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Abstract
Special Lagrangian cones in complex Euclidean spaces are obtained as cones

over compact minimal Legendrian submanifolds in the odd dimenisonal standard
hypersphere. The notion of the stability, the Legendrian stability and the rigidity
of special Lagrangian cones were recently introduced and investigated by D. Joyce,
M. Haskins etc. In this paper we determine explicitly the stability-index, the
Legendrian-index, and the rigidity of special Lagrangian cones over compact
irreducible symmeric spaces of typeA obtained as minimal Legendrian orbits and
over a minimal LegendrianSU(2)-orbit. We obtain the examples of stable and
rigid special Lagrangian cones in higher dimensions. Moreover we discuss a
relationship of these properties with the Hamiltonian stability of minimal Lagrangian
submanifolds in complex projective spaces.

Introduction

A special Lagrangian submanifold in a Ricci-flat Kähler manifold, a so-called
Calabi-Yau manifold, has two aspects of aLagrangian submanifoldin symplectic
geometry and acalibrated submanifoldin Riemannian geometry. A calibrated sub-
manifold is a minimal submanifold in the sense that the mean curvature vector field
vanishes, and more strongly it is a real homologically volume minimizing submanifold.

Recently D. Joyce provided the profound theory on special Lagrangian sub-
manifolds with isolated conical singularities in (almost)Calabi-Yau manifolds and thier
deformations, moduli spaces in a series of his papers. His work emphasizes so much
the importance of investigation of special Lagrangian cones in complex Euclidean
spaces.

The notion of the stability-index, the stability and the rigidity of special Lagrangian
cones were introduced by D. Joyce. They are closely related to the deformation of
special Lagrangian submanifolds with isolated conical singularities and the regularity
of special Lagrangian integral currents. Aspecial Lagrangian coneis obtained as a
cone over a compactminimal Legendrian submanifoldin the odd dimensional standard
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sphere. By the Hopf fibration a minimal Legendrian submanifold can be locally pro-
jected to aminimal Lagrangian submanifoldin the complex projective space.

The most fundamental and typical examples are special Lagrangian conesCm
HL over

minimal Legendrian orbits of the maximal torusTm�1 of the special unitary group
SU(m) given by Harvey and Lawson ([8]). M. Haskins showed that a stable special
Lagrangian cone inC3 over a compact minimal Legendrian surface of genus 1 inS5

is only C3
HL ([7]). The further research on stable special Lagrangian cones in higher

dimensions and the stability-index of higher dimensional homogeneous examples are
suggested in the paper [7, p.62].

Now we assume that6 is one of compact irreducible symmetric spaces standardly
embedded in the odd dimensional standard sphereS2m�1(1) as minimal Legendrian sub-
manifolds in the standard way (see Section 2):

6 = SU(p), SU(p)=SO(p), SU(2p)=Sp(p) (p � 3), or E6=F4.

Note that the rank of these symmetric spaces is equal top� 1 and the rank ofE6=F4

is equal to 2. LetC6 be the special Lagrangian cone inCm over 6. Then we shall
show the following.

Theorem. (1) C6 are all rigid.
(2) If 6 = SU(3), SU(3)=SO(3), SU(6)=Sp(3) (p = 3), E6=F4, then C6 is stable,and
hence Legendrian stable.
(3) If 6 = SU(p), SU(p)=SO(p), SU(2p)=Sp(p), p � 4, C6 is not stable, in fact not
Legendrian stable.

The properties of these minimal Legendrian submanifolds will be discussed in de-
tail and their stability-indices will be determined explicitly. In the last section of this
paper we shall discuss such properties of a special Lagrangian cone over a minimal
LegendrianSU(2)-orbit in C4.

The results in this paper were partially announced in [17]. In November 2004,
Mark Haskins has visited Kyushu University and Tokyo Metropolitan University. The
author could have nice discussion with him about this subject there. The author would
like to thank Mark Haskins for his valuable suggestion of a problem on the existence
of stable special Lagrangian cones in higher dimensions.

1. Special Lagrangian cones and their stability-indices

In this section we shall describe some fundamental definitions and properties which
are necessary in the later sections (cf. [6], [7], [10], [11], [12]).

1.1. Special Lagrangian submanifolds of Calabi-Yau manifolds. In complex
Euclidean slpaceCm �= R2m, we recall the notion of special Lagrangian submanifolds.
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The natural group action ofSU(m) � U (m) preserves the standard Kähler form
(symplectic form) defined as

! :=
p�1

mX
i =1

dzi ^ dz̄i

and the standard complex volume form defined by

� := dz1 ^ � � � ^ dzm.

We decompose� into real and imaginary parts by

� = Re(�) +
p�1 Im(�).

Then Re(�) and Im(�) are parallel realn-forms onCm.

The calibrated submanifolds by Re(�) are characterized by the condition that the
restrictions of! and Im(�) to the submanifold vanish. Thespecial Lagrangian sub-
manifold in Cm is defined as such a submanifold Harvey and Lawson showed thata
minimal Lagrangian submanifold inCm is a special Lagrangian submanifold.

In general, suppose that (M, g) is a Riemannian manifold with holonomy group
contained inSU(m), and such a Riemannian manifold becomes aCalabi-YauKähler
manifold of complex dimensionm. Then the parallel Kähler form! and the parallel
complex volume form� are defined on the wholeM, and Re(�) defines a calibra-
tion on M. The calibrated submanifolds with respect to Re(�) are characterized by
the condition that the pull-backs of! and Im(�) to the submanifold vanish. Anm-
dimensional submanifoldX in a Calabi-Yau manifold is called aspecial Lagrangian
submanifoldif the pull-backs of both! and Im(�) to X vanish.

For each constant� 2 R, we also can consider a calibration defined by Re
�
e
p�1���

and its corresponding calibrated submanifolds. We also call such a calibrated sub-

manifold aspecial Lagrangian submanifolds(with respect to Re
�
e
p�1���) if the pull-

backs of both! and Im
�
e
p�1��� to X vanish. Let X be a Lagrangian submanifold

immersed in a Calabi-Yau manifoldM. Then we know thatX is a minimal sub-
manifold in M if and only if X is a special Lagrangrian submanifold with respect to

the calibration Re
�
e
p�1��� for some� 2 R.

1.2. Special Lagrangian cones. Let S2m�1(1) denote the unit standard hyper-
sphere ofCm. Let 6 be an (m� 1)-dimensional smooth submanifold immersed in
S2m�1(1) defined by an immersion' : 6 ! S2m�1(1). The cone C= C6 over 6 in
Cm is defined by an immersion

8 : 6 � [0,1) 3 (� , t) 7! t'(� ) 2 Cm.
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ThenC has an isolated singularity at the origin 0 andC0 := Cnf0g is anm-dimensional
smooth submanifold immersed inCm defined by the immersion

80 : 6 � (0,1) 3 (� , t) 7! t'(� ) 2 Cm.

Let � : S2m�1(1) ! CPm�1 be the Hopf fibration, which is a Riemannian submersion
onto the (m�1)-dimensional complex projective spaceCPm�1 of constant holomorphic
sectional curvature 4. ThenC6 is a Lagrangian cone with an isolated singularity at
0 if and only if 6 is a Legendrian submanifold inS2m�1(1) with the standard con-
tact structure, and then the immersion� Æ ' : 6! S2m�1(1) defines a Lagrangian sub-
manifold immersed inCPm�1. Moreover since the mean curvature vectors of these
submanifolds correspond each other, we know the following fundamental fact (cf. [7]).

Proposition 1.1. The following three conditions on local properties of thesesub-
manifolds are equivalent each other:
(a) C6 is a special Lagrangian cone inCm.
(b) 6 is a minimal Legendrian submanifold in S2m�1(1) with respect to its standard
contact structure,
(c) �(6) is a minimal Lagrangian submanifold inCPm.

EXAMPLE 1.1. In Harvey-Lawson [8] the following example of a special
Lagrangian cone inCm was given as

Cm
HL :=

�
(z1, : : : , zm) 2 Cm

�� (
p�1 )m+1z1 � � � zm 2 R, jz1j = � � � = jzmj	.

Then

6m�1
HL := Cm

HL \ S2m�1(1)� S2m�1(1)

is a minimal Legendrian orbit of the maximal torus ofSU(m), which is isometric to
an (m� 1)-dimensional flat torusTm�1.

Let 1 and16 be the Laplacians of (C0, g) and (6, g6) on functions, respectively.
A function u on C0 is called ahomogeneous function of order� on C0 if u satisfies
uÆ t = t�u for eacht > 0. Then such a function can be expressed asu(r� ) = r �v(� ) for
some functionv on 6. The relationship between1 and16 is given by the formula

(1.1) 1u(r� ) = r ��2(16v(� )� �(� + m� 2)v(� )).

Hence we see thatu is harmonic if and only ifv is an eigenfunction on6 with eigen-
value �(� + m� 2).

Assume thatm> 2. Set

D6 := f� 2 R j �(� + m� 2) is an eigenvalue of16g,
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which is a countable and discrete subset ofR. For each� 2 D6 , we denote bym6(�)
the multiplicity for eigenvalue�(� + m� 2) of 16 , which is equal to the dimension
of vector space of all homogeneous harmonic functions of order � on C0. Then we
define a monotone increasing, upper semi-continuous function N6 : R ! Z as

N6(Æ) := � X
�2D6\(Æ,0)

m6(�)

if Æ < 0 and

N6(Æ) :=
X

�2D6\[0,Æ] m6(�)

if Æ � 0.

DEFINITION 1.1. The stability-index of a special Lagrangian coneC is
defined by

(1.2) s-ind(C) := N6(2)� b0(6)�m2 � 2m + 1 + dimG6 ,

where b0(6) denotes the 0-th Betti number of6, i.e. the number of connected com-
ponents of6 and G6 denotes a maximal compact subgroup ofSU(m) preserving the
special Lagrangian coneC, or equivalently the minimal Legendrian submanifold6.

Note thatm6(0) = b0(6), m6(1)� 2m if 6 is not totally geodesic,m6(2)� m2�
1� dim G6 . Since N6(2)� m6(0) +m6(1) +m6(2), we have s-ind(C) � 0 if 6 is not
totally geodesic. If6 is totally geodesic, then s-ind(C) = �m.

A special Lagrangian coneC is calledstable if s-ind(C) = 0. A special Lagrangian
coneC is called rigid if m6(2) = m2� 1� dim G6 . We see that a special Lagrangian
coneC is stable if and only if the following three conditions are satisfied
(1) N6(2) = m6(0) + m6(1) + m6(2),
(2) m6(1) = 2m,
(3) m6(2) = m2 � 1� dim G6 .

The Legendrian-indexof a special Lagrangian coneC ([7]) is defined by

(1.3) l-ind(C) :=
X

�2D6\(0,2)

m6(�).

A special Lagrangian coneC is Legendrian-stable([7]) if l-ind( C) = 2m. A spe-
cial Lagrangian coneC is Legendrian-stable if and only ifN6(2) = m6(0) + m6(1) +
m6(2) and m6(1) = 2m. By the definitionsC is stable if and only ifC is rigid and
Legendrian-stable.

Here we shall mention a relationship of the stability of special Lagrangian cones
with the Hamiltonian stability of minimal Lagrangian submanifolds in complex projec-
tive spaces (cf. [1]).
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Assume that : L ! CPm�1 is a minimal Lagrangian immersion of an (m� 1)-
dimensional connected compact smooth manifoldL into a complex projective space.
Since the pull-backS1-bundle �1� :  �1S2m�1(1) ! L is flat, there is a connected
integral manifold6 of the horizintal distribution on �1S2m�1(1), and hence it gives
a minimal Legendrian immersion' : 6 ! S2m�1(1) and a covering map �1� : 6 !
L. We denote by� : �1(L) ! S1 the holonomy homomorphism of the flatS1-bundle �1S2m�1(1) over L. Then the following holds.

Proposition 1.2. Suppose that� is nontrivial. If the special Lagrangian cone
C6 over 6 in Cm is stable, then a minimal Lagrangian submanifold L inCPm�1 is
Hamiltonian stable.

Proof. We may assume that' is not totally geodesic. For eachv 2 Cm, we define
a smooth functionfv on 6 by

( fv)(x) := h'(x), vi (x 2 6).

Let � : �1(6) ! S1 be the holonomy homomorphism of the pull-backS1-bundle from
the Hopf S1-bundle� : S2m�1(1)! CPm�1 by the Lagrangian immersion . Here S1

is considered as the center of the unitary groupU (m). Set 0 := �(�1(6)), which is
a finite subgroup ofS1. Let 0 be the deck transformation group of the covering map �1�: 6! L. Suppose that there is a vectorv 2 Cm such that fv(xc) = fv(x) for each
c 2 0 and eachx 2 6. Since'(xc) = '(x)�(c), we haveh'(x)a,vi = h'(x),vi for each
a 2 �(0) and eachx 2 6. By the non-triviality of0, there isa 2 0 with a 6= 1. Sinceh'(x),va�1�vi = 0 for all x 2 6, by the fullness of' we haveva�1 = v. As a 6= 1, v
must be zero and thusfv = 0. Hence by the assumption on the stability we conclude
that6 has no nonzero eigenvalue smaller than 2m. Therefore6 is Hamiltonian stable.

It can happen thatL becomes Hamiltonian stable even ifC6 is not stable. Such
examples will be shown in the later sections.

1.3. Special Lagrangian submanifolds with isolated conical singularities.
Here we mention the results of Joyce on the deformation of a compact special
Lagrangian submanifoldX with isolated conical singularities or the local structureof
moduli spaces aroundX, and the regularity of special Lagrangian varieties, whichare
described in terms of the stability-index and the rigidity of special Lagrangian cones.

Let M be the moduli space of compact special Lagrangian submanifolds with iso-
lated conical singularities embedded inM. McLean [14] showed that ifX 2 M is
smooth (i.e. without singularities), then the moduli spaceM is a smooth manifold of
dimensionb1(X) around X.

Joyce [11] showed that ifX is a special Lagrangian submanifold with isolated con-
ical singularitiesC1, : : : , Ck, then the dimension of the obstruction spaceOX of X is
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equal to the sum of stability-indices of special LagrangianconesC1, : : : , Ck:

dimOX =
kX

i =1

s-ind(Ci ).

This means that s-ind(C) of a special Lagrangian coneC is the dimension of the
obstruction space to deforming a special Lagrangian submanifold X in a Calabi-Yau
manifold with a conical singularity with coneC, and that ifC is stable then the de-
formation theory ofX simplifies.

That a special Lagrangian coneC is rigid means that if all infinitesimal deforma-
tions of C as a special Lagrangian cone comes from rotations ofC by SU(m). Next we
mention the Joyce’s regularity results of special Lagrangian integral currents, or special
Lagrangian varieties. Geometric measure theory implies the compactness of the space
of such objects. Suppose thatX is a special Lagrangian integral current and has the
multiplicity 1 tangent cone atx 2 suppX. Joyce showed that if the tangent cone ofX
at x is a rigid special Lagrangian cone, thenX has an isolated conical singularity atx.

So it is actually interesting and important to investigate explicitly the stability and
rigidity of special Lagrangian cones.

Joyce and Marshall proved thatC3
HL is stable andCm

HL is unstable ifm � 4, and
Cm

HL is rigid if and only if m 6= 8, 9, and they determined their stability-indices and
Legendrian-indices explicitly (cf. [11]). By the spectralanalysis on surfaces Haskins
showed that a stable special Lagrangian cone inC3 over a minimal Legendrian torus
in S5 is only C3

HL ([7]).

PROBLEM. Construct and classify stable special Lagrangian cones incomplex
Euclidean spaces.

2. Stability-index of special Lagrangian cones over certain compact irreducible
symmetric spaces

In this section we shall discuss a class of special Lagrangian cones constructed by
the Lie theoretic method including the Harvey-Lawson conesCm

HL . Let (U , G) be an
Hermitian symmetric pair of compact type with the canonicaldecompositionu = g + p.
Set dim(U=G) = 2m. Let h , iu denote the Ad(U )-invariant inner product ofu defined
by (�1)-times Killing-Cartan form ofu. We decomposeg into the direct sum of the
semisimple partgss and the centerc(g) as follows: g = gss� c(g). There is an element
Z 2 c(g) such that adZ defines the invariant complex structure of (U , G). Relative to
the complex structure the subspacep can be identified with a complex Euclidean space
Cm. We take the decomposition of (U , G) into irreducible Hermitian symmetric pairs
of compact type:

(2.1) (U , G) = (U1, G1)� � � � � (Us, Gs).
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Set dim(Ui =Gi ) = 2mi for i = 1,: : : , s. Let ui = gi + pi be the canonical decomposition
of (Ui , Gi ) for eachi = 1, 2,: : : , s. Assume that there is an element�i 2 pi satisfying
the condition (ad�i )3 + 4(ad�i ) = 0. Choose positive numbersc1 > 0, : : : , cs > 0 withPs

i =1 1=ci = 1=c. Put ai = 1=p2ci mi for each i = 1, : : : , s. Set L̂ i = Ad(Gi )(ai �i ) �
S2mi�1(ci =4)� pi , which is an irreducible symmetricR-space standard embedded in a
complex Euclidean spacepi .

Set � = a1�1 + � � � + as�s 2 p. Set L̂ = Ad(G)(�) � S2m�1(c=4) � p, which is a
symmetric R-space standard embedded in a complex Euclidean spacep �= Cm. Note
that we have the inclusions

(2.2) L̂ = L̂1 � � � � � L̂s � S2m1�1(c1=4)� � � � � S2ms�1(cs=4)� S2m�1(c=4).

Note that L̂ is a compact H -minimal Lagrangian submanifold embedded inCm

(see [3]).
We take an orthogonal decompositionc(g) = c0 � fZgR of c(g). Let g0 := gss� c0

and G0 denote the analytic subgroup ofG generated byg0. Set 6 = Ad(G0)(�) �=
G0=K 0 � S2m�1(c=4)� p, whereK 0 = fa 2 G0 j Ad(a)(�) = �g. Then6 is a Legendrian
submanifold inS2m�1(c=4). Moreover6 is a minimal submanifold inS2m�1(c=4) if
and only if ci mi = cm for eachi = 1, 2,: : : , s. Thus we obtain

Proposition 2.1. C6 is a special Lagrangian cone inCm if and only if the con-
dition ci mi = cm is satisfied for each i= 1, 2,: : : , s.

In the case when (Ui , Gi ) = (SU(2), S(U (1) � U (1))) for all i , the above special
Lagrangian coneC6 coincides with the Harvey-Lawson’s special Lagrangian cone Cm

HL .
In the case when (U , G) is irreducible, i.e.s = 1, from the classification theory

of symmetric R-spaces,6 is one of symmetric spaces of compact type in the follow-
ing list:
(a) Sm�1.
(b) SU(p), m = p2.
(c) SU(p)=SO(p), m = (p� 1)(p + 2)=2 + 1.
(d) SU(2p)=Sp(p), m = (p� 1)(2p + 1) + 1.
(e) E6=F4, m = 27.
Here p � 3. Note that they are connected, simply connected and compact irreducible
symmetric spaces whose restricted root systems are of typeA, and the rank of the
symmetric spaces is equal top� 1 and the rank ofE6=F4 is 2. They are the standard
embeddings by the first eigenfunctions of the Laplacian (cf.[16]).

Suppose that6 is a compact embedded minimal Legendrian submanifold of
S2m�1(1) given by the standard embedding of the above symmetric spaces of compact
type. Let C6 be a special Lagrangian cone over6 in Cm. Then we shall show
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Theorem 2.1. (1) They all C6 are rigid.
(2) If 6 = SU(3),SU(3)=SO(3),SU(6)=Sp(3) (p = 3), E6=F4, then C6 is stable and thus
Legendrian stable.
(3) If 6 = SU(p),SU(p)=SO(p),SU(2p)=Sp(p), p� 4 then C6 is not Legendrian stable
and thus not stable.

REMARK . In case (a),6 = Sm�1 is a totally geodesic Legendrian submanifold
embedded inS2m�1(1) and thusC6 is a Lagrangian vector subspace ofCm.

In order to determine the stability-indices of special Lagranian cones over these
minimal Legendrian submanifolds6 = G0=K 0, we shall examine explicitly the eigen-
values and their multiplicities of the Laplacian of compactirreducible symmetric spaces
G0=K 0 by the theory of spherical functions on compact symmetric spaces (cf. [19]). In
the calculation we use the results described in [1].

First we prepare a useful algebraic lemma for our calculation. Let (m1, : : : , mp)
be a p-tuple of real numbers satisfying the conditions

(2.3)
pX

i =1

mi = 0 and 0� mi �mi +1 2 Z for each i = 1, 2,: : : , p� 1.

Then note thatmi 2 (1=p)Z for each i = 1, 2,: : : , p� 1. In fact, if we setZ 3 ki :=
mi �mi +1 � 0, then we have

mp = � 1

p

p�1X
j =1

jk j ,

mi = ki + � � � + kp�1 � 1

p

p�1X
j =1

jk j (i = 1, 2,: : : , p� 1).

Lemma 2.1. Fix a positive real number t> 0. Define a function Q with respect
to m1, : : : , mp or k1, : : : , kp�1 by

(2.4) Q :=
pX

i =1

(mi )
2 � t

pX
i =1

imi .

(1) If (m1, : : : ,mp) = (1,0,: : : ,0,�1) i.e. (k1, : : : ,kp�1) = (1,0,: : : ,0,1), then Q attains
Q = 2 + t(p� 1).
(2) If (m1, : : : , mp) = ((p� 1)=p,�1=p, : : : ,�1=p) i.e. (k1, : : : , kp�1) = (1, 0,: : : , 0),
or (m1, : : : , mp) = (1=p, : : : , 1=p,�(p� 1)=p) ((k1, : : : , kp�1) = (0, : : : , 0, 1)), then Q
attains

Q =
p� 1

p
+ t

p� 1

2
< 2 + t(p� 1).
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(3) Assume that p� 4. If (m1, : : : , mp) = ((p � 2)=p, (p � 2)=p,�2=p, : : : ,�2=p)
i.e. (k1, : : : ,kp�1) = (0, 1, 0,: : : , 0) or (m1, : : : ,mp) = (2=p, : : : , 2=p,�(p�2)=p,�(p�
2)=p) i.e. (k1, : : : , kp�1) = (0, : : : , 0, 1, 0), then Q attains

p� 1

p
+ t

p� 1

2
< Q =

2(p� 2)

p
+ t(p� 2)< 2 + t(p� 1).

(4) Q = 2 +t(p� 1) if and only if (m1, : : : , mp) = (1, 0,: : : , 0,�1) i.e. (k1, : : : , kp�1) =
(1, 0,: : : , 0, 1).
(5) Q < 2+t(p�1) if and only if (m1,: : : ,mp) or (k1,: : : ,kp�1) is one of the following
table:

p (k1, : : : , kp�1) (m1, : : : , mp) Q

� 3 (1, 0,: : : , 0, 0)

�
p� 1

p
,� 1

p
, : : : ,� 1

p

�
p� 1

p
+ t

p� 1

2

� 3 (0, 0,: : : , 0, 1)

�
1

p
, : : : , 1

p
,� p� 1

p

�
p� 1

p
+ t

p� 1

2

4 (0, 1, 0)

�
1

2
,

1

2
,�1

2
,�1

2

�
1 + 2t

� 5 (0, 1, 0,: : : , 0)

�
p� 2

p
,

p� 2

p
,� 2

p
, : : : ,� 2

p

�
2(p� 2)

p
+ t(p� 2)

� 5 (0, : : : , 0, 1, 0)

�
2

p
, : : : , 2

p
,� p� 2

p
,� p� 2

p

�
2(p� 2)

p
+ t(p� 2)

6 (0, 0, 1, 0, 0)

�
1

2
,

1

2
,

1

2
,�1

2
,�1

2
,�1

2

�
3

2
+ t

9

2

7 (0, 0, 1, 0, 0, 0)

�
4

7
,

4

7
,

4

7
,�3

7
,�3

7
,�3

7
,�3

7

�
12

7
+ 6t

7 (0, 0, 0, 1, 0, 0)

�
3

7
,

3

7
,

3

7
,

3

7
,�4

7
,�4

7
,�4

7

�
12

7
+ 6t

Proof. The statements (1), (2) and (3) are obtained by directcomputations. The
function Q can be described in terms ofk1, : : : , kp�1 as the formula:

(2.5) Q =
p�1X
i =1

(
iX

j =1

�
1� i

p

�
jk j +

p�1X
j =i +1

i

�
1� j

p

�
k j

)
ki + t

p�1X
i =1

i (p� i )

2
ki .

The statements (4), (5) follow from this formula.

The case6 = (SU(p)�SU(p))=SU(p): In this case note thatm�1 = dim6 = p2�1,
m = p2, 2m = 2p2 and m2 � 1� dim G6 = m2 � 1� dim(SU(p)� SU(p)) = (p2 � 1)2.
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Let f"1, : : : , "pg be the standard orthonormal basis of ap-dimensional Euclidean
vector spaceRp. Set

D(SU(p))

=

(
pX

i =1

mi "i

pX
i =1

mi = 0, 0� mi �mi +1 2 Z (i = 1, 2,: : : , p� 1)

)

=

(
p�1X
i =1

ki3i 0� ki 2 Z (i = 1, 2,: : : , p� 1)

)
.

(2.6)

Here ki = mi �mi +1 (i = 1, : : : , p� 1) and f31, : : : ,3p�1g is the fundamental weight
system ofSU(p) defined by

3i = "1 + � � � + "i � i

p

pX
j =1

" j (i = 1, 2,: : : , p� 1).

We know that there is a bijective correspondence betweenD(SU(p)) and the complete
set of all inequivalent complex irreducible representations of SU(p). Then for each3 =

Pp
i =1 mi "i 2 D(SU(p)) the eigenvaluea3 of the Casimir operator on a complex

irreducible representation with highest weight3 is equal to

(2.7) �a3 =
pX

i =1

(mi )
2 � 2

pX
i =1

imi

and the corresponding eigenvalue of16 is given by

(2.8) � = (�a3)
1

2p
� 2C�1 = (�a3)

1

2p
� 2 � p2 = (�a3)p = pQ

because ofC = 4=(p2c) = 1=p2 by [1, p.594]. HereQ is a function defined in Lem-
ma 2.1. For each3 2 D(SU(p)), we denote byd3 the dimension of a complex irre-
ducible representation with highest weight3. The dimensiond3 is given by the Weyl’s
dimension formula. The multiplicitym(�), i.e. the dimension of the eigenspace, for the
eigenvalue� of the Laplacian16 is equal to

m(�) =
X

32D(SU(p)), �=(�a3)p

(d3)2.

First we consider the casep = 3. Then (2.7) becomes

(2.9) �a3 =
2

3

�
k2

1 + k1k2 + k2
2

�
+ 2(k1 + k2).
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(1) If (k1, k2) = (1, 0) or (0, 1), then (�a3) � 3 = (8=3)3 = 8 andd3 = 3.
(2) If (k1, k2) = (1, 1), then (�a3) � 3 = 6 � 3 = 18 andd3 = 8.
(3) If (k1, k2) = otherwise, then (�a3) � 3� 20> 18.

Thus all eigenvalues� and their multiplicitity m(�) of 16 between 0 and 2m = 18
are determined as follows:

� � 2 D6 \ [0, 2] m6(�)
0 0 1
8 1 18
18 2 64

Hence we haveN6(2) = m6(0) +m6(1) +m6(2), m6(0) = 1 =b0(6), m6(1) = 18 =
2m, andm2� 1� dim G6 = 92� 1� (8 + 8) = 64 =m6(2). Therefore we conclude that
s-ind(C) = 0.

Next we treat the casep � 4. By Lemma 2.1 we obtain the following table of all3 2 D(SU(p)) corresponding to eigenvalues� � 2m = 2p2:

p 3 (k1, : : : , kp�1) � = pQ d3� 3 31 +3p�1 (1, 0,: : : , 0, 1) 2p2 p2 � 1

� 3 31 (1, 0,: : : , 0, 0) p2 � 1 p

� 3 3p�1 (0, 0,: : : , 0, 1) p2 � 1 p

4 32 (0, 1, 0) 20 6

� 5 32 (0, 1, 0,: : : , 0) 2(p + 1)(p� 2)
p(p� 1)

2

� 5 3p�2 (0, : : : , 0, 1, 0) 2(p + 1)(p� 2)
p(p� 1)

2
6 33 (0, 0, 1, 0, 0) 63 20
7 33 (0, 0, 1, 0, 0, 0) 96 35
7 34 (0, 0, 0, 1, 0, 0) 96 35

Note that the (nonzero) first eigenvalue of16 is p2 � 1 = dim6.
By using these results, we determine all� 2 D6 \ [0, 2] by � = �(� + m� 2), that

is, � =
�p

(m� 2)2 + 4�� (m� 2)
�Æ

2 as follows:
If p � 8, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1

p2 � 1 1 2p2

2(p + 1)(p� 2)

p
(p2 � 2)2 + 8(p + 1)(p� 2)� (p2 � 2)

2

p2(p� 1)2

2

2p2 2 (p2 � 1)2
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If p = 7, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
48 1 98

80

p
2529� 47

2
882

96

p
2593� 47

2
2450

98 2 2304

If p = 6, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
35 1 72

56
p

345� 17 450

63
p

352� 17 400

72 2 1225

If p = 5, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
24 1 50

36

p
673� 23

2
200

50 2 576

If p = 4, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
15 1 32

20
p

69� 7 36

32 2 225

We obtain s-ind(C) > 0 and thusC is not stable.
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The case6 = SU(p)=SO(p): In this case note thatm�1 = dim6 = (p�1)(p+2)=2,
m = p(p + 1)=2, 2m = p(p + 1) andm2 � 1� dim G6 = m2 � 1� dim SU(p) = p2(p +
3)(p� 1)=4.

The subsetD(SU(p), SO(p)) � D(SU(p)) is defined by

D(SU(p), SO(p))

=

(
2

pX
i =1

mi "i

pX
i =1

mi = 0, 0� mi �mi +1 2 Z (i = 1, 2,: : : , p� 1)

)

=

(
p�1X
i =1

ki Mi 0� ki 2 Z (i = 1, 2,: : : , p� 1)

)
.

(2.10)

Here ki = mi �mi +1 (i = 1, : : : , p� 1) and fMi j i = 1, : : : , p� 1g is the fundamental
weight system of (SU(p), SO(p)) defined by

Mi = 23i = 2

 
"1 + � � � + "i � i

p

pX
j =1

" j

!
(i = 1, 2,: : : , p� 1).

We know that there is a bijective correspondence betweenD(SU(p), SO(p)) and the
complete set of all inequivalent spherical representations of the compact symmetric pair
(SU(p), SO(p)). Then for each3 = 2

Pp
i =1 mi "i 2 D(SU(p), SO(p)) we have

(2.11) �a3 = 4
pX

i =1

(mi )
2 � 4

pX
i =1

imi

and the corresponding eigenvalue of16 is given by

(2.12) � = (�a3)
1

2p
C�1 = (�a3)

1

2p

p2

2
= (�a3)

p

4
= pQ

because ofC = 8=(p2c) = 2=p2 by [1, p.594]. HereQ is a function defined in Lem-
ma 2.1. The multiplicitym(�), i.e. the dimension of the eigenspace, with eigenvalue�
of the Laplacian16 is equal to

m(�) =
X

32D(SU(p),SO(p)), �=(�a3)p=4 d3.

First we consider the casep = 3. Then (2.11) becomes

(2.13) �a3 =
8

3

�
k2

1 + k1k2 + k2
2

�
+ 4(k1 + k2).
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(1) If (k1, k2) = (1, 0) or (0, 1), then (�a3) � 3=4 = (20=3)(3=4) = 5 andd3 = 6.
(2) If (k1, k2) = (1, 1), then (�a3) � 3=4 = 16� 3=4 = 12 andd3 = 27.
(3) If (k1, k2) = otherwise, then (�a3) � 3=4> 13> 12.
Thus all eigenvalues� and their multiplicities of16 between 0 and 2m = 12 are de-
termined as follows:

� � 2 D6 \ [0, 2] m6(�)
0 0 1
5 1 12
12 2 27

Hence we haveN6(2) = m6(0) +m6(1) +m6(2), m6(0) = 1 =b0(6), m6(1) = 12 = 2m,
and m2 � 1� dim G6 = 62 � 1� (9� 1) = 27 =m6(2). Therefore we conclude that
s-ind(C) = 0.

Next we treat the casep � 4. By Lemma 2.1 we obtain the following table of all3 2 D(SU(p), SO(p)) corresponding to eigenvalues� � 2m = p(p + 1):

p 3 (k1, : : : , kp�1) � = pQ d3
� 3 231 + 23p�1 (1, 0,: : : , 0, 1) p(p + 1)

(p� 1)p2(p + 3)

4

� 3 231 (1, 0,: : : , 0, 0)
(p� 1)(p + 2)

2

p(p + 1)

2

� 3 23p�1 (0, 0,: : : , 0, 1)
(p� 1)(p + 2)

2

p(p + 1)

2
4 232 (0, 1, 0) 12 20

� 5 232 (0, 1, 0,: : : , 0) (p� 2)(p + 2)
p2(p + 1)(p� 1)

12

� 5 23p�2 (0, : : : , 0, 1, 0) (p� 2)(p + 2)
p2(p + 1)(p� 1)

12

6 233 (0, 0, 1, 0, 0) 36 175
7 233 (0, 0, 1, 0, 0, 0) 54 490
7 234 (0, 0, 0, 1, 0, 0) 54 490

Note that the (nonzero) first eigenvalue of16 is (p� 1)(p + 2)=2 = dim6.
By using these results, we determine all� 2 D6 \ [0, 2] as follows:
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If p � 8, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1

(p� 1)(p + 2)

2
1 p(p + 1)

(p� 2)(p + 2)

p
(p(p+1)=2�2)2 +4(p+2)(p�2)� (p(p+1)=2�2)

2

p2(p + 1)(p� 1)

6

p(p + 1) 2
(p� 1)p2(p + 3)

4

If p = 7, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
27 1 56

45
p

214� 13 392

54
p

223� 13 980

56 2 735

If p = 6, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
20 1 42

32

p
489� 19

2
210

36

p
505� 19

2
175

42 2 405

If p = 5, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
14 1 30

21

p
253� 13

2
100

30 2 200
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If p = 4, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
9 1 20

12 2
�p

7� 2
�

20

20 2 84

The case6 = SU(2p)=Sp(p): In this case note thatm�1 = dim6 = (p�1)(2p+1),
m = 2p2� p = p(2p�1), 2m = 2p(2p�1) andm2�1�dimG6 = m2�1�dimSU(2p) =
p2(2p� 3)(2p + 1). Set

D(SU(2p))

=

(
2pX
i =1

mi "i

2pX
i =1

mi = 0, 0� mi �mi +1 2 Z (i = 1, 2,: : : , 2p� 1)

)

=

(
2p�1X
i =1

ki3i 0� ki 2 Z (i = 1, 2,: : : , 2p� 1)

)
.

(2.14)

Here ki = mi �mi +1 (i = 1,: : : , 2p� 1) andf3i j i = 1,: : : , 2p� 1g is the fundamental
weight system ofSU(2p) defined by

3i = "1 + � � � + "i � i

p

2pX
j =1

" j (i = 1, 2,: : : , 2p� 1).

Now we define fi 2 R2p by

fi :=
1p
2

("2i�1 + "2i ) (i = 1, 2,: : : , p� 1, p).

The subsetD(SU(2p), Sp(p)) � D(SU(2p)) is defined by

D(SU(2p), Sp(p))

=

(p
2

pX
i =1

mi fi

pX
i =1

mi = 0, 0� mi �mi +1 2 Z (i = 1, 2,: : : , p� 1)

)

=

(
p�1X
i =1

ki Mi 0� ki 2 Z (i = 1, 2,: : : , p� 1)

)
.

(2.15)

Here ki = mi � mi +1 (i = 1, : : : , p� 1) and fMi j i = 1, : : : , p� 1g is the fundamen-
tal weight system of (SU(2p), Sp(p)) defined byMi = 32i . We know that there is a
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bijective correspondence betweenD(SU(2p), Sp(p)) and the complete set of all in-
equivalent spherical representations of the compact symmetric pair (SU(2p), Sp(p)).
Then for each3 =

p
2
Pp

i =1 mi fi 2 D(SU(2p), Sp(p)) we have

(2.16) �a3 = 2
pX

i =1

(mi )
2 � 8

pX
i =1

imi

and the corresponding eigenvalue of16 is given by

(2.17) � = (�a3)
1

4p
C�1 = (�a3)

1

4p
� 2p2 = (�a3)

p

2
= pQ

because ofC = 2=(p2c) = 1=(2p2) by [1, p.594]. HereQ is a function defined in
Lemma 2.1. The multiplicitym(�), i.e. the dimension of the eigenspace, for the eigen-
value � of the Laplacian16 is equal to

m(�) =
X

32D(SU(2p),Sp(p)), �=�a3 d3.

First we consider the casep = 3. Then (2.16) becomes

(2.18) �a3 =
4

3

�
k2

1 + k1k2 + k2
2

�
+ 8(k1 + k2).

(1) If (k1, k2) = (1, 0) or (0, 1), the (�a3) � 3=2 = (28=3)(3=2) = 14 andd3 = 15.
(2) If (k1, k2) = (1, 1), the (�a3) � 3=2 = 20� 3=2 = 30 andd3 = 189.
(3) If (k1, k2) = otherwise, then (�a3) � 3=2� 32> 30.
Thus all eigenvales� and their multiplicitity m(�) of 16 between 0 and 2m = 30 are
determined as follows:

� � 2 D6 \ [0, 2] m6(�)
0 0 1
14 1 30
30 2 189

Hence we haveN6(2) = m6(0) +m6(1) +m6(2), m6(0) = 1 =b0(6), m6(1) = 30 = 2m,
m6(2) = 189. On the other hand,m2�1�dimG6 = 152�1� (36�1) = 189. Therefore
we conclude that s-ind(C) = 0.

Next we treat the casep � 4. By Lemma 2.1 we obtain the following table of all3 2 D(SU(2p), Sp(p))) corresponding to eigenvalues� � 2m = 2p(2p� 1).
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p 3 (k1, : : : , kp�1) � = pQ d3� 3 32 +32p�2 (1, 0,: : : , 0, 1) 2p(2p� 1) p2(2p� 3)(2p + 1)

� 3 32 (1, 0,: : : , 0, 0) (2p + 1)(p� 1) p(2p� 1)� 3 32p�2 (0, 0,: : : , 0, 1) (2p + 1)(p� 1) p(2p� 1)
4 34 (0, 1, 0) 36 70

� 5 34 (0, 1, 0,: : : , 0) 2(2p + 1)(p� 2)
2p(2p� 1)(2p� 2)(2p� 3)

24

� 5 32(p�2) (0, : : : , 0, 1, 0) 2(2p + 1)(p� 2)
2p(2p� 1)(2p� 2)(2p� 3)

24
6 36 (0, 0, 1, 0, 0) 117 924
7 36 (0, 0, 1, 0, 0, 0) 180 3003
7 38 (0, 0, 0, 1, 0, 0) 180 3003

Note that the (nonzero) first eigenvalue of16 is (2p + 1)(p� 1) = dim6.
By using these results, we determine all� 2 D6 \ [0, 2] as follows:
If p � 8, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1

(2p + 1)(p� 1) 1 2p(2p� 1)

2(2p+1)(p�2)

p
(p(2p�1)�2)2+8(2p+1)(p�2)�(p(2p�1)�2)

2

2p(2p�1)(2p�2)(2p�3)

12

2p(2p� 1) 2 p2(2p� 3)(2p + 1)

If p = 7, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
90 1 182

150

p
8521� 89

2
2002

180

p
8641� 89

2
6006

182 2 8085
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If p = 6, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
65 1 132

104
p

1128� 32 990

117
p

1141� 32 924

132 2 4212

If p = 5, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
44 1 90

66

p
253� 13

2
420

90 2 1925

If p = 4, then we have

� � 2 D6 \ [0, 2] m6(�)
0 0 1
27 1 56

36
p

205� 13 70

56 2 720

The case6 = E6=F4: In this casem � 1 = dim6 = 26, m = 27, 2m = 54 and
m2 � 1 � dim G6 = m2 � 1 � dim E6 = 272 � 1 � 78 = 650. LetfM1, M2g be the
fundamental weight system of (E6, F4) defined by

M1 = 31 =
2

3
("8 � "7 � "6),

M2 = 36 =
1

3
("8 � "7 � "6) + "5,

where f"i j i = 1, : : : , 8g denotes the standard orthonormal basis ofR8 and f3i j i =
1, : : : , 6g denotes the fundamental weight system ofE6 (cf. [4], [1, p.601]). Set

(2.19) D(E6, F4) = fk1M1 + k2M2 j k1, k2 2 Z, k1 � 0, k2 � 0g.



SPECIAL LAGRANGIAN CONES 325

Then for each3 = k1M1 + k2M2 2 D(E6, F4) we have

(2.20) �a3 = 4k1

�
1

3
k1 + 4

�
+

4

3
k1k2 + 4k2

�
1

3
k2 + 4

�
.

and the corresponding eigenvalue of16 is given by

(2.21) � = (�a3)
1

24
C�1 = (�a3)

1

24
� 36 = (�a3)

3

2

because ofC = 1=(9c) = 1=36 by [1, p.594]. Thus we determine all3 2 D(E6, F4) cor-
responding to eigenvalues� � 2m = 54 and their multiplicitiesd3 (cf. [13]) as follows:
(1) If (k1, k2) = (1, 0) or (0, 1), then we have� = (�a3) � 3=2 = (52=3)(3=2) = 26 and
d3 = 27.
(2) If (k1, k2) = (1, 1), then we have� = (�a3) � 3=2 = 36(3=2) = 54 andd3 = 650.
(3) If (k1, k2) = otherwise, then we have� = (�a3) � 3=2� 56> 54.
Thus all eigenvalues� and their multiplicities of16 between 0 and 2m = 12 are de-
termined as follows:

� � 2 D6 \ [0, 2] m6(�)
0 0 1
26 1 54
54 2 650

Thus we obtainN6(2) = m6(0) +m6(1) +m6(2), m6(0) = 1 =b0(6), m6(1) = 54 = 2m,
m6(2) = 650 =m2 � 1� dim G6 . Hence we obtain s-ind(C) = 0 for 6 = E6=F4.

Getting together those results in each case, we conclude thefollowing. Theo-
rem 2.1 follows from Theorem 2.2.

Theorem 2.2. Let 6 = SU(p), SU(p)=SO(p), SU(2p)=Sp(p) (p � 3), E6=F4

(resp. m = p2,(p�1)(p+2)=2+1,(p�1)(2p+1)+1,27)be an(m� 1)-dimensional mini-
mal Legendrian submanifold embedded in S2m�1(1) in the above standard way and C=
C6 be the special Lagrangian cone inCm over6. Then the rigidity, the Legendrian-
index and the stability-index of C are described as follows:
(1) The equality

m6(2) = m2 � 1� dim(G6)

holds and hence each C is rigid.
(2) The Legendrian-indexl-ind(C) is equal to

l-ind(C) = s-ind(C) + 2m.
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(3) The stability-indexs-ind(C) is given as in the following table:

SU(p) SU(p)=SO(p) SU(2p)=Sp(p) E6=F4

p � 8
p2(p� 1)2

2

p2(p� 1)(p + 1)

6

2p(2p� 1)(2p� 2)(2p� 3)

12
—

p = 7 3332 1372 8008 —
p = 6 850 385 1914 —
p = 5 200 100 420 —
p = 4 36 20 70 —
p = 3 0 0 0 0

REMARK . In [1] it was shown that for each6 = SU(p), SU(p)=SO(p),
SU(2p)=Sp(p), E6=F4, the image�(6) = SU(p)=Z p,SU(p)=SO(p)Z p,SU(2p)=Sp(p)Z2p,
E6=F4Z3 by the projection of the Hopf fibration is a Hamiltonian stable minimal
Lagrangian submanifold embedded in a complex projective space.

And by using the formula (1.1) we also see the following.

Theorem 2.3. In each case6 = SU(p),SU(p)=SO(p),SU(2p)=Sp(p) (p� 4), C0 =
C6 n f0g has nonzero homogeneous harmonic function of order� for some� with
1< � < 2 and there is no nonzero homogeneous harmonic function on C0 of order �
for any � with 0< � < 1.

3. Stability-index of a special Lagrangian cone in C4 over a minimal
Legendrian SU(2)-orbit

In this section we mention about the stability and the rigidity of a certain special
Lagrangian cone over a minimal LegendrianSU(2)-orbit in C4. This example was also
treated in [9, Example 5.7].

Let V3 be the complex vector space of all complex homogeneous polynomials with
two variablesz1, z2 of degree 3. We equipV3 with the standard Hermitian inner prod-
uct such that �vk =

1p
k! (3� k)!

z3�k
1 zk

2 k = 0, 1, 2, 3

�

is a unitary basis ofV3
�= C4 �= R8. We know thatV3 is an irreducible unitary repre-

sentation ofSU(2). Now we consider the orbit ofSU(2) throughw = (1=p2)(v0 + v3).
Then the orbit6 = �3(SU(2))w � S7(1) is a 3-dimensional minimal Legendrian sub-
manifold embedded inS7(1).
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Theorem 3.1. The special Lagrangian cone C inC4 over the minimal Legedrian
orbit 6 = �3(SU(2))(w) is not Legendrian stable, and hence not stable. Its stability-
index and Legendrian-index of C are given by

s-ind(C) = 10 and l-ind(C) = 11 (= 8 + 3).

Moreover, 6 satisfies

m6(2) = 19> m2 � 1� dim SU(2) = 12

and hence C is not rigid.

We shall calculate all the eigenvalues and thier multiplicities of the Laplacian of
the SU(2)-orbit 6 = �3(SU(2))(w) by the method used in [15].

Let G = SU(2) andg = su(2). Let fE1, E2, E3g be a basis ofg = su(2) defined by

E1 =

� p�1 0
0 �p�1

�
, E2 =

�
0

p�1p�1 0

�
, E3 =

�
0 1�1 0

�
.

For each nonnegative integern, let (Vn, �n) be an (n + 1)-dimensional irreducible
unitary representation ofG = SU(2) as follows: LetVn denote a complex vector space
of all complex homogeneous polynomials with two variablesz1, z2 of degreen and�n : SU(2)! U (Vn) is defined as

(3.1)

��n

�
a �b̄
b ā

�
f

�
(z1, z2) = f

�
(z1, z2)

�
a �b̄
b ā

��
.

Here set

v(n)
k :=

1p
k! (n� k)!

zn�k
1 zk

2

for eachk = 0,1,: : : ,n and the standard Hermitian inner producthh , ii of Vn invariant
under�n is defined such thatfv(n)

0 , : : : , v(n)
n g is a unitary basis ofVn. Then the differ-

ential d�n of the representation�n is given by

(3.2) (d�n(X) f )(z1, z2) =

� � f�z1
,
� f�z2

�
tX

�
z1

z2

�
.

If we denote byD(SU(2)) the complete set of all inequivalent irreducible unitary rep-
resentations ofSU(2), then we know

D(SU(2)) = f(Vn, �n) j n 2 Z, n � 0g.



328 Y. OHNITA

In V3
�= C4 �= R8 (n = 3), we use the unitary basisv0 = v(3)

0 , v1 = v(3)
1 , v2 = v(3)

2 ,v3 = v(3)
3 . Then the orbit6 = �3(SU(2))w of SU(2) through a point

w =
1p
2

(v0 + v3) 2 S7(1) = fv 2 V3 j kvk = 1g.
is a 3-dimensional compact minimal Legendrian submanifoldembedded inS7(1).
We can see that it is a unique minimal Legendrian orbit onS7(1) under �3. Thus
the minimal cone over6 = �3(SU(2))w is a special Lagrangian cone inC4. Thenf(1=3)E1, (1=p3)E2, (1=p3)E3g is an orthonormal basis ofg with respect to the in-
duced metric from the orbit�3(SU(2))v � C4. We denote by16 the Laplacian of6 = G=K with respect to the induced metric acting smooth fuctions onG=K . The
isotropy subgroup

(3.3) K := fA 2 G j �3(A)w = wg
of G = SU(2) atw 2 V3 is a cyclic subgroupZ3 of order 3 consisting of the following
elements

(3.4)

�
1 0
0 1

�
,

 
e
p�1 (2�=3) 0

0 e�p�1 (2�=3)

!
,

 
e�p�1 (2�=3) 0

0 e
p�1 (2�=3)

!

which is the fundamental group of6 �= G=K .
For each nonnegative integern, we define a vector subspace (Vn)K of Vn by

(3.5) (Vn)K := fv 2 Vn j �n(A)v = v for each A 2 K g.
Then by direct computations we have

Lemma 3.1. (1) In case n= 2l :
If we set l= 3p + r for p 2 Z with p� 0 and r 2 Z with 0 � r < 3, then (Vn)K

is spanned by

�v(n)
k

�� k = l + 3 j ( j = �p, : : : ,�1, 0, 1,: : : , p)
	
.

(2) In case n= 2l + 1:
If 2l + 1 = 3p for p 2 Z, then (Vn)K is spanned by

�v(n)
k

�� k = 3 j ( j = 0, 1,: : : , p)
	
.

If 2l + 1 = 3p + 1 for p 2 Z, then (Vn)K is spanned by

�v(n)
k

�� k = 3 j � 1 ( j = 1, 2,: : : , p)
	
.
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If 2l + 1 = 3p + 2 for p 2 Z, then (Vn)K is spanned by

�v(n)
k

�� k = 3 j + 1 ( j = 0, 1,: : : , p)
	
.

By Peter-Weyl’s theorem we know

(3.6) C1(G=K ) =
M

n2Z, n�0

(Vn)�K 
 Vn.

Here eachv 2 (Vn)K and eachu 2 Vn corresponds tof 2 C1(G=K ) defined by

f (aK) := hh�n(a)v, uii (aK 2 G=K ).

Then we have

(16 f )(aK)

=

���n(a)

��
d�n

�
1

3
E1

��2

+

�
d�n

�
1p
3

E2

��2

+

�
d�n

�
1p
3

E3

��2�v, u

��
.

(3.7)

By direct computations we have the following lemmas.

Lemma 3.2.��
d�n

�
1

3
E1

��2

+

�
d�n

�
1p
3

E2

��2

+

�
d�n

�
1p
3

E3

��2�v(n)
k

= ��1

9
(n� 2k)2 +

2

3
((k + 1)(n� k) + k(n� k + 1))

�v(n)
k .

(3.8)

Lemma 3.3. All eigenvalues and their multiplicities of16 are given as follows:
Let n2 Z with n� 0.
(1) In case n= 2l , if we set l= 3p + r with nonnegative p, r 2 Z and 0� r < 3, 16
has eigenvalues

4

3
l (l + 1)� 8 j 2 ( j = �p, : : : ,�1, 0, 1,: : : , p)

and its multiplicity is n+ 1 = 2l + 1.
(2) In case n= 2l + 1, if 2l + 1 = 3p for an integer p� 1, then16 has eigenvalues

(p� 2 j )2 + 2((3j + 1)(p� j ) + j (3p� 3 j + 1)) ( j = 0, 1,: : : , p)

and its multiplicity is n+ 1 = 2l + 2.
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(3) In case n= 2l + 1, if 2l + 1 = 3p+ 1 for an integer p� 2, then16 has eigenvalues

(p� 2 j + 1)2 + 2( j (3p� 3 j + 2) + (3j � 1)(p� j + 1)) ( j = 1, : : : , p)

and its multiplicity is n+ 1 = 2l + 2.
(4) In case n= 2l + 1, if 2l + 1 = 3p+ 2 for an integer p� 1, then16 has eigenvalues

(p� 2 j )2 +
2

3
((3 j + 2)(3p� 3 j + 1) + (3j + 1)(3p� 3 j + 2)) ( j = 0, 1,: : : , p)

and its multiplicity is n+ 1 = 2l + 2.

From Lemma 3.3 all eigenvalues of16 not greater than� � 2m = 8 and their
multiplicities are given as follows:
(1) For n = 2, l = 1 and j = 0, the eigenvalue is 8=3 (� =

p
33
Æ

3� 1) and its multi-
plicity is 3.
(2) For n = 3, l = 1, p = 1 and j = 0, the eigenvalue is 3 (� = 1) and its multiplic-
ity is 4.
(3) For n = 3, l = 1, p = 1 and j = p, the eigenvalue is 3 (� = 1) and its multiplic-
ity is 4.
(4) For n = 4, l = 2, p = 0 and j = 0, the eigenvalue is 8 (� = 2) and its multiplic-
ity is 5.
(5) For n = 6, l = 3, p = 1 and j = �1, the eigenvalue is 8 (� = 2) and its multiplic-
ity is 7.
(6) For n = 6, l = 3,p = 1 and j = 1, the eigenvalue is 8 (� = 2) and its multiplicity is 7.
(7) Otherwise all other eigenvalues are greater than 8.
Thus we have

m6(0) = 1, m6
�p

33

3
� 1

�
= 3,

m6(1) = 4 + 4 = 8, m6(2) = 5 + 7 + 7 = 19,

and

N6(2) = m6(0) + m6
�p

33

3
� 1

�
+ m6(1) + m6(2) = 31.

Therefore we obtain

s-ind(C) = N6(2)� b0(6)�m2 � 2m + 1 + dimG6 = 10.

and

l-ind(C) = m6
�p

33

3
� 1

�
+ m6(1) = 11> 8.
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and henceC is not Legendrian-stable. And we obtain

m6(2) = 19> 12 = 42 � 1� dim SU(3) = m2 � 1� dim G6 .

and henceC is not rigid. Therefore we obtain Theorem 3.1.
And by using the formula (1.1) we also see the following.

Theorem 3.2. For this minimal Legendirian orbit6 = �3(SU(2))w, C0 = C n f0g
has nonzero homogeneous harmonic function of order� for some� with 0 < � < 1
and there is no nonzero homogeneous harmonic function on C0 of order � for any �
with 1< � < 2.

Next we consider the Hopf fibration� : S7(1)! CP3 from S7(1)� V3
�= C4 onto

the 3-dimensional complex projective spaceCP3 with the Fubini-Study metric of con-
stant holomorphic sectional curvature 4. We denote also by�3 the action ofSU(2)
on CP3 induced by� from the represenation�3 of SU(2) on V3

�= C4. By the pro-
jection of the minimal Legendrian orbit�3(SU(2))w, we obtain a minimal Lagrangian
orbit L = �3(SU(2))[w] on CP3 through [w] = Cw. It was also treated in [5] from the
viewpoint of momentum maps. Then the isotropy subgroup

(3.9) K 0 := fA 2 SU(2) j �3(A)[w] = [w]g
of SU(2) at [w] 2 CP3 is a finite subgroup of order 12 consisting of the following
elements

(3.10)

�
a 0
0 ā

�
,

�
0 �b̄
b 0

�

wherea, b 2 C with jaj = jbj = 1 anda6 = 1, b6 = �1. Let

(3.11) (Vn)K 0 := fv 2 Vm j �m(A)v = v for each A 2 K 0g.
Note thatK � K 0 and thus (Vn)K 0 � (Vn)K . Then by checking the results of Lemma 3.1
on (Vn)K we can show

Lemma 3.4. (a) (Vn)K 0 6= f0g if and only if n= 2l for some integer l2 Z satis-
fying the condition that l is odd with l� 3, or that l is even with l� 0,
(b) If n = 2l and l is odd with l� 3, setting l = 3p + r for 0 � p 2 Z and 0 � r <
3, then �v(2l )

l+3 j � v(2l )
l�3 j

�� j = 1, : : : , p
	

is a basis of(Vn)K 0 .
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(c) If n = 2l and l is even with l� 0, setting l = 3p + r for 0 � p 2 Z and 0 � r <
3, then �v(2l )

l+3 j + v(2l )
l�3 j

�� j = 0, 1,: : : , p
	

is a basis of(Vn)K 0 .
Now by using Lemma 3.2 we can determine all eigenvalues for the Laplacian10

of L on functions.

Lemma 3.5. All eigenvalues and their multiplicities of10 are given as follows:
Let n = 2l for l 2 Z with ell � 0.
(1) In the case when l is odd and l� 3, if we set l= 3p+ r with nonnegative p, r 2 Z
and 0� r < 3, 10 has eigenvalues

4

3
l (l + 1)� 8 j 2 ( j = 1, : : : , p)

and its multiplicity is n+ 1 = 2l + 1.
(2) In the case when l is even and l� 0, if we set l= 3p+r with nonnegative p,r 2 Z
and 0� r < 3, 10 has eigenvalues

4

3
l (l + 1)� 8 j 2 ( j = 0, 1,: : : , p)

and its multiplicity is n+ 1 = 2l + 1.

By Lemma 3.5 we can determine the first eigenvalue of10 and its multiplicity as
follows:

Lemma 3.6. (1) If n = 4, l = 2, p = 0 and j = 0, then the eigenvalue is8 and
its multiplicity is 5.
(2) If n = 6, l = 3, p = 1 and j = 1, then the eigenvalue is8 and its multiplicity is7.
(3) Otherwise all other eigenvalues are greater than8.

Hence we obtain that the first eigenvalue of10 is 8 and its multiplicity is 12 =
42 � 1� dim(SU(2)). Therefore we conclude

Corollary 3.1. �(6) = �3(SU(2))[w] is a 3-dimensional compact Hamiltonian sta-
ble minimal Lagrangian submanifold embedded inCP3 which does not have parallel
second fundamental form. Moreover its null space is exactly the span of the normal
projections of Killing vector fields onCP3.
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REMARK . This example gives a negative answer to the second problem in [1,
p.506]. Very recently it was also obtained independently byLucio Bedulli and Anna
Gori in their paper: A Hamiltonian stable minimal Lagrangian submanifolds of projec-
tive spaces with non-parallel second fundamental form.
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