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Abstract
We provide in this paper a counterexample to the BensonkRatonjecture
about a cohomology class invariant on coadjoint orbits dpoitént Lie groups.
We prove that this invariant never vanishes on generic od@dprbits for some
restrictive classes. As such, it does separate up to imtatfiactor, unitary
representations associated to generic orbits in some.cases

1. Introduction

Let G be a connected Lie group with Lie algebgaand letg* be the vector dual
space ofg. The left invariant forms orG yield a sub-complex of the de Rham complex
Q(G) which can be identified with the exterior algebfgg*). We denote byH*(g) the
cohomology of this complex which agrees with the algebraitiam of the Lie algebra
cohomology with trivial real coefficients. L&D C g* be a coadjoint orbit of dimension
2q. For anyl € O, viewed as an element Qf\l(g*), the differential forml A (dI)¥ is
a closed form and lies if\***(g*). In [4], C. Benson and G. Ratcliff proved that its
cohomology classl [A (d1)9] € H2*Y(g) is independent of the choice bfe ©. When
G is exponential and simply connected, it is well known thagréhis a topological
homeomorphism between the space of coadjoint ogif\d* and the unitary dua6
of G. That is, every unitary and irreducible representatioris uniquely associated
with a coadjoint orbit®,, via the Kirillov theory. With the above in mind, it comes
out that the invariant in question can be defined@n For a given representation e
G, set

i(7) =i(O0;) =l Ad)¥] € HE*Y(g), | € O,.

It appears so natural to seek the features of such invagapgcially if it can be used
to distinguish between representations whose orbits Havesame dimension and what
kind of properties of the representation in question it dste In [4], C. Benson and
G. Ratcliff compute the invariant for numerous exampleshia tontext of connected
simply connected Lie groups, namely the case of infinite disianal representations
of the Heisenberg group and some other examples in highprnéigotent Lie groups.
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They remarked, however, that such invariant fails to seépasaitary representations in
general and they substantiated the following conjecture:

Conjecture 1.1 (Benson and Ratcliff [4]). Let G be a connected simply connect-
ed nilpotent Lie group with one dimensional centeet | € g* be a linear form dual
to a basis element of the center gf then i(m;) # 0.

In the same context, the authors gave an affirmative answéret@bove conjec-
ture for square integrable representations modulo theeceasftG. The present work
is a continuation of the articles [4] and [5]. We prove in atfiisne that the above
conjecture fails to hold. We shall produce a counterexajrgolel even more show that
the invariant may vanish in general settings on the wholeeReth-Pukanszky maxi-
mal layer, whose image via the Kirillov mapping obviouslynstitutes a dense subset
of G with respect to the relative topology. In a second step, wepiin the context
of arbitrary nilpotent Lie groups a general criterion foetmvariant to be non trivial
which consists in looking at other simpler cohomology clasaking use of the re-
sults of [5]. We consequently show that this invariant nevemmishes on the Pedersen-
Pukanszky maximal layer for nilpotent Lie groups for whicbadjoint orbits are at
most two dimensional and for some Lie groups admitting a rabraubgroup which
polarizes all generic linear forms as well. It is somehowigeztble that even for these
classes, the invariant may vanish on the set of maximal déinancoadjoint orbits.

The non-vanishing cohomology invariant fails as mentioradier to separate uni-
tary and irreducible representations whose orbits lie g1g¢hme stratum. As such, the
invariant does separate trivial orbits (unitary charagteiThat is, forr = x, O, = {I}
andi(r) = [I]. We pay attention in the last section of the paper to the ipiitg
whether the definition of the invariant could be slightly fe#d in order to guaran-
tee such separation. The task basically consists in myiltiplthe cohomology class
[I' A (d)9] by some G-invariant rational non singular function depending only lo
(so constant orG-orbits). When restricted to a single orbit, it appears tokrar that
the cohomology class of the subsequent invariant coincrdés the original, up to a
scalar factor. We prove that such operation is feasible énctise of one codimensional
maximal coadjoint orbits. Seemingly, this process stawdbe pretty tough to realize
in general contexts, and this is due to a pair of reasons.thyfithe invariant does
strongly depend on the features of the associated orbithumiay be difficult to accu-
rately describe in high dimensional Lie groups. Secondilg, structure of the ambiant
Lie algebra greatly intervenes in the cohomology calculbéctv sometimes contributes
to utterly lose the control on some variables related to th®t an question within a
corresponding cross-section, which typically happens xaniple5.5.

We study in the last section some examples of exponentiahiipatent Lie groups,
we basically remark that the invariant vanishes on infiniteethsional representations in
the case where dign < 3 which is rather unexpected.
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2. Background

2.1. The general setting and notations. We begin this section by reviewing
some useful facts and notations for a nilpotent Lie groupis Thaterial is quite stan-
dard. We refer the reader to [6] for details. Throughout ankkss specific mentiory
will be a n-dimensional real nilpotent Lie algebr& will be the associated connected
and simply connected nilpotent Lie group. The exponentiapm

exp:g —> G

is a globalC*-diffeomorphism ofg into G. Let g* be the dual vector space gf The
Lie algebrag acts ong by the adjoint representation gdthat is:

ady(X)(Y) = adX)(Y) = [X, Y], X,Y eg.
The groupG acts ong by adjoint representation Adi.e.
Adg(g)(Y) = Ad(g)(Y) =e®)Y, g=expXeG, Yeg
and ong* by the coadjoint representation Ad.e.
Ads(@)I(X) =g-1(X) =1(Ad(@™)X), geG,leg’ Xeg.

The coadjoint orbit ofl is the setO, =G -1 ={g-I, g € G}. The space of coadjoint
orbits is noted byg*/G.

2.2. The orbit theory. Letl € g* andg(l) = {X € g;I([X, g]) = {0}} be the sta-
bilizer of | € g* in g which is actually the Lie algebra of the Lie subgroGgl) = {g €

G, g-1 =1}. So, it is clear thag(l) is the radical of the skew-symmetric bilinear form
B, defined by
(2.2.1) B(X,Y)=I([X,Y]), X, Yeg.

A subspace[l] of the Lie algebrag is called a polarization for € g* if it is a maximal
dimensional isotropic subalgebra with respectBo So we can consider the unitary
character ofB[l] = exp(©[l]),

xi(expX) = e 20 X e p[l].

The unitary dualG of G is parameterized via the Kirillov-Bernat orbit method. Let
| € g*, we take a real polarizatioh = b[l] for |I. For such a polarization, define

=T = |nd‘§ x, B=expb.



402 A. BAKLOUTI AND K. TOUNSI

Then m, is a unitary and irreducible representation Gf and its equivalence class
[ ] depends only on the coadjoint orbit bf Moreover, every irreducible represen-
tation 7 is equivalent to an induced representatian, for somel € g* and a polar-

ization b in | with the charactety;. The following mapping, called the Kirillov-Bernat

mapping
K:g'/G— G
G-l [mp]
is a homeomorphism (see [6]).

2.3. The Pedersen-Pukanszky stratification. Let

(8$):{0)=goCg1C---Cgn=9

be a Jordan-Holder sequence of the nilpotent Lie algghrae., a flag of ideals of
g such that ding; =j, j =0,...,n. We extract from §) a Jordan-Holder basis
B={X1,..., Xn} by taking Xj € gj \ gj—1, j =1,...,n. Let B*={X],..., X} the
dual basis ofg* dual to the basigXi,..., X,} which is a Jordan-Holder basis for
the coadjoint action ofG on g*. Letl| € g*, an indexj € {1,...,n} is said to be a
jump index forl if

g() +gj 7o) +gj-1.
We let
el)={j:j is a jump index forl}, &()=(1,...,n}\e()
and
E={e): | € g

The sete(l) contains exactly din®®,) indices, which is necessarily an even number.
For eache € &, the set

Qe={l eg:e(l) =€}

is the layer ing* corresponding tee and obviously containg®), for | € g*. Note that
each layer2e is a semi algebraic set ig and there exists a strict total orderirgon
& defined as follows. Foe, € € £ we havee < € if either

1oe={ji<je<---<jah €={j1<jp<---<jglwhereji=ji,...,jk1=J1
and j, < jx for somek < min(d, d), or
2. egé€.

Note that, in view of the second condition, the empty eseto is the minimal element
in £. The layerQg corresponds to the one dimensional representations.inThe
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layer Q¢ given by the maximal elemerd € £ contains the generic orbits and forms
a Zariski open set irg*. This layer will be noted by« and called the Pedersen-
Pukanszky maximal layer. More generally, one has thatefarf, the layerQe is the
intersection of a Zariski open set with,., e, Which is Zariski closed. In fact, there
is a G-invariant polynomial function

Pe: g - R
for eache € £ with the property that
Qe={l € g*: P(l) 20 and Ps(1) = 0 for € < €}.
These are defined explicitly a8, =1 and
Pe(l) = Pf(Me(1)), where Me(l) = (I[Xi, Xj])i jce

for @ < e. That is, P(l) is the Pfaffian of the skew-symmetric matrMg(l). For
ecé&, let
Ve=R —sparfXj: j € & Cg"
The set
We = Qe N Vs

is a cross-section to the coadjoint orbits ¢ which means that), meets\, in a
unique and single point called tHendamental elemenf the associated representa-
tion m.

3. A counterexample to the Benson-Ratcliff conjecture

In this section, we produce a counterexample to the BensaalR Conjec-
ture 1.1. We shall even go much further. The content of thenimyaxample below
can be clarified by carrying out quite accurate computatior@king use of explicit
bases. This basically leads to the fact that the invarign) may vanish on the
whole Pedersen-Pukanszky maximal layer. I&tbe the nilpotent Lie group with
Lie algebrag =R — spar{Z, Y1, Y2, A, X1, X2} with non zero Lie brackets:

[Y1, Xi1 =[Y2, Xol = Z, [A X1l =Y, [A X2]=Y, and [Xg, Xo]= A
It is clear that the centey(g) is one dimensional and spanned By We designate by
{Z*, Y5, Y5, A%, X7, X5} the basis ofg* dual to the basigZ, Y1, Y2, A, X1, X3}, The
maximal jump indices set is given ly={2,3,5,8. So, the PfaffiarPs(l) is such that

Po(1)? = detMe(l) = 14, 1, =1(2).
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The Pedersen-Pukanszky maximal layer is then defined asethe s
Qmax = {l € 9*: I1 7 0}.
Proposition 3.1. The invariant () vanishes or2max.

Proof. LetVs = RZ* @ RA*, then as in2.3 the setVW = Va N Qmax iS a Cross-
section for the generic coadjoint orbits gi. If | € Qmax the fundamental element of
the representatiom; still denoted byl, may be picked as =1,Z* +1,A* € Qmax. SO,
g()=(Z, A) and dim(,) = 4. Hence:

dl = Ile* + |4dA*
= —11(Y; A XT+Y5 A X)) —1aX] A X5,

So, an easy computation shows that)f = —212Y; A Y3 A X} A X3 and then

LA ()2 = (12Z* +1aA") A (Z22Y7 AYS A XA XS)

= 2325 AYFAYEAXEA XS = 221,A AYFAYS A XA XS
Let B(I) be the 4-differential form defined o by
BU) =22Z* AYF A A* A (I1Y5 +14X5).
Then one easily checks

dB(1) = 22(d(Z* A Y] A A A(ILY; +1aX5) — ZF A Y A A A (11d Y5 +14d X))
=2A2(dZYAY] A A = ZF A(Y]) A AT = Y] ADAD) A (15 +1aX5)
—22Z* AYF A AT A (11dY +14d XE)
=2A2(—(Yy AXT+Y3AXDAYS AN
+ZF A (AT A XD A A = YT A (XA X)) A (Y5 +14XT)
+2A2ZF AY] A A A (LAY A X3)
= —221,Y5 AXGAYF AN AX; =232 AYFAXTAXSAYS

=1 A (dl)?,
which proves that A (dl)? is an exact differential form and thereforér) = 0. O

REMARK. 1) The particular case whetg = 0 gives a counterexample for the
Benson-Ratcliff conjecture.
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2) For lower layers and beyond the minimal stratum of charactthe invariant may
be non zero as can be observed in the example above. Pickstana® =1,Y;, 1, #0
theng(l) = (Z, Y1, Y2, X2) and dim() = 2. The invariant (7) is:

i(m)=[l Adl]= —I§[Yik A A" A XD
Let

A=Z*A ()\.1’sz + )\.1‘3Y; + )"1,4A* + )"1,5XI + A-l,GX;)
+ Yf A (12'3Y2* + )\.2’4A* + )\.2’5XI + )\-Z,GX;)
+ YZ* A ()‘3,4A* + )\315XI + )\.3’6)(;) + A" A ()»4’5XI + A4,6X§) + AS,GXI A X;

be an element iry\z(g*). Then:

dr = —R13Y7 A XTAYS —d1aY7 A XTI A A" = h14Y5 A XS A AT
FA12Z" AN ATA X+ A13Z5 A AT A XS+ X142 A XD A XS
— A 3A* A XTAYS — A 6A" A XTA XS+ 2237 A AT A XS
+h24Y] AXTA XS — A35A" A X5 A XT +h3aYs A XA XS

+ )"l,ﬁxi A Yf A X; + )\.Lgxz A YZ* A Yf + )\1,5X§ A YZ* A Xi

Suppose now thatlx = —I3Y; A A* A X}, then one can easily check that we simulta-
neously have—l§ = X1,4 =0 which is absurd and their{z;) Z O.

4. Nilpotent Lie groups on which the invariant restricted to Q25.x never
vanishes

This section aims to examine some restrictive classes pbtaiht Lie groups for
which the invarianti () is non zero for every in a dense subset gf*. Our first
result deals with the case where the dimension of coadjainitsois at most two.

Theorem 4.1. Let G be a connected and simply connected nilpotent Lie group
with Lie algebrag. Assume that coadjoint orbits ig* are at most two dimensional
Then () # 0 for every le Qmnax. The result holds org* \ {0} if in addition G is
two step

We also study the case of nilpotent Lie groups admitting aalidvhich polarizes
generic elements of the dual vector space. The result of rfEhed.1 may fail in such
setting as shown in the counterexample provided in SectioA Jilpotent Lie group
G is said to be SNPC (or to meet the special normal polarizatmmdition) if there
exists in its Lie algebrg an Abelian idealc such that §, c] is one dimensional and
that the centralizeh of ¢ is Abelian. Likewise,G is said to be special if it is of the
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form R" x R being non commutative. At the level of Lie algebras, theristexa co-
dimensional one ided} which polarizes all generic orbits and so obviously suclalide
must be Abelian. It turns out that special nilpotent Lie greware SNPC, especially
the n-step threadlike group and Heisenberg groups are also SI¢RE,[1] and [2]). It
evidently follows that in the case of special Lie groups, ey@norbits are at most two
dimensional. The following consequence obviously steromfiTheorem 4.1:

Corollary 4.2. Let G be a connected simply connected nilpotent special Lie
group. Then i) # 0 for every le Qmax.

We shall show later that such result may fail for lower layevde now provide
a quite similar result as above for SNPC nilpotent Lie groug$e upshot is the
following:

Theorem 4.3. Let G be a connected and simply connected SNPC nilpotent Lie
group. Assume that admits an Abelian supplementary subspa@&en i(z;) # 0 for
every le Qmax

We proceed now to the proof of our results. We shall provideeaegal criterion
for the invarianti (), | € g* to be trivial. As shall be remarked later, such criterion has
a great practical features and will be used to get pretty gémesults in some classes
of nilpotent Lie groups. It consists in looking at a new colwbogy class depending
only on the fundamental element of the representatipn\We start with a connected
simply connected nilpotent Lie groug with Lie algebrag, let

(S):{O}=goCgrC---Cgn=g

be a Jordan-Hdlder sequence gf from which we extract a Jordan-Holder basis
{X1,...,Xp} of g. Let| be ing*, O the coadjoint orbit through and & = dim(O,).
Denote as before by

e)={1<ip<---<iy=<n}

the set of jump indices of. For anys € &(I), there exist some real numbeks;(l),
t < sin such a way that the vector:

Ys = Xs + Z Ast(1) Xt

t<s

belongs tog(l) N gs. We can then extract fromS) a Jordan-Holder basigYy, . .., Yn}
passing throughy(l) = R — spariYs, s € &)} and such thaty; = X; for i € e(l). Let
W(l) be the (2 + 1)-form defined bhy:

(1) WO =T AYT A AY]

i2d?
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where{Y], ..., Y } is a basis ofg* dual to the basigY,. .., Y,}. Remark thatw(l)
does not depend on the values lobn the vectorsY;, i € e(I). In the case where
e(l) =¥, we get obviously thap(l) =g and W(l) =1 is a one differential form so that
i(m)=[l]. The following lemma plays an important role in the sequel.

Lemma 4.4. Let G be a connected simply connected nilpotent Lie groulp kg
algebrag. Let | € g* and let W) be the(2d + 1)-form defined as in1). Then for
every le Qe, we have that [z;) = (—1)%d! Ps()[W(1)].

Proof. Forl € Q¢, letli; =I([Yi,Y;]) (i,j € {1,...,n}). SoMe(l) = [liiJ1<st<2d
and from [7], one has:

11 .
Pe(l) - EE Z SIQn@)lin(l),in(2)|i0(3)vin(4) T |in(2d—1)virr(2d)'
T oeSy
On the other hand, we have
1
di=— Y I YiAY= ~3 D ol Y AY

l<s<t<2d s7t

and therefore

1
d - d E N T I . * * * *
(dl) - (_1) 2_d ||n(1)y|n(2)||n(3)x|z1(4) l'n(Zd—l)v'n(Zd)YI{,(l) A qu(z) A A Y|n(2d71) A Y'rr(2d)
0eSy

1

— d H * *

=1 2d Z SIGNO )i, o ioiow o nioe | Yip Ao A Vi
oSy

= (-1 P()YF A A Y

l2d

from above. 0

REMARK. Let K(I) be the normal subgroup d&(l) whose Lie algebra is given
by ¢(1) = ker( /g(l)). For X € g, the substitution operator

k k—1
ix): A@)— @)

is given byi (X)(B)(Y1,...,Yke1) =B(X,Y1,...,Yk1), forYieg, i =1,...,k—1. Let
now consider the sub-complexes Kf(l)-basic andt(l)-basic of /\(g*) defined by:

(/\(g*))K(l) = [,8 e \@):1(X)8=0,vX e &) and Ad p=p, Vse K(I)},
(/\(g*))m) = [5 e \@):i(X)8=0, VX ct(l) and ag B =0, ¥X € ‘e(l)}.
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These complexes yield the relative cohomology theotiggg, K(1)) and H*(g, &(1)).
The fundamental upshot proved in [5] is that the isomorpipacesH*(G, K(l)) and
H*(g, &()) are one dimensional. Moreover, the invaria@®,) vanishes if and only
if the map H29*(g, K(I)) — H?9*(g) induced by the inclusion\(g")kq) < (g%
is the zero map. It is not hard to check that the fow{l) belongs to the space
H*(g, (1)) which allows to see again thagr) is trivial if and only if the cohomology
class W(l)] regarded as an element &f29*1(g) is trivial.

Proof of Theorem 4.1. As in the context of Theorem 4.1, we fiomdn-Holder
sequence 0f

(8):{0=goCgrC---Con=9

such thatg, = 3(g) the center ofg. Let| be in Qmax O the coadjoint orbit through

| ande(l) ={1 < iy < i, <n} the set of jump indices of. Then obviouslyi, = p+1
and if we extract fromS a Jordan-Holder basigXy,. . ., X,} of g passing througly(l),
then [([Xp+1, Xi,]) 7 0. Remind the 3-formW(l) defined in equation (1) byv(l) =

I A X A X which lies in the spacg’\s(g*)m), where {X], ..., X}} is a basis of
g* dual to the basigXy,..., X,}. It is then sufficient to prove thatV(l) does not
consist of a coboundary form in the spa,é\é(g*). If the contrary happens, there exists
B() e /\3(g*) fulfiling W(l) = dga(l), it comes out that

W[ Xps1, Xi,ls Xpea, Xiy) = H([Xpra, Xi,]) 70,
but on the other hand and due to the fact thép.h, g] C 3(g), we get
dB)([Xp+1, Xi,], Xpe1, Xi,) = =B)([Xps1, Xi, ], [Xpe1, Xi,]) = 0,

which is absurd. Finally\W(l)] # 0 in H3(g) and by Lemma 4.4 the invariaifr,) is
not trivial as claimed.

If in addition G is 2-step, then for giveth € g* we have either din@) = 0, in
which casd ([g,g]) = {0} and theni () =[l] is the orbit itself viewed as a cohomology
class, or dimQ,) = 2. In the last case, we make use of the same above notatimhs a
arguments, we have:

dﬂ(l)([x|1, Xiz]! Xil’ Xiz)

= =B Xiy, Xi,], [Xiy, Xi,1) + BOA Xy, Xi ]l Xi, 1, Xi,)
= BMOALXi,, Xi,1, Xi,1, Xi,)

=0,

which is impossible as agaif{[ Xi,, Xi,]) 70 and p, g] C 3(g). So we are also done
in this case. This achieves the proof of the Theorem. ]
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Proof of Theorem 4.3. LefZ be a non zero vector iy such that §,¢] = RZ.
Then obviouslyZ lies in the centeg(g) of g. We may and do assume thgt) C c. It
is then proved in [2] thah stands to be a common polarizing algebragdfof generic
linear forms. Letm be an Abelian supplementary subspacegjnwe pick a Jordan-
Holder basis{Z,,. .., Z,} of g extracted from the sequence as follows:

3(g) =R —spariZy,...,Zp} and [g,c] =RZ;.

c=R—spaniZy,...,Zp, Zp+1, ..., Zp+d}-

h=R —spariZy,..., Zpd, LZp+d+l - - - » Zm)-

g=R—spaiZi,...,Zm, Zm+1,- - -+ Zmsd}, Zmsi €m for i € {1,...,d}.

The Pukanszky index set of generic elements with respect to the above basis is:
e={p+l<---<p+td<m+l<...<m+d=n}

Moreover, Qmax = {§ € g*: §(Z1) # 0} and dim()) = 2d for every| € Qmax. The
(2d + 1)-form W(l) associated td can be written as:

— * * *
W) =IANZog AN ANZpg AN Zgg A+ A Zgs

where the basis above is shifted in such a way that it passesgig(l). We are
going to use the same means as above. Suppose that theresgxits /A (g*) such
that W(l) = dB(l). Remark first that

W(l)(Z]_, Zp+]_, ey Zp+d, Zm+]_, “ ey Zm+d) = I]_ ? 0
On the other hand, and using the fact thais Abelian, we get

d,B(I)(Zli Zp+l, ] Zp+d| Zm+ly L] Zm+d)
d
=303 (s
X ﬂ(l)([zpﬂ f Zm+j], Z1, Zp+1. ceey 2p+i Yo Zp+d, Lty -« s Zm+j Yo Zm+d)
d d
=303 (s

X ﬂ(l)()\'l,] le le Zp+]_, U] Zp+il' L] Zp+d| Zm+1. R 2m+jy- L] Zm+d)

1
[y

1
[y

for some real numbers; ;. Finally dg(1)(Z1,Zp+1,- - - Zp+ds Zmets- - -2 Zmea) = 0, Which
achieves the proof using Lemma 4.4. ]

REMARK. 1) The result of the above theorem remains true if we reptaee
hypothesism Abelian by the fact thatmg, m] C R —spaniZ, Zpa, ..., Zpa).
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2) The result of Theorem 4.3 may fail for general SNPC nilpbtele groups. Take
the example given in Section 3 with=R —spaniZ, Y1, Y2}, h =R —spaniZ, Yy, Yz, A}
andm =R — sparf Xy, X,}. We see thaty is a SNPC nilpotent Lie algebra for which
the invariant vanishes 0fmax.

5. Examples and separation of unitary representations

5.1. On threadlike nilpotent Lie groups. We present hereby a sequence of ex-
amples which are often referred to as threadlike nilpotaatdlgebras belonging to the
class of special nilpotent Lie algebras. For 2, let g, be the (1+1)-dimensional real
nilpotent Lie algebra with basisXy, ..., Xp+1} and non-trivial Lie brackets:

[Xn+1, Xj] = Xjfl, j =2,...,N.
Let G, = exp(gn) be the associated connected and simply connected nitploggroup.
Note thatg, is the Heisenberg Lie algebr&, is n-step nilpotent and a semi-direct
product of the one parameter group eXp(,.1) and the Abelian subgrou@® = exp@°)
whereg® =R — spar{Xa, ..., Xy}. In addition the center of is one dimensional and
3(gn) = RX;1. We know already from Corollary 5.2 above thdtr) # O for everyl €

Qmax- We shall proceed to an explicit computation of the invariand show that the
result may fail on lower layers. In this example one has

E={er == > e}
wheree; ={j +1,n+1} for j=1,...,n—1 ande, =@. The layerQ2, are
Qe ={legli=---=1j1=0,1; #0}
for j=1,...,n—1, and
Qe, =Q={leg'ili=---=1lp_1 =0} =R —spari X}, X;,,}.
Let| € g;; such that; =1(X1) # O then obviouslye; = e(l) = {2,n+1} and dim(;) = 2.

As in [3], the generic orbit associated to the fundamentaieint! = (1,,0,ls,. . .,I,,0),
I, #0 has the form:

1 I3 1 I4 I3 1
0= l1, X2,|3+—X2,|4+—X2+—X3,|5+—X2+—X2+—X4,...,
2,72 T a2 T 227 24372
In—1 [h—2 I3 1
In+—x2+—x2+---+7x”*3+7x”*1x .
2 —3 N\ 522 2 An+l |-
Iy 22 (n—3)e3 (n—1)52

X2, Xn+1 € R}
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We have then,
n
dl =13 X5 A X + ) 1 Xg A X,
i=3
and therefore

n n-1
I Adl= (|§x1m X5+l ) X A x;+|1Z|ix;Ax;;l> A XE
i=3 i=3

n
+ (|3 Z i X5 A X+ Z (lilj—a = lical )X A XT) A Xie1-
i=4 4<i<j<n

Since for alli > 2, X A Xi A XE = d(X_, A X}), the invarianti (m) reads

n—1 n-1
i(m) = 120XE A X5 A Xl +10 ) HIXE A XS A Xl + 10 ) HIXE A Xy A X]
i=3 i=3

n-1
Y X3 A XA Xl > (o = il DX A XA Xl
i=4

4<i<j=<n-1

We remark hereafter that the invariant can be trivial on lowen minimal layers, so
on the set of coadjoint orbits of maximal dimension as weil fdct, consider the group
G3 above. For the index seb = {3, 4} the corresponding layer i€, = {l € g5: 11 =
0,1, # 0}. We takel =1,X3, I, #0, then:

I Adl=13X5 A X5 A X =d(13X5 A X7),
which shows that the invarian{rn) is trivial.

5.2. Case of non-nilpotent Lie groups. We study in the section the behavior of
the invariant in the case of exponential non-nilpotent Lieugps. We put the emphasis
on the case where di@ < 3. The unique exponential solvable two dimensional Lie
group is the groumx+b whose Lie algebra admits a bagiX,Y} such that K,Y] =Y.

This group admits only two infinite dimensional represeote 7. and 7_ associated
respectively to the linear formsY# and —Y* whose coadjoint orbits are open sets in
g*. So, obviouslyi(7.) = 0 as being element dfi®(g) in the two dimensional spage

Suppose now thab is three dimensional, then up to isomorphism, one can assume

that g admits a basi§A, X, Y} with non trivial brackets:

[A X]=X—aY, [AY]=aX+Y

for somea € R* (see [8]). This group admits two layers, the unitary chamaciand
the layer of two dimensional coadjoint orbi¢d such thatl (X)2+1(Y)? # 0. So every
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non trivial orbit contains a representative linear folyn= cosd X* + sindY* for some
6 € [0, 2r[. Having fixed such a form, a routine computation shows that:

dly = cosfd X* + sinddY*
= —CoSO(A* A X* +a A* AY*) —sinf(—aA* A X*+ A" A YY)

= (o sind — cosO)A* A X* — (« cosb +sind) A* A Y™,

So,
1
lo Adly =aA* A X*AYH =d(—§X* /\Y*)

which merely entails that the invariantr,) is trivial for every 6 € [0, 2z[. This ex-
ample shows that the result of Theorem 4.1 may fail for gdnexponential solvable
Lie groups.

5.3. Separation of unitary representations using the invaant. We pay at-
tention in this section to the possibility whether the défam of the invariant could
be slightly shifted in order to be used to distinguish noniegjant unitary and irre-
ducible representations. For that purpose, the idea is ttiplyuthe cohomology class
[I A(d)9] by someG-invariant rational nonsingular function defined on therespond-
ing cross-section, (oG-invariant C**° function in more general contexts) depending
only onl in order to guarantee such separation within a fixed strattmwhat fol-
lows, we prove that such process is efficiently feasible i fbllowing class of Lie
groups.

Proposition 5.1. Let G be a connected simply connected nilpotent Lie group
Assume that the coadjoint orbits of maximal dimension are ocodimensional Then
the invariant separates representations associated t@gemrbits up to a G-invariant
factor.

Proof. Denote byOnax the set of coadjoint orbits of maximal dimension, and let
O € Omax C g%, the dual space of the Lie algebgeof G. Forl € O, dim(g(l)) =1 and
then g(I) = 3(g). It comes out then that representatisnis square integrable modulo
the center ofG and that from Theorem (5.1) in [4](m) # 0. Note in addition that
O =1+3()*t. Let {X;j:1<i <m+1} be a Jordan-Holder basis @fsuch that;(g) =
RX;. We have there(l) =e=1{2,...,m+ 1}, I(X;) # 0 and the cross-section of the
coadjoint orbits inQe is

W={iX]: 1 eR".
The invarianti(m) is then given by

i(m)=PMIW] | € Omax
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where P is a G-invariant polynomial ong* which never vanishes o®max and W is
the volume form ong defined by

W=XIA A X

m+1-
Denote byp; the projection
m+1
pigt >R, =) X ey
i=1

We then define the invariant

. _ pal). _
which is an invariant for generic orbits ig* and obviously separates the representa-
tions of Omay. O

5.4. Remark. Note that dimG) is necessarily odd in the Proposition 5.1 above.
The proof of Theorem (5.1) in [4] shows that the invariagt), = € G separates rep-
resentations associated to generic orbits if and only if(@ijr= 1 mod 4 (i.e. dimG) =
2q + 1 with q even).

5.5. Example. We consider finally the threadlike nilpotent Lie gro@y. Fix a
unitary representation; associated to its fundamental elemént(l1,0,l3,14,0). So as
in Subsection 5.1 above, one has that

i(m) = 12[X5 A X5 A XE+ 1la[ X5 A X5 A XE] = lals[ X5 A X35 A XE]

Take now another unitary representation associated to its fundamental eleméhnt

(17, 0,15,14,0) such that (m) =i(m/). We see then that the invariant may be shifted in
such a way to get thdy =1; andl; =15. Nevertheless, no control on the varialble

is accessible.
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