element of

V1(g�), the differential forml ^ (dl)q is

a closed form and lies in
V2q+1(g�). In [4], C. Benson and G. Ratcliff proved that its

cohomology class [l ^ (dl)q] 2 H2q+1(g) is independent of the choice ofl 2 O. When
G is exponential and simply connected, it is well known that there is a topological
homeomorphism between the space of coadjoint orbitsg�=Ad� and the unitary dual̂G
of G. That is, every unitary and irreducible representation� is uniquely associated
with a coadjoint orbitO� via the Kirillov theory. With the above in mind, it comes
out that the invariant in question can be defined onĜ. For a given representation� 2
Ĝ, set

i (�) = i (O� ) = [l ^ (dl)q] 2 H2q+1(g), l 2 O� .

It appears so natural to seek the features of such invariant,especially if it can be used
to distinguish between representations whose orbits have the same dimension and what
kind of properties of the representation in question it detects. In [4], C. Benson and
G. Ratcliff compute the invariant for numerous examples in the context of connected
simply connected Lie groups, namely the case of infinite dimensional representations
of the Heisenberg group and some other examples in higher step nilpotent Lie groups.
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They remarked, however, that such invariant fails to separate unitary representations in
general and they substantiated the following conjecture:

Conjecture 1.1 (Benson and Ratcliff [4]). Let G be a connected simply connect-
ed nilpotent Lie group with one dimensional center. Let l 2 g� be a linear form dual
to a basis element of the center ofg, then i(�l ) 6= 0.

In the same context, the authors gave an affirmative answer tothe above conjec-
ture for square integrable representations modulo the center of G. The present work
is a continuation of the articles [4] and [5]. We prove in a first time that the above
conjecture fails to hold. We shall produce a counterexample, and even more show that
the invariant may vanish in general settings on the whole Pedersen-Pukanszky maxi-
mal layer, whose image via the Kirillov mapping obviously constitutes a dense subset
of Ĝ with respect to the relative topology. In a second step, we prove in the context
of arbitrary nilpotent Lie groups a general criterion for the invariant to be non trivial
which consists in looking at other simpler cohomology classmaking use of the re-
sults of [5]. We consequently show that this invariant nevervanishes on the Pedersen-
Pukanszky maximal layer for nilpotent Lie groups for which coadjoint orbits are at
most two dimensional and for some Lie groups admitting a normal subgroup which
polarizes all generic linear forms as well. It is somehow noticeable that even for these
classes, the invariant may vanish on the set of maximal dimension coadjoint orbits.

The non-vanishing cohomology invariant fails as mentionedearlier to separate uni-
tary and irreducible representations whose orbits lie in the same stratum. As such, the
invariant does separate trivial orbits (unitary characters). That is, for� = �l , O� = fl g
and i (�) = [l ]. We pay attention in the last section of the paper to the possibility
whether the definition of the invariant could be slightly shifted in order to guaran-
tee such separation. The task basically consists in multiplying the cohomology class
[l ^ (dl)q] by some G-invariant rational non singular function depending only on l
(so constant onG-orbits). When restricted to a single orbit, it appears thenclear that
the cohomology class of the subsequent invariant coincideswith the original, up to a
scalar factor. We prove that such operation is feasible in the case of one codimensional
maximal coadjoint orbits. Seemingly, this process stands to be pretty tough to realize
in general contexts, and this is due to a pair of reasons. Firstly, the invariant does
strongly depend on the features of the associated orbit which may be difficult to accu-
rately describe in high dimensional Lie groups. Secondly, the structure of the ambiant
Lie algebra greatly intervenes in the cohomology calculus which sometimes contributes
to utterly lose the control on some variables related to the orbit in question within a
corresponding cross-section, which typically happens in Example5.5.

We study in the last section some examples of exponential non-nilpotent Lie groups,
we basically remark that the invariant vanishes on infinite dimensional representations in
the case where dimg � 3 which is rather unexpected.
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2. Background

2.1. The general setting and notations. We begin this section by reviewing
some useful facts and notations for a nilpotent Lie group. This material is quite stan-
dard. We refer the reader to [6] for details. Throughout and unless specific mention,g
will be a n-dimensional real nilpotent Lie algebra,G will be the associated connected
and simply connected nilpotent Lie group. The exponential map

exp: g ! G

is a globalC1-diffeomorphism ofg into G. Let g� be the dual vector space ofg. The
Lie algebrag acts ong by the adjoint representation adg, that is:

adg(X)(Y) = ad(X)(Y) = [X, Y], X, Y 2 g.

The groupG acts ong by adjoint representation AdG i.e.

AdG(g)(Y) = Ad(g)(Y) = ead(X)Y, g = expX 2 G, Y 2 g

and ong� by the coadjoint representation Ad�
G i.e.

Ad�G(g)l (X) = g � l (X) = l (Ad(g�1)X), g 2 G, l 2 g�, X 2 g.

The coadjoint orbit ofl is the setOl = G � l = fg � l , g 2 Gg. The space of coadjoint
orbits is noted byg�=G.

2.2. The orbit theory. Let l 2 g� and g(l ) = fX 2 g; l ([X, g]) = f0gg be the sta-
bilizer of l 2 g� in g which is actually the Lie algebra of the Lie subgroupG(l ) = fg 2
G, g � l = l g. So, it is clear thatg(l ) is the radical of the skew-symmetric bilinear form
Bl defined by

Bl (X, Y) = l ([X, Y]), X, Y 2 g.(2.2.1)

A subspaceb[l ] of the Lie algebrag is called a polarization forl 2 g� if it is a maximal
dimensional isotropic subalgebra with respect toBl . So we can consider the unitary
character ofB[l ] = exp(b[l ]),

�l (expX) = e�2� i l (X), X 2 b[l ].

The unitary dualĜ of G is parameterized via the Kirillov-Bernat orbit method. Let
l 2 g�, we take a real polarizationb = b[l ] for l . For such a polarization, define

�l = �l ,b = IndG
B �l , B = expb.
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Then �l ,b is a unitary and irreducible representation ofG and its equivalence class
[�l ,b] depends only on the coadjoint orbit ofl . Moreover, every irreducible represen-
tation � is equivalent to an induced representation�l ,b for some l 2 g� and a polar-
ization b in l with the character�l . The following mapping, called the Kirillov-Bernat
mapping

K : g�=G ! Ĝ

G � l 7! [�l ,b]

is a homeomorphism (see [6]).

2.3. The Pedersen-Pukanszky stratification. Let

(S) : f0g = g0 � g1 � � � � � gn = g

be a Jordan-Hölder sequence of the nilpotent Lie algebrag, i.e., a flag of ideals of
g such that dimg j = j , j = 0, : : : , n. We extract from (S) a Jordan-Hölder basis
B = fX1, : : : , Xng by taking X j 2 g j n g j�1, j = 1, : : : , n. Let B� = fX�

1, : : : , X�
ng the

dual basis ofg� dual to the basisfX1, : : : , Xng which is a Jordan-Hölder basis for
the coadjoint action ofG on g�. Let l 2 g�, an index j 2 f1, : : : , ng is said to be a
jump index for l if

g(l ) + g j 6= g(l ) + g j�1.

We let

e(l ) = f j : j is a jump index forl g, ẽ(l ) = f1, : : : , ng n e(l )

and

E = fe(l ) : l 2 g�g
The sete(l ) contains exactly dim(Ol ) indices, which is necessarily an even number.
For eache2 E , the set

�e = fl 2 g� : e(l ) = eg
is the layer ing� corresponding toe and obviously containsOl for l 2 g�. Note that
each layer�e is a semi algebraic set ing� and there exists a strict total ordering� on
E defined as follows. Fore, e0 2 E we havee� e0 if either
1. e = f j1 < j2 < � � � < jdg, e0 = f j 01 < j 02 < � � � < j 0d0g where j1 = j 01, : : : , jk�1 = j 0k�1

and j 0k < jk for somek � min(d, d0), or
2. e e0.
Note that, in view of the second condition, the empty sete =∅ is the minimal element
in E . The layer�∅ corresponds to the one dimensional representations inĜ. The
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layer �e given by the maximal elemente 2 E contains the generic orbits and forms
a Zariski open set ing�. This layer will be noted by�max and called the Pedersen-
Pukanszky maximal layer. More generally, one has that fore 2 E , the layer�e is the
intersection of a Zariski open set with

S
e0�e�e0 , which is Zariski closed. In fact, there

is a G-invariant polynomial function

Pe : g� ! R

for eache2 E with the property that

�e = fl 2 g� : Pe(l ) 6= 0 and Pe0(l ) = 0 for e0 � eg.
These are defined explicitly asP∅ = 1 and

Pe(l ) = P f (Me(l )), where Me(l ) = (l [Xi , X j ]) i , j2e

for ∅ � e. That is, Pe(l ) is the Pfaffian of the skew-symmetric matrixMe(l ). For
e2 E , let

Vẽ = R� spanfX�
j : j 2 ẽg � g�.

The set

We = �e \ Vẽ

is a cross-section to the coadjoint orbits in�e which means thatOl meetsWe in a
unique and single point called thefundamental elementof the associated representa-
tion �l .

3. A counterexample to the Benson-Ratcliff conjecture

In this section, we produce a counterexample to the Benson-Ratcliff Conjec-
ture 1.1. We shall even go much further. The content of the counterexample below
can be clarified by carrying out quite accurate computationsmaking use of explicit
bases. This basically leads to the fact that the invarianti (�) may vanish on the
whole Pedersen-Pukanszky maximal layer. LetG be the nilpotent Lie group with
Lie algebrag = R� spanfZ, Y1, Y2, A, X1, X2g with non zero Lie brackets:

[Y1, X1] = [Y2, X2] = Z, [A, X1] = Y1, [A, X2] = Y2 and [X1, X2] = A.

It is clear that the centerz(g) is one dimensional and spanned byZ. We designate byfZ�, Y�
1 , Y�

2 , A�, X�
1, X�

2g the basis ofg� dual to the basisfZ, Y1, Y2, A, X1, X2g. The
maximal jump indices set is given bye = f2, 3, 5, 6g. So, the PfaffianPe(l ) is such that

Pe(l )
2 = detMe(l ) = l 4

1, l1 = l (Z).
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The Pedersen-Pukanszky maximal layer is then defined as the set

�max = fl 2 g� : l1 6= 0g.
Proposition 3.1. The invariant i(�l ) vanishes on�max.

Proof. Let Vẽ = RZ� � RA�, then as in2.3 the setW = Vẽ \ �max is a cross-
section for the generic coadjoint orbits ing�. If l 2 �max, the fundamental element of
the representation�l still denoted byl , may be picked asl = l1Z� + l4A� 2 �max. So,
g(l ) = hZ, Ai and dim(Ol ) = 4. Hence:

dl = l1d Z� + l4d A�
= �l1(Y�

1 ^ X�
1 + Y�

2 ^ X�
2)� l4X�

1 ^ X�
2.

So, an easy computation shows that (dl)2 = �2l 2
1Y�

1 ^ Y�
2 ^ X�

1 ^ X�
2 and then

l ^ (dl)2 = (l1Z� + l4A�) ^ ��2l 2
1Y�

1 ^ Y�
2 ^ X�

1 ^ X�
2

�
= �2l 3

1 Z� ^ Y�
1 ^ Y�

2 ^ X�
1 ^ X�

2 � 2l 2
1l4A� ^ Y�

1 ^ Y�
2 ^ X�

1 ^ X�
2.

Let �(l ) be the 4-differential form defined ong by

�(l ) = 2l 2
1 Z� ^ Y�

1 ^ A� ^ (l1Y�
2 + l4X�

1).

Then one easily checks

d�(l ) = 2l 2
1

�
d(Z� ^ Y�

1 ^ A�) ^ (l1Y�
2 + l4X�

1)� Z� ^ Y�
1 ^ A� ^ (l1dY�

2 + l4d X�
1)
�

= 2l 2
1

�
(d Z�) ^ Y�

1 ^ A� � Z� ^ ((dY�
1 ) ^ A� � Y�

1 ^ (d A�))� ^ (l1Y�
2 + l4X�

1)

� 2l 2
1 Z� ^ Y�

1 ^ A� ^ (l1dY�
2 + l4d X�

1)

= 2l 2
1

��(Y�
1 ^ X�

1 + Y�
2 ^ X�

2) ^ Y�
1 ^ A�

+ Z� ^ ((A� ^ X�
1) ^ A� � Y�

1 ^ (X�
1 ^ X�

2))
� ^ (l1Y�

2 + l4X�
1)

+ 2l 2
1 Z� ^ Y�

1 ^ A� ^ (l1A� ^ X�
2)

= �2l 2
1l4Y�

2 ^ X�
2 ^ Y�

1 ^ A� ^ X�
1 � 2l 3

1 Z� ^ Y�
1 ^ X�

1 ^ X�
2 ^ Y�

2

= l ^ (dl)2,

which proves thatl ^ (dl)2 is an exact differential form and thereforei (�l ) = 0.

REMARK . 1) The particular case wherel4 = 0 gives a counterexample for the
Benson-Ratcliff conjecture.
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2) For lower layers and beyond the minimal stratum of characters, the invariant may
be non zero as can be observed in the example above. Pick for instancel = l2Y�

1 , l2 6= 0
then g(l ) = hZ, Y1, Y2, X2i and dim(Ol ) = 2. The invarianti (�l ) is:

i (�l ) = [l ^ dl] = �l 2
2[Y�

1 ^ A� ^ X�
1].

Let

� = Z� ^ (�1,2Y
�
1 + �1,3Y

�
2 + �1,4A� + �1,5X�

1 + �1,6X�
2)

+ Y�
1 ^ (�2,3Y

�
2 + �2,4A� + �2,5X�

1 + �2,6X�
2)

+ Y�
2 ^ (�3,4A� + �3,5X�

1 + �3,6X�
2) + A� ^ (�4,5X�

1 + �4,6X�
2) + �5,6X�

1 ^ X�
2

be an element in
V2(g�). Then:

d� = ��1,3Y
�
1 ^ X�

1 ^ Y�
2 � �1,4Y

�
1 ^ X�

1 ^ A� � �1,4Y
�
2 ^ X�

2 ^ A�
+ �1,2Z� ^ A� ^ X�

1 + �1,3Z� ^ A� ^ X�
2 + �1,4Z� ^ X�

1 ^ X�
2

� �2,3A� ^ X�
1 ^ Y�

2 � �2,6A� ^ X�
1 ^ X�

2 + �2,3Y
�
1 ^ A� ^ X�

2

+ �2,4Y
�
1 ^ X�

1 ^ X�
2 � �3,5A� ^ X�

2 ^ X�
1 + �3,4Y

�
2 ^ X�

1 ^ X�
2

+ �1,6X�
1 ^ Y�

1 ^ X�
2 + �1,2X�

2 ^ Y�
2 ^ Y�

1 + �1,5X�
2 ^ Y�

2 ^ X�
1.

Suppose now thatd� = �l 2
2Y�

1 ^ A� ^ X�
1, then one can easily check that we simulta-

neously have�l 2
2 = �1,4 = 0 which is absurd and theni (�l ) 6= 0.

4. Nilpotent Lie groups on which the invariant restricted to Ωmax never
vanishes

This section aims to examine some restrictive classes of nilpotent Lie groups for
which the invarianti (�l ) is non zero for everyl in a dense subset ofg�. Our first
result deals with the case where the dimension of coadjoint orbits is at most two.

Theorem 4.1. Let G be a connected and simply connected nilpotent Lie group
with Lie algebrag. Assume that coadjoint orbits ing� are at most two dimensional.
Then i(�l ) 6= 0 for every l 2 �max. The result holds ong� n f0g if in addition G is
two step.

We also study the case of nilpotent Lie groups admitting an ideal which polarizes
generic elements of the dual vector space. The result of Theorem 4.1 may fail in such
setting as shown in the counterexample provided in Section 3. A nilpotent Lie group
G is said to be SNPC (or to meet the special normal polarizationcondition) if there
exists in its Lie algebrag an Abelian idealc such that [g, c] is one dimensional and
that the centralizerh of c is Abelian. Likewise,G is said to be special if it is of the
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form Rn ⋊ R being non commutative. At the level of Lie algebras, there exists a co-
dimensional one idealh which polarizes all generic orbits and so obviously such ideal
must be Abelian. It turns out that special nilpotent Lie groups are SNPC, especially
the n-step threadlike group and Heisenberg groups are also SNPC,(see [1] and [2]). It
evidently follows that in the case of special Lie groups, generic orbits are at most two
dimensional. The following consequence obviously stems from Theorem 4.1:

Corollary 4.2. Let G be a connected simply connected nilpotent special Lie
group. Then i(�l ) 6= 0 for every l2 �max.

We shall show later that such result may fail for lower layers. We now provide
a quite similar result as above for SNPC nilpotent Lie groups. The upshot is the
following:

Theorem 4.3. Let G be a connected and simply connected SNPC nilpotent Lie
group. Assume thath admits an Abelian supplementary subspace. Then i(�l ) 6= 0 for
every l2 �max.

We proceed now to the proof of our results. We shall provide a general criterion
for the invarianti (�l ), l 2 g� to be trivial. As shall be remarked later, such criterion has
a great practical features and will be used to get pretty general results in some classes
of nilpotent Lie groups. It consists in looking at a new cohomology class depending
only on the fundamental element of the representation�l . We start with a connected
simply connected nilpotent Lie groupG with Lie algebrag, let

(S) : f0g = g0 � g1 � � � � � gn = g

be a Jordan-Hölder sequence ofg from which we extract a Jordan-Hölder basisfX1, : : : , Xng of g. Let l be in g�, Ol the coadjoint orbit throughl and 2d = dim(Ol ).
Denote as before by

e(l ) = f1< i1 < � � � < i2d � ng
the set of jump indices ofl . For anys 2 ẽ(l ), there exist some real numbers�s,t (l ),
t < s in such a way that the vector:

Ys = Xs +
X
t<s

�s,t (l )Xt

belongs tog(l )\ gs. We can then extract from (S) a Jordan-Hölder basisfY1, : : : , Yng
passing throughg(l ) = R � spanfYs, s 2 ẽ(l )g and such thatYi = Xi for i 2 e(l ). Let
W(l ) be the (2d + 1)-form defined by:

W(l ) = l ^ Y�
i1
^ � � � ^ Y�

i2d
,(1)



ON THE BENSON-RATCLIFF INVARIANT 407

where fY�
1 , : : : , Y�

n g is a basis ofg� dual to the basisfY1, : : : , Yng. Remark thatW(l )
does not depend on the values ofl on the vectorsYi , i 2 e(l ). In the case where
e(l ) = ;, we get obviously thatg(l ) = g and W(l ) = l is a one differential form so that
i (�l ) = [l ]. The following lemma plays an important role in the sequel.

Lemma 4.4. Let G be a connected simply connected nilpotent Lie group with Lie
algebra g. Let l 2 g� and let W(l ) be the (2d + 1)-form defined as in(1). Then for
every l2 �e, we have that i(�l ) = (�1)dd! Pe(l )[W(l )].

Proof. Forl 2 �e, let l i , j = l ([Yi , Yj ]) (i , j 2 f1, : : : , ng). So Me(l ) = [l is,i t ]1�s,t�2d

and from [7], one has:

Pe(l ) =
1

2d

1

d!

X
�2S2d

sign(� )l i� (1),i� (2)l i� (3),i� (4) � � � l i� (2d�1),i� (2d) .

On the other hand, we have

dl = � X
1�s<t�2d

l is,i t Y
�
is
^ Y�

i t
= �1

2

X
s6= t

l is,i t Y
�
is
^ Y�

i t

and therefore

(dl)d = (�1)d
1

2d

X
�2S2d

l i� (1),i� (2)l i� (3),i� (4) � � � l i� (2d�1),i� (2d)Y
�
i� (1)

^ Y�
i� (2)

^ � � � ^ Y�
i� (2d�1)

^ Y�
i� (2d)

= (�1)d
1

2d

 X
�2S2d

sign(� )l i� (1),i� (2)l i� (3),i� (4) � � � l i� (2d�1),i� (2d)

!
Y�

i1
^ � � � ^ Y�

i2d

= (�1)dd! Pe(l )Y
�
i1
^ � � � ^ Y�

i2d

from above.

REMARK . Let K (l ) be the normal subgroup ofG(l ) whose Lie algebra is given
by k(l ) = ker(l=g(l )). For X 2 g, the substitution operator

i (X) :
k̂

(g�) ! k�1̂

(g�)
is given by i (X)(�)(Y1, : : : ,Yk�1) = �(X,Y1, : : : ,Yk�1), for Yi 2 g, i = 1,: : : ,k�1. Let
now consider the sub-complexes ofK (l )-basic andk(l )-basic of

V
(g�) defined by:�^

(g�)�
K (l )

=
n� 2^(g�) : i (X)� = 0, 8X 2 k(l ) and Ad�s � = �, 8s 2 K (l )

o
,�^

(g�)�
k(l )

=
n� 2^(g�) : i (X)� = 0, 8X 2 k(l ) and ad�X � = 0, 8X 2 k(l )

o
.
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These complexes yield the relative cohomology theoriesH�(g, K (l )) and H�(g, k(l )).
The fundamental upshot proved in [5] is that the isomorphic spacesH�(G, K (l )) and
H�(g, k(l )) are one dimensional. Moreover, the invarianti (Ol ) vanishes if and only
if the map H2q+1(g, K (l )) ! H2q+1(g) induced by the inclusion

V
(g�)K (l ) ,! V

(g�)
is the zero map. It is not hard to check that the formW(l ) belongs to the space
H�(g, k(l )) which allows to see again thati (�l ) is trivial if and only if the cohomology
class [W(l )] regarded as an element ofH2q+1(g) is trivial.

Proof of Theorem 4.1. As in the context of Theorem 4.1, we fix a Jordan-Hölder
sequence ofg

(S) : f0g = g0 � g1 � � � � � gn = g

such thatgp = z(g) the center ofg. Let l be in �max, Ol the coadjoint orbit through
l and e(l ) = f1< i1 < i2 � ng the set of jump indices ofl . Then obviouslyi1 = p + 1
and if we extract fromS a Jordan-Hölder basisfX1, : : : , Xng of g passing throughg(l ),
then l ([Xp+1, Xi2]) 6= 0. Remind the 3-formW(l ) defined in equation (1) byW(l ) =

l ^ X�
p+1 ^ X�

i2
which lies in the space

V3(g�)k(l ), where fX�
1, : : : , X�

ng is a basis of
g� dual to the basisfX1, : : : , Xng. It is then sufficient to prove thatW(l ) does not
consist of a coboundary form in the space

V3(g�). If the contrary happens, there exists�(l ) 2V3(g�) fulfilling W(l ) = d�(l ), it comes out that

W(l )([Xp+1, Xi2], Xp+1, Xi2) = l ([Xp+1, Xi2]) 6= 0,

but on the other hand and due to the fact that [Xp+1, g] � z(g), we get

d�(l )([Xp+1, Xi2], Xp+1, Xi2) = ��(l )([Xp+1, Xi2], [ Xp+1, Xi2]) = 0,

which is absurd. Finally [W(l )] 6= 0 in H3(g) and by Lemma 4.4 the invarianti (�l ) is
not trivial as claimed.

If in addition G is 2-step, then for givenl 2 g� we have either dim(Ol ) = 0, in
which casel ([g,g]) = f0g and theni (�l ) = [l ] is the orbit itself viewed as a cohomology
class, or dim(Ol ) = 2. In the last case, we make use of the same above notations and
arguments, we have:

d�(l )([Xi1, Xi2], Xi1, Xi2)

= ��(l )([Xi1, Xi2], [ Xi1, Xi2]) + �(l )([[ Xi1, Xi2], Xi2], Xi1)

� �(l )([[ Xi1, Xi2], Xi1], Xi2)

= 0,

which is impossible as againl ([Xi1, Xi2]) 6= 0 and [g, g] � z(g). So we are also done
in this case. This achieves the proof of the Theorem.
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Proof of Theorem 4.3. LetZ be a non zero vector ing such that [g, c] = RZ.
Then obviouslyZ lies in the centerz(g) of g. We may and do assume thatz(g) � c. It
is then proved in [2] thath stands to be a common polarizing algebra ofg� of generic
linear forms. Letm be an Abelian supplementary subspace ing, we pick a Jordan-
Hölder basisfZ1, : : : , Zng of g extracted from the sequenceS as follows:

z(g) = R� spanfZ1, : : : , Zpg and [g, c] = RZ1.

c = R� spanfZ1, : : : , Zp, Zp+1, : : : , Zp+dg.
h = R� spanfZ1, : : : , Zp+d, Zp+d+1, : : : , Zmg.
g = R� spanfZ1, : : : , Zm, Zm+1, : : : , Zm+dg, Zm+i 2 m for i 2 f1, : : : , dg.

The Pukanszky index sete of generic elements with respect to the above basis is:

e = fp + 1< � � � < p + d < m + 1< � � � < m + d = ng.
Moreover,�max = f� 2 g� : � (Z1) 6= 0g and dim(Ol ) = 2d for every l 2 �max. The
(2d + 1)-form W(l ) associated tol can be written as:

W(l ) = l ^ Z�
p+1 ^ � � � ^ Z�

p+d ^ Z�
m+1 ^ � � � ^ Z�

m+d,

where the basis above is shifted in such a way that it passes through g(l ). We are
going to use the same means as above. Suppose that there exits�(l ) 2 V(g�) such
that W(l ) = d�(l ). Remark first that

W(l )(Z1, Zp+1, : : : , Zp+d, Zm+1, : : : , Zm+d) = l1 6= 0.

On the other hand, and using the fact thatm is Abelian, we get

d�(l )(Z1, Zp+1, : : : , Zp+d, Zm+1, : : : , Zm+d)

=
dX

i =1

dX
j =1

(�1)p+m+i + j

� �(l )([Zp+i , Zm+ j ], Z1, Zp+1, : : : , Žp+i , : : : , Zp+d, Zm+1, : : : , Žm+ j , : : : , Zm+d)

=
dX

i =1

dX
j =1

(�1)p+m+i + j

� �(l )(�i , j Z1, Z1, Zp+1, : : : , Žp+i , : : : , Zp+d, Zm+1, : : : , Žm+ j , : : : , Zm+d)

for some real numbers�i , j . Finally d�(l )(Z1,Zp+1,: : :,Zp+d,Zm+1,: : :,Zm+d) = 0, which
achieves the proof using Lemma 4.4.

REMARK . 1) The result of the above theorem remains true if we replacethe
hypothesism Abelian by the fact that [m, m] � R� spanfZ, Zp+1, : : : , Zp+dg.
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2) The result of Theorem 4.3 may fail for general SNPC nilpotent Lie groups. Take
the example given in Section 3 withc = R� spanfZ, Y1, Y2g, h = R� spanfZ, Y1, Y2, Ag
and m = R� spanfX1, X2g. We see thatg is a SNPC nilpotent Lie algebra for which
the invariant vanishes on�max.

5. Examples and separation of unitary representations

5.1. On threadlike nilpotent Lie groups. We present hereby a sequence of ex-
amples which are often referred to as threadlike nilpotent Lie algebras belonging to the
class of special nilpotent Lie algebras. Forn � 2, let gn be the (n+1)-dimensional real
nilpotent Lie algebra with basisfX1, : : : , Xn+1g and non-trivial Lie brackets:

[Xn+1, X j ] = X j�1, j = 2, : : : , n.

Let Gn = exp(gn) be the associated connected and simply connected nilpotent Lie group.
Note thatg2 is the Heisenberg Lie algebra,Gn is n-step nilpotent and a semi-direct
product of the one parameter group exp(RXn+1) and the Abelian subgroupG0 = exp(g0)
whereg0 = R� spanfX1, : : : , Xng. In addition the center ofg is one dimensional and
z(gn) = RX1. We know already from Corollary 5.2 above thati (�l ) 6= 0 for every l 2�max. We shall proceed to an explicit computation of the invariant and show that the
result may fail on lower layers. In this example one has

E = fe1 � e2 � � � � � eng
whereej = f j + 1,n + 1g for j = 1, : : : , n� 1 anden = ;. The layer�ej are

�ej = fl 2 g� : l1 = � � � = l j�1 = 0, l j 6= 0g
for j = 1, : : : , n� 1, and

�en = �; = fl 2 g� : l1 = � � � = ln�1 = 0g = R� spanfX�
n, X�

n+1g.
Let l 2 g�n such thatl1 = l (X1) 6= 0 then obviouslye1 = e(l ) = f2,n+ 1g and dim(Ol ) = 2.
As in [3], the generic orbit associated to the fundamental elementl = (l1,0,l3, : : : , ln,0),
l1 6= 0 has the form:

O =

��
l1, x2, l3 +

1

2l1
x2

2, l4 +
l3
l1

x2 +
1

6l 2
1

x3
2, l5 +

l4
l1

x2 +
l3
2l 2

1

x2
2 +

1

24l 3
1

x4
2, : : : ,

ln +
ln�1

l1
x2 +

ln�2

2l 2
1

x2
2 + � � � + l3

(n� 3)! l n�3
1

xn�3
2 +

1

(n� 1)! l n�2
1

xn�1
2 , xn+1

�
:

x2, xn+1 2 R
�

.
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We have then,

dl = l1X�
2 ^ X�

n+1 +
nX

i =3

l i X
�
i +1 ^ X�

n+1,

and therefore

l ^ dl =

 
l 2
1 X�

1 ^ X�
2 + l1

nX
i =3

l i X
�
i ^ X�

2 + l1

n�1X
i =3

l i X
�
1 ^ X�

i +1

!
^ X�

n+1

+

 
l3

nX
i =4

l i�1X�
3 ^ X�

i +
X

4�i< j�n

(l i l j�1 � l i�1l j )X
�
i ^ X�

j

!
^ X�

n+1.

Since for all i � 2, X�
i ^ X�

n ^ X�
n+1 = d(X�

i�1 ^ X�
n), the invarianti (�l ) reads

i (�l ) = l 2
1[X�

1 ^ X�
2 ^ X�

n+1] + l1

n�1X
i =3

l i [X
�
i ^ X�

2 ^ X�
n+1] + l1

n�1X
i =3

l i [X
�
1 ^ X�

i +1 ^ X�
n+1]

+ l3

n�1X
i =4

l i�1[X�
3 ^ X�

i ^ X�
n+1] +

X
4�i< j�n�1

(l i l j�1 � l i�1l j )[X
�
i ^ X�

j ^ X�
n+1].

We remark hereafter that the invariant can be trivial on lower non minimal layers, so
on the set of coadjoint orbits of maximal dimension as well. In fact, consider the group
G3 above. For the index sete2 = f3, 4g the corresponding layer is�2 = fl 2 g�3 : l1 =
0, l2 6= 0g. We takel = l2X�

2, l2 6= 0, then:

l ^ dl = l 2
2 X�

2 ^ X�
3 ^ X�

4 = d
�
l 2
2 X�

3 ^ X�
1

�
,

which shows that the invarianti (�l ) is trivial.

5.2. Case of non-nilpotent Lie groups. We study in the section the behavior of
the invariant in the case of exponential non-nilpotent Lie groups. We put the emphasis
on the case where dimG � 3. The unique exponential solvable two dimensional Lie
group is the groupax+b whose Lie algebra admits a basisfX,Yg such that [X,Y] = Y.
This group admits only two infinite dimensional representations �+ and �� associated
respectively to the linear forms +Y� and�Y� whose coadjoint orbits are open sets in
g�. So, obviouslyi (��) = 0 as being element ofH3(g) in the two dimensional spaceg.

Suppose now thatG is three dimensional, then up to isomorphism, one can assume
that g admits a basisfA, X, Yg with non trivial brackets:

[ A, X] = X � �Y, [A, Y] = �X + Y

for some� 2 R� (see [8]). This group admits two layers, the unitary characters and
the layer of two dimensional coadjoint orbitsOl such thatl (X)2 + l (Y)2 6= 0. So every
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non trivial orbit contains a representative linear forml� = cos�X� + sin�Y� for some� 2 [0, 2� [. Having fixed such a form, a routine computation shows that:

dl� = cos�d X� + sin�dY�
= � cos�(A� ^ X� + �A� ^ Y�)� sin�(��A� ^ X� + A� ^ Y�)
= (� sin� � cos�)A� ^ X� � (� cos� + sin�)A� ^ Y�.

So,

l� ^ dl� = �A� ^ X� ^ Y� = d

��1

2
X� ^ Y��

which merely entails that the invarianti (�l� ) is trivial for every � 2 [0, 2� [. This ex-
ample shows that the result of Theorem 4.1 may fail for general exponential solvable
Lie groups.

5.3. Separation of unitary representations using the invariant. We pay at-
tention in this section to the possibility whether the definition of the invariant could
be slightly shifted in order to be used to distinguish non equivalent unitary and irre-
ducible representations. For that purpose, the idea is to multiply the cohomology class
[l ^(dl)q] by someG-invariant rational nonsingular function defined on the correspond-
ing cross-section, (orG-invariant C+1 function in more general contexts) depending
only on l in order to guarantee such separation within a fixed stratum.In what fol-
lows, we prove that such process is efficiently feasible in the following class of Lie
groups.

Proposition 5.1. Let G be a connected simply connected nilpotent Lie group.
Assume that the coadjoint orbits of maximal dimension are one codimensional. Then
the invariant separates representations associated to generic orbits up to a G-invariant
factor.

Proof. Denote byOmax the set of coadjoint orbits of maximal dimension, and let
O 2 Omax� g�, the dual space of the Lie algebrag of G. For l 2 O, dim(g(l )) = 1 and
then g(l ) = z(g). It comes out then that representation�l is square integrable modulo
the center ofG and that from Theorem (5.1) in [4],i (�l ) 6= 0. Note in addition that
O = l + z(g)?. Let fXi : 1� i � m + 1g be a Jordan-Hölder basis ofg such thatz(g) =
RX1. We have thene(l ) = e = f2, : : : , m + 1g, l (X1) 6= 0 and the cross-section of the
coadjoint orbits in�e is

W = f�X�
1 : � 2 R�g.

The invarianti (�l ) is then given by

i (�l ) = P(l )[W], l 2 Omax
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where P is a G-invariant polynomial ong� which never vanishes onOmax and W is
the volume form ong defined by

W = X�
1 ^ � � � ^ X�

m+1.

Denote byp1 the projection

p1 : g� ! R, l =
m+1X
i =1

l i X
�
i 7! l1.

We then define the invariant

i 0(�l ) =
p1(l )

P(l )
i (�l ) = l1[W],

which is an invariant for generic orbits ing� and obviously separates the representa-
tions of Omax.

5.4. Remark. Note that dim(G) is necessarily odd in the Proposition 5.1 above.
The proof of Theorem (5.1) in [4] shows that the invarianti (�), � 2 Ĝ separates rep-
resentations associated to generic orbits if and only if dim(G) � 1 mod 4 (i.e. dim(G) =
2q + 1 with q even).

5.5. Example. We consider finally the threadlike nilpotent Lie groupG4. Fix a
unitary representation�l associated to its fundamental elementl = (l1, 0,l3, l4, 0). So as
in Subsection 5.1 above, one has that

i (�l ) = l 2
1[X�

1 ^ X�
2 ^ X�

5] + l1l3[X�
1 ^ X�

4 ^ X�
5] � l1l3[X�

2 ^ X�
3 ^ X�

5].

Take now another unitary representation�l 0 associated to its fundamental elementl 0 =
(l 01, 0, l 03, l 04, 0) such thati (�l ) = i (�l 0). We see then that the invariant may be shifted in
such a way to get thatl1 = l 01 and l3 = l 03. Nevertheless, no control on the variablel4
is accessible.
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