NON-LOCAL ELLIPTIC PROBLEM IN HIGHER DIMENSION

Tosiya MIYASITA

(Received May 17, 2005, revised April 26, 2006)

Abstract

Non-local elliptic problem, $-\Delta v=\lambda\left(e^{v} /\left(\int_{\Omega} e^{v} d x\right)^{p}\right)$ with Dirichlet boundary condition is considered on n-dimensional bounded domain Ω with $n \geq 3$ for $p>0$. If Ω is the unit ball, $3 \leq n \leq 9$ and $2 / n \leq p \leq 1$, we have infinitely many bendings in λ of the solution set in $\lambda-v$ plane. Finally if Ω is an annulus domain and $p \geq 1$, we show that a solution exists for all $\lambda>0$.

1. Introduction

In this paper we consider the following elliptic equation with non-local term:

$$
\begin{cases}-\Delta v=\lambda \frac{e^{v}}{\left(\int_{\Omega} e^{v} d x\right)^{p}} & x \in \Omega \tag{1}\\ v=0 & x \in \partial \Omega\end{cases}
$$

where λ, p are positive constants and Ω is a bounded domain in \mathbf{R}^{n} with smooth boundary $\partial \Omega$. Actually, usual Gel'fand problem, in the theories of thermonic emission ([5]), isothermal gas sphere ([4]), and gas combustion ([1]), is formulated as the nonlinear eigenvalue problem

$$
\begin{cases}-\Delta v=\sigma e^{v} & x \in \Omega \tag{2}\\ v=0 & x \in \partial \Omega\end{cases}
$$

with a constant $\sigma>0$. Problems (1) and (2) are equivalent through the relation

$$
\sigma=\frac{\lambda}{\left(\int_{\Omega} e^{v} d x\right)^{p}},
$$

and hence some features of the solution set

$$
\mathcal{C}=\{(\lambda, v) \mid v=v(x) \text { is a classical solution of (1) for } \lambda>0\}
$$

resemble those of the solution set for (2), denoted by \mathcal{S}. (1) is the non-local stationary problem of

$$
\begin{cases}v_{t}=\Delta v+\lambda \frac{e^{v}}{\left(\int_{\Omega} e^{v} d x\right)^{p}} & x \in \Omega, t>0 \\ v=0 & x \in \partial \Omega, t>0 \\ \left.v\right|_{t=0}=v_{0}(x) & x \in \Omega\end{cases}
$$

Such problems are studied in ([2]). They arise in the study of phenomena associated with the occurrence of shear bands in metals being deformed under high strain rates ([3]) and Ohmic heating ([10], [11]). We note that if $p=1$, the motivation to study (1) is the Keller-Segel system ([9]) which describes the chemotactic aggregation of cellular slime molds given by

$$
\begin{cases}\varepsilon u_{t}=\nabla \cdot(\nabla u-u \nabla v) & x \in \Omega, t \in(0, T), \tag{3}\\ \tau v_{t}=\Delta v+u & x \in \Omega, t \in(0, T), \\ \frac{\partial u}{\partial v}-u \frac{\partial v}{\partial v}=v=0 & x \in \partial \Omega, t \in(0, T), \\ \left.u\right|_{t=0}=u_{0}(x) \geq 0 & x \in \Omega, \\ \left.v\right|_{t=0}=v_{0}(x) & x \in \Omega,\end{cases}
$$

where Ω is a bounded domain with smooth boundary $\partial \Omega, \tau, \varepsilon$ are positive constants, and v is the outer unit normal vector, respectively. In the stationary state of (3), it is reduced to (1) ([20]). In fact, since $u=u(x, t) \geq 0$ and

$$
\frac{d}{d t} \int_{\Omega} u d x=\frac{1}{\varepsilon} \int_{\Omega} \nabla \cdot(\nabla u-u \nabla v) d x=0
$$

the total mass is conserved, that is, $\|u(\cdot, t)\|_{1}=\left\|u_{0}\right\|_{1}$. Here and henceforth, $\|\cdot\|_{p}$ denotes the standard L^{p} norm. The system of equations (3) has a Lyapunov function

$$
J(u, v)=\int_{\Omega}\left(u(\log u-1)-u v+\frac{1}{2}|\nabla v|^{2}\right) d x
$$

and it holds that

$$
\varepsilon \frac{d}{d t} J(u, v)+\tau \varepsilon\left\|v_{t}\right\|_{2}^{2}+\int_{\Omega} u|\nabla(\log u-v)|^{2} d x=0
$$

It implies that in the stationary state

$$
\log u-v=\log \sigma
$$

holds for some constant $\sigma>0$. In other words

$$
u=\sigma e^{v}
$$

holds. Putting $\lambda=\left\|u_{0}\right\|_{1}$ we have

$$
\sigma=\frac{\lambda}{\int_{\Omega} e^{v} d x}
$$

by mass conservation. Thus the second equation in (3) implies that

$$
0=\Delta v+\lambda \frac{e^{v}}{\int_{\Omega} e^{v} d x}
$$

with Dirichlet boundary condition.
We have known the result on \mathcal{C} when $n=1,2$ and Ω is the unit ball $B=\left\{x \in \mathbf{R}^{n} \mid\right.$ $|x|<1\}$. For $n=1$ with $\Omega=B$, if $p \geq 1$, then (1) has a unique solution for all $\lambda>0$. On the contrary if $0<p<1$, there exists $\bar{\lambda}>0$ such that (1) has two solutions for $\lambda<\bar{\lambda}$, (1) has one solution for $\lambda=\bar{\lambda}$ and (1) has no solution for $\lambda>\bar{\lambda}$. For $n=2$ with $\Omega=B$, if $p<1$, then (1) has a unique solution for all $\lambda>0$. If $p=1$, then (1) has a unique solution for all $0<\lambda<8 \pi$ but no solution for $\lambda \geq 8 \pi$. On the contrary if $0<p<1$, there exists $\bar{\lambda}>0$ such that (1) has two solutions for $\lambda<\bar{\lambda}$, (1) has one solution for $\lambda=\bar{\lambda}$ and (1) has no solution for $\lambda>\bar{\lambda}$. These facts are proven in [2].

We consider the $p=1$ case in [13] and expand their results to the genaral $p>0$ in this paper.

We also mention the structure of \mathcal{S}. For $n \geq 3$ with $\Omega=B, \mathcal{S}$ is a one-dimensional open manifold with the end points in $(\sigma, v)=(0,0)$ and $(\sigma, v)=(2(n-2), 2 \log (1 /|x|))$, respectively, the latter being a weak solution of (2). Moreover for $3 \leq n \leq 9, \mathcal{S}$ bends infinitely many times with respect to σ around $\sigma=2(n-2)$. Morse indices increases by one whenever it bends. On the other hand if $n \geq 10$, no bending occurs. They are shown in [14], [15].

We define the section of \mathcal{C} cut by $\lambda>0$ as follows:

$$
\mathcal{C}^{\lambda}=\left\{v \in C^{2}(\Omega) \cap C(\bar{\Omega}) \mid v=v(x) \text { solves }(1)\right\} .
$$

The first theorem is concerned with the star-shaped domain, so that $x \cdot v>0$ holds for each $x \in \partial \Omega$.

Theorem 1. If Ω is star-shaped with respect to the origin with $n \geq 3$ and $p \leq 1$, then there is $\bar{\lambda} \in(0,+\infty)$ such that (1) has no solution for $\lambda>\bar{\lambda}$. Moreover, \mathcal{C}_{0} is unbounded in $\lambda-v$ plane, where \mathcal{C}_{0} stands for the connected component of \mathcal{C} satisfying $(0,0) \in \overline{\mathcal{C}_{0}}$.

The second theorem is concerned with the ball case.

Theorem 2. If Ω is the unit ball $B=\left\{x \in \mathbf{R}^{n}| | x \mid<1\right\}$ with $n \geq 3$, then \mathcal{C} is a one-dimensional open manifold and can be parametrized as

$$
\mathcal{C}=\{(\lambda(s), v(\cdot, s)) \mid 0<s<+\infty\}
$$

with the end points in $(\lambda, v)=(0,0)$ and the weak solution

$$
(\lambda, v)=\left(2 \omega_{n}^{p}(n-2)^{1-p}, 2 \log \left(\frac{1}{|x|}\right)\right)
$$

respectively, where ω_{n} denotes the area of the unit sphere in \mathbf{R}^{n}. Moreover for $3 \leq$ $n \leq 9$ and $2 / n \leq p \leq 1, \mathcal{C}$ bends infinitely many times with respect to λ around $\lambda=2 \omega_{n}^{p}(n-2)^{1-p}$. On the other hand if $n \geq 10$ and $p \leq 1$, no bending occurs.

The third theorem is on the spectral property of the linearized operator. To state the result, we define Morse index as follows. For given $(\lambda, v) \in \mathcal{C}$, the linearized eigenvalue problem is given by

$$
\begin{cases}\Delta \phi+\lambda \frac{e^{v}}{\left(\int_{\Omega} e^{v} d x\right)^{p}} \phi-p \lambda \frac{\int_{\Omega} e^{v} \phi d x}{\left(\int_{\Omega} e^{v} d x\right)^{p+1}} e^{v}=-\mu \phi & x \in \Omega, \tag{4}\\ \phi=0 & x \in \partial \Omega .\end{cases}
$$

Then, the Morse index $i=i(\lambda, v)$ and the radial Morse index $i_{R}=i_{R}(\lambda, v)$ denote the number of negative eigenvalues and that of radially symmetric eigenfunctions, respectively.

Theorem 3. If Ω is the unit ball with $3 \leq n \leq 9,2 / n \leq p \leq 1$ and $n \geq 10$, $p \leq 1$, respectively, then $i=i_{R}$ holds and $i=i(\lambda, v)$ increases by one at each bending point.

The last theorem is on the annulus domain $A_{a}=\left\{x \in \mathbf{R}^{n}|a<|x|<1\}\right.$ with $a \in(0,1)$. We deal with only radial solutions. Then we define the solution set by

$$
\mathcal{C}_{a}=\{(\lambda, v) \mid v=v(|x|) \text { is a classical solution of (1) for } \lambda>0\} .
$$

Theorem 4. If Ω is the annulus domain A_{a} with $n \geq 3$ and $p \geq 1$, then \mathcal{C}_{a} is a one-dimensional open manifold and can be parametrized as

$$
\mathcal{C}_{a}=\{(\lambda(s), v(\cdot, s)) \mid 0<s<+\infty\}
$$

with the end points in $(\lambda, v)=(0,0)$ and (λ, v) satisfying

$$
\lim _{s \uparrow+\infty} \lambda(s)=+\infty \quad \text { and } \quad \lim _{s \uparrow+\infty} \sup _{a<x<1}|v(x, s)|=+\infty .
$$

This paper is composed of four sections. In $\S 2$, we treat a star-shaped domain and prove Theorem 1. Next in $\S 3$, we study the ball case and prove Theorems 2 and 3. Finally, $\S 4$ is on the annulus domain case and we prove Theorem 4.

2. Star-shaped domain

In this section, we assume that Ω is a star-shaped bounded domain with respect to the origin in \mathbf{R}^{n} with $n \geq 3$ with the smooth boundary $\partial \Omega$ and that v is the outer unit normal vector.

Proof of Theorem 1. The first part of Theorem has already proven in [2], but we provide the proof for completeness. In fact we apply the Pohozaev identity ([16]) to (1).
(5)

$$
\begin{aligned}
\frac{1}{2} \int_{\partial \Omega}(x \cdot v)\left(\frac{\partial v}{\partial v}\right)^{2} d s & =\frac{n \lambda}{\left(\int_{\Omega} e^{v} d x\right)^{p}} \int_{\Omega}\left(e^{v}-1\right) d x+\frac{2-n}{2} \frac{\lambda}{\left(\int_{\Omega} e^{v} d x\right)^{p}} \int_{\Omega} e^{v} v d x \\
& \leq \frac{n \lambda}{\left(\int_{\Omega} e^{v} d x\right)^{p-1}},
\end{aligned}
$$

where $d s$ is the area element of ∂B with standard metric.
On the other hand it follows from (1) that

$$
\frac{\lambda}{\left(\int_{\Omega} e^{v} d x\right)^{p-1}}=\int_{\Omega}(-\Delta v) d x=\int_{\partial \Omega}\left(-\frac{\partial v}{\partial v}\right) d s
$$

and therefore we have

$$
\frac{\lambda^{2}}{\left(\int_{\Omega} e^{v} d x\right)^{2(p-1)}} \leq \int_{\partial \Omega}(x \cdot v)\left(\frac{\partial v}{\partial v}\right)^{2} d s \int_{\partial \Omega} \frac{1}{(x \cdot v)} d s
$$

Combining this inequality and (5), we have

$$
\frac{\lambda^{2}}{\left(\int_{\Omega} e^{v} d x\right)^{2(p-1)}} \leq \frac{2 n \lambda}{\left(\int_{\Omega} e^{v} d x\right)^{p-1}} \int_{\partial \Omega} \frac{1}{(x \cdot v)} d s
$$

Hence since $p \leq 1$ and $v>0$ in Ω, we have

$$
\lambda \leq \frac{2 n}{\left(\int_{\Omega} e^{v} d x\right)^{1-p}} \int_{\partial \Omega} \frac{1}{(x \cdot v)} d s \leq \frac{2 n}{|\Omega|^{1-p}} \int_{\partial \Omega} \frac{1}{(x \cdot v)} d s
$$

where $|\Omega|$ is the measure of Ω. This gives $\bar{\lambda}$ in the statement.

We denote by \mathcal{C}_{1} the branch of solutions of (1) starting from $(\lambda, v)=(0,0)$. Supposing that \mathcal{C}_{1} is bounded, we prove unboundedness of the component \mathcal{C}_{1} by contradiction by making use of the standard degree argument similar to [18]. We provide the proof for completeness and proceed it in the same mathod as in [19]. Putting

$$
F(\lambda, v)=\Delta v+\lambda \frac{e^{v}}{\left(\int_{\Omega} e^{v} d x\right)^{p}}
$$

we apply the implicit function theorem. Then there exists a solution (λ, v) for $0<\lambda \ll$ 1. \mathcal{C}_{1} is compact from the assumption and the existence of the upper bound $\bar{\lambda}<+\infty$. Because

$$
\mathcal{C} \cap\{\lambda=0\}=\{(0,0)\}
$$

we can take open set \mathcal{U} containing \mathcal{C}_{1} with the properties

$$
\partial \mathcal{U}_{\lambda} \cap \mathcal{C}=\emptyset \quad \text { and } \quad \mathcal{U}_{\lambda}=\emptyset \quad \text { for } \lambda \gg 1
$$

and $\mathcal{U}_{\lambda} \cap \mathcal{C}$ is composed of the solution of (1) with $\mu_{1}(\lambda, v)>0$ for $0<\lambda \ll 1$, where

$$
\mathcal{U}_{\lambda}=\{v \in C(\bar{\Omega}) \mid(\lambda, v) \in \mathcal{U}\} .
$$

In Banach space $C(\bar{\Omega})$, Leray-Schauder degree $d\left(\Psi_{\lambda}, 0, \mathcal{U}_{\lambda}\right)$ is taken for any $\lambda>0$, where $\Psi_{\lambda}=I_{C(\bar{\Omega})}-\Phi_{\lambda}$ with

$$
\Phi_{\lambda}(v)=(-\Delta)^{-1} \lambda \frac{e^{v}}{\left(\int_{\Omega} e^{v} d x\right)^{p}}
$$

From the homotopy invariance ([18]), $d\left(\Psi_{\lambda}, 0, \mathcal{U}_{\lambda}\right)$ is independent of $\lambda>0$. However by existence and nonexistence of the solution of (1), we have

$$
\begin{cases}d\left(\Psi_{\lambda}, 0, \mathcal{U}_{\lambda}\right)=0 & \text { for } \lambda \gg 1 \\ d\left(\Psi_{\lambda}, 0, \mathcal{U}_{\lambda}\right)=1 & \text { for } 0<\lambda \ll 1\end{cases}
$$

which is a contradiction.

3. Ball case

In this section, we assume that $\Omega=B$, where $B=\left\{x \in \mathbf{R}^{n}| | x \mid<1\right\}$.

Proof of Theorem 2. According to [6], any solution of (1) is radially symmetric. Hence we have

$$
\left\{\begin{array}{l}
\left(r^{n-1} v^{\prime}\right)^{\prime}+\lambda r^{n-1} \frac{e^{v}}{\left(\int_{\Omega} e^{v} d x\right)^{p}}=0 \quad \text { for } r>0 \\
v(1)=0, \quad v^{\prime}(0)=0
\end{array}\right.
$$

where

$$
v=v(r) \quad \text { for } \quad r=|x| .
$$

We begin with the parametrization of the solution set \mathcal{C}, following [7], [13], [14] and [15]. In fact, any solution is obtained as a solution of the initial value problem

$$
\left\{\begin{array}{l}
\left(r^{n-1} v^{\prime}\right)^{\prime}+\sigma r^{n-1} e^{v}=0 \quad \text { for } r>0, \tag{6}\\
v(0)=A, \quad v^{\prime}(0)=0,
\end{array}\right.
$$

with a certain positive constant A. Through the Emden transformation

$$
\begin{equation*}
v(r)=w(t)-2 t+A, \quad r=\left\{\frac{2(n-2)}{\sigma e^{A}}\right\}^{1 / 2} e^{t}, \tag{7}
\end{equation*}
$$

(6) is reduced to the autonomous ordinary differential equation

$$
\left\{\begin{array}{l}
\ddot{w}+(n-2) \dot{w}+2(n-2)\left(e^{w}-1\right)=0 \tag{8}\\
\lim _{t \rightarrow-\infty}(w(t)-2 t)=\lim _{t \rightarrow-\infty} e^{-t}(\dot{w}(t)-2)=0 .
\end{array}\right.
$$

Then there exists a unique global solution $w=w(t)$ of (8) by [14]. The orbit $\mathcal{O}=$ $\{(w(t), z(t))=(w(t), \dot{w}(t)) \mid t \in \mathbf{R}\}$ starts at $t=-\infty$ along and below the line $z=2$ with $w=-\infty$, and approaches the origin $(0,0)$ as $t \rightarrow+\infty$. If $3 \leq n \leq 9$, it proceeds clockwise in $\{(w, z) \mid z<2\}$, crosses infinitely many times z - and w-axes alternately, while it keeps to stay in $\{(w, z) \mid w<0,0<z<2\}$ in the case of $n \geq 10$. Through the Emden transformation (8), the boundary condition in (1) is converted to

$$
w(\tau)-2 \tau+A=0
$$

with

$$
\left\{\frac{2(n-2)}{\sigma e^{A}}\right\}^{1 / 2} e^{\tau}=1
$$

Therefore for any $\tau \in \mathbf{R},\left(\sigma_{\tau}, v_{\tau}\right)$ defined by

$$
\begin{equation*}
v_{\tau}(r)=w(t)-2 t-\{w(\tau)-2 \tau\}=w(\log r+\tau)-w(\tau)-2 \log r \tag{9}
\end{equation*}
$$

with $r=e^{t-\tau}$ and

$$
\begin{equation*}
A_{\tau}=2 \tau-w(\tau), \quad \sigma_{\tau}=2(n-2) e^{2 \tau-A}=2(n-2) e^{w(\tau)} \tag{10}
\end{equation*}
$$

satisfies (1). Conversely every solution of (1) can be expressed in the form of (9) and (10). According to [7], [13], [14] and [19], the total set \mathcal{S} of the solution (σ, v)
of (2) is homeomorphic to \mathcal{O} through the relation (7) with the constants A, σ determined by (10). This means that \mathcal{C} is homeomorphic to \mathcal{O}. Each point of \mathcal{O} is given as $(w(\tau), z(\tau))$ and hence \mathcal{C} is parametrized by $\tau \in \mathbf{R}$. Then we have

$$
\begin{equation*}
\lambda(\tau)=\omega_{n}^{p} 2^{1-p}(n-2)^{1-p}(2-z(\tau))^{p} e^{(1-p) w(\tau)} . \tag{11}
\end{equation*}
$$

In fact, putting $K=\int_{B} e^{v} d x$ we have

$$
\lambda^{1 / p-1}=K^{1-p} \sigma^{1 / p-1}
$$

because of $K^{p}=\lambda / \sigma$. By (10), we have

$$
\lambda^{1 / p}=\lambda K^{1-p} \sigma^{1 / p-1}=\lambda K^{1-p}\left(2(n-2) e^{w(\tau)}\right)^{1 / p-1} .
$$

Integrating (1) over B, we have

$$
-\lambda K^{1-p}=\omega_{n} v^{\prime}(1)=\omega_{n}(z(\tau)-2)
$$

by (7). Finally combining two equations, we have the desired one. Hence the behaviour of $\tau=+\infty$ follows at once. On the other hand $\lim _{\tau \rightarrow-\infty} v_{\tau}=0$ and $\lim _{\tau \rightarrow-\infty} \sigma_{\tau}=0$ imply that $\lim _{\tau \rightarrow-\infty} \lambda_{\tau}=0$. The rest follows.

In the use of (11), we have

$$
\dot{\lambda}(\tau)=\omega_{n}^{p} 2^{1-p}(n-2)^{1-p}(2-z(\tau))^{p-1} e^{(1-p) w(\tau)}\{(1-p) z(\tau)(2-z(\tau))-p \dot{z}(\tau)\} .
$$

If $n \geq 10$ and $p \leq 1, \dot{\lambda}(\tau)>0$ for all $\tau \in \mathbf{R}$ which proves the statement. Next we concentrate on the case of $3 \leq n \leq 9$ and $2 / n \leq p \leq 1$. To do so, we put $g(\tau)=(1-p) z(\tau)(2-z(\tau))-p \dot{z}(\tau)$. Then we have

$$
\begin{equation*}
\dot{g}(\tau)=2(1-p)(2-z(\tau)) \dot{z}(\tau)+(p n-2) \dot{z}(\tau)+2 p(n-2) e^{w(\tau)} z(\tau) . \tag{12}
\end{equation*}
$$

Let $\mathcal{O}_{k}(k \geq 2)$ denote the successive points w-axis and $z=-2\left(e^{w}-1\right)$ crossed by the orbit \mathcal{O} in $w-z$ plane in order. Moreover we set $\mathcal{O}_{1}=(-\infty, 2)$. Then $\dot{\lambda}(\tau)>0$ and $\dot{\lambda}(\tau)<0$ on the arc $\mathcal{O}_{4 k-3} \mathcal{O}_{4 k-2}$ and $\mathcal{O}_{4 k-1} \mathcal{O}_{4 k}$, respectively for $k \geq 1$. On the other hand $\dot{g}(\tau)<0$ and $\dot{g}(\tau)>0$ on the arc $\mathcal{O}_{4 k-2} \mathcal{O}_{4 k-1}$ and $\mathcal{O}_{4 k} \mathcal{O}_{4 k+1}$, respectively for $k \geq 1$. Hence there exists a unique point $\tilde{\mathcal{O}}=(w(\tau), z(\tau))$ on the every arc $\mathcal{O}_{4 k-2} \mathcal{O}_{4 k-1}$ and $\mathcal{O}_{4 k} \mathcal{O}_{4 k+1}$ respectively for $k \geq 1$ such that $\dot{\lambda}(\tau)=0$. The proof is complete.

We proceed the proof of Theorem 3 in the same argument and computation as in [15].

Proof of Theorem 3. As far as we consider negative eigenvalues in (4), the corresponing eigenfunctions are radially symmmetric ([12], [13]). Hence $i(\lambda, v)=i_{R}(\lambda, v)$ for
$(\lambda, v) \in \mathcal{C}$. We denote by μ_{τ}^{l} the l-th eigenvalue of (4) in $(\lambda(\tau), v(\tau)) \in \mathcal{C}$ coresponding to radially symmetric eigenfunctions. Any of them is simple. If $(\lambda(\tau), v(\tau)) \in \mathcal{C}$ is the turning point of \mathcal{C}, then there exists $l \geq 1$ such that $\mu_{\tau}^{l}=0$ by the implicit function theorem. On the contrary, $\mu_{\tau}^{l}=0$ for some $l \geq 1$ at $(\lambda(\tau), v(\tau)) \in \mathcal{C}$ implies that it is a turning point by the bifurcation theorem from the critical point of odd multiplicity ([17], [18]). Since $\mu_{-\tau}^{1}>0$ for sufficiently large $\tau>0$, we have $i(\lambda, v)=0$ for $(\lambda(\tau), v(\tau)) \in \mathcal{C}$ for $n \geq 10$ and $p \leq 1$.

For $3 \leq n \leq 9$ and $2 / n \leq p \leq 1$, let $T_{k}=\left(\lambda\left(\tau_{k}\right), v\left(\tau_{k}\right)\right)$ for $\tau_{1}<\tau_{2}<\cdots$ denote the turning point of \mathcal{C}. Then we have $\mu_{\tau_{k}}^{l}=0$ for some $l \geq 1$ and we have only to show that $\dot{\mu}_{\tau=\tau_{k}}^{l}<0$ for all $k \geq 1$.

Differentiating (1) with respect to τ, we have

$$
\begin{cases}\Delta \dot{v}+\dot{\lambda} \frac{e^{v}}{\left(\int_{B} e^{v} d x\right)^{p}}+\lambda \frac{e^{v} \dot{v}}{\left(\int_{B} e^{v} d x\right)^{p}}-\lambda p \frac{\int_{B} e^{v} \dot{v} d x}{\left(\int_{B} e^{v} d x\right)^{p+1}} e^{v}=0 & x \in B, \tag{13}\\ \dot{v}=0 & x \in \partial B,\end{cases}
$$

and hence

$$
\begin{cases}\Delta \dot{v}_{k}+\lambda_{k} \frac{e^{v_{k}} \dot{v}_{k}}{\left(\int_{B} e^{v_{k}} d x\right)^{p}}-\lambda_{k} p \frac{\int_{B} e^{v_{k}} \dot{v}_{k} d x}{\left(\int_{B} e^{v_{k}} d x\right)^{p+1}} e^{v_{k}}=0 & x \in B, \\ \dot{v}_{k}=0 & x \in \partial B,\end{cases}
$$

for $v_{k}=v\left(\cdot, \tau_{k}\right)$. Then we have

$$
\dot{v}(r, \tau)=\dot{w}(\log r+\tau)-\dot{w}(\tau) \not \equiv 0,
$$

and therefore, \dot{v}_{k} is an eigenfunction of (4) corresponding to $\mu=\mu_{\tau_{k}}^{l}=0$. Then, the standard perturbation theory ([8]) guarantees the existence of $\phi=\phi(\cdot, \tau)$ and $\mu=\mu(\tau)$ satisfying (4), $\phi\left(\cdot, \tau_{k}\right)=\dot{v}_{k}$, and $\mu\left(\tau_{k}\right)=\mu_{\tau_{k}}^{k}=0$. Differentiating (4) and (13) with respect to τ, subtracting each other with $\tau=\tau_{k}$, multiplying by \dot{v} and integrating it over B, we have

$$
\begin{equation*}
\ddot{\lambda} \frac{\int_{B} e^{v} \dot{v} d x}{\left(\int_{B} e^{v} d x\right)^{p}}=\dot{\mu} \int_{B} \dot{v}^{2} d x, \tag{14}
\end{equation*}
$$

where $\dot{\mu}=\dot{\mu}\left(\tau_{k}\right), \ddot{\lambda}=\ddot{\lambda}\left(\tau_{k}\right), v=v\left(\cdot, \tau_{k}\right)$ and $\dot{v}=\dot{v}\left(\cdot, \tau_{k}\right)$. As is stated in the proof of Theorem 2,

$$
\begin{equation*}
\dot{\lambda}(\tau)=\omega_{n}^{p} 2^{1-p}(2-z(\tau))^{p-1} e^{(1-p) w(\tau)} g(\tau)=\omega_{n}^{p} \sigma(\tau)^{1-p}(2-z(\tau))^{p-1} g(\tau), \tag{15}
\end{equation*}
$$

where $g(\tau)=(1-p) z(\tau)(2-z(\tau))-p \dot{z}(\tau)$. Differentiating (15), we have

$$
\begin{aligned}
\ddot{\lambda}(\tau)= & \omega_{n}^{p} \sigma(\tau)^{1-p}(2-z(\tau))^{p-2} \\
& \times\left\{(1-p)\left(-z(\tau)^{2}+2 z(\tau)+\dot{z}(\tau)\right) g(\tau)+(2-z(\tau)) \dot{g}(\tau)\right\} .
\end{aligned}
$$

Since $\dot{\lambda}(\tau)=0$ at $\tau=\tau_{k}$, it holds that $g\left(\tau_{k}\right)=0$, namely,

$$
(1-p) z\left(\tau_{k}\right)\left(2-z\left(\tau_{k}\right)\right)-p \dot{z}\left(\tau_{k}\right)=0
$$

from (15). We have $\lambda=\omega_{n}^{p}(2-z)^{p} \sigma^{1-p}$ from (10) and (11),

$$
\dot{\lambda}=\omega_{n}^{p}(2-z)^{p-1} \sigma^{1-p}\left\{(2-z) \sigma^{-1} \dot{\sigma}(1-p)-p z\right\}
$$

by differentiating, and

$$
\sigma \dot{z}=\frac{(2-z)(1-p)}{p} \dot{\sigma}
$$

at $\tau=\tau_{k}$. Hence we have

$$
\begin{align*}
\ddot{\lambda}(\tau)= & \omega_{n}^{p} \sigma(\tau)^{-p}(2-z(\tau))^{p-1} \\
& \times\left\{\frac{2(p-1)^{2}(2-z(\tau))^{2}}{p}+\frac{(p n-2)(1-p)(2-z(\tau))}{p}+p \sigma(\tau)\right\} \dot{\sigma}(\tau) \tag{16}
\end{align*}
$$

at $\tau=\tau_{k}$. Since $\sigma=\lambda /\left(\int_{B} e^{v} d x\right)^{p}$, it holds that

$$
\begin{equation*}
\dot{\sigma}=\frac{\dot{\lambda}}{\left(\int_{B} e^{v} d x\right)^{p}}-\lambda p \frac{\int_{B} e^{v} \dot{v} d x}{\left(\int_{B} e^{v} d x\right)^{p+1}} . \tag{17}
\end{equation*}
$$

Hence we have

$$
\begin{aligned}
\dot{\mu} \int_{B} \dot{v}^{2} d x= & -\lambda p \frac{\left(\int_{B} e^{v} \dot{v} d x\right)^{2}}{\left(\int_{B} e^{v} d x\right)^{2 p+1}} \omega_{n}^{p} \sigma(\tau)^{-p}(2-z(\tau))^{p-1} \\
& \times\left\{\frac{2(p-1)^{2}(2-z(\tau))^{2}}{p}+\frac{(p n-2)(1-p)(2-z(\tau))}{p}+p \sigma(\tau)\right\}
\end{aligned}
$$

at $\tau=\tau_{k}$ from (14) and (16). Let $\int_{B} e^{v} \dot{v} d x=0$. Then (17) means that $\dot{\lambda}=0$ and $\dot{\sigma}=0$ vanish at $\tau=\tau_{k}$ simultaneously. However it is impossible from (10) and (11). Finally we have $\dot{\mu}<0$ at $\tau=\tau_{k}$.

4. Annulus domain

In this section, we assume that $\Omega=A_{a}=\left\{x \in \mathbf{R}^{n}|a<|x|<1\}\right.$ with $a \in(0,1)$ and consider radially symmetric solutions of (1).

We cite known results in [14] for the case of $3 \leq n \leq 9$. Radial solutions of (2) satisfy

$$
\left\{\begin{array}{l}
\left(r^{n-1} v^{\prime}\right)^{\prime}+\sigma r^{n-1} e^{v}=0 \quad \text { for } a<r<1, \tag{18}\\
v(a)=v(0)=0 .
\end{array}\right.
$$

We can continue the solution of (18) up to $r=+0$ satisfying

$$
\lim _{r \downarrow 0}\left(v^{\prime}(r)-\frac{L}{r^{n-1}}\right)=0
$$

and

$$
\lim _{r \downarrow 0}\left(v(r)+\frac{L}{(n-2) r^{n-2}}\right)=M
$$

for some $L, M>0$. Through the modified Emden transformation

$$
v(r)=w(t)-2 t+M, \quad r=B e^{t}
$$

with

$$
B=\left\{\frac{2(n-2)}{\sigma e^{M}}\right\}^{1 / 2}
$$

(18) is reduced to the autonomous ordinary differential equation

$$
\left\{\begin{array}{l}
\ddot{w}+(n-2) \dot{w}+2(n-2)\left(e^{w}-1\right)=0, \tag{19}\\
\lim _{t \rightarrow-\infty}\left(w(t)-2 t+\alpha e^{-(n-2) t}\right)=0, \\
\lim _{t \rightarrow-\infty} e^{-t}\left(\dot{w}(t)-2-\alpha(n-2) e^{-(n-2) t}\right)=0,
\end{array}\right.
$$

where $\alpha=L B^{-(n-2)} /(n-2)$.
Then there exists a unique global solution $w=w_{\alpha}(t)$ of (19) for every $\alpha>0$. The orbit $\mathcal{O}_{\alpha}=\left\{(w(t), z(t))=\left(w_{\alpha}(t), \dot{w}_{\alpha}(t)\right) \mid t \in \mathbf{R}\right\}$ starts at $t=-\infty$ above the line $z=2$ with $w=-\infty$, and approachs the origin $(0,0)$ as $t \rightarrow+\infty$. Then the family of orbits $\left\{\mathcal{O}_{\alpha}\right\}_{\alpha \geq 0}$ forms a foliation, that is, $\mathcal{O}_{\alpha} \cap \mathcal{O}_{\beta}=\emptyset$ if $\alpha \neq \beta$. Every orbit \mathcal{O}_{α} with $\alpha>0$ crosses the line $z=2$ just once. Moreover if $\alpha>\beta>0, O_{\alpha}$ lies in the left side of \mathcal{O}_{β} as t increases. For every point $\left(\eta_{0}, \zeta_{0}\right) \in \Sigma \equiv\{(w, z) \mid w>0, z>2\}$, there is a unique nonnegative α such that $\left(\eta_{0}, \zeta_{0}\right) \in \mathcal{O}_{\alpha}$.

Let $w_{\alpha}=w_{\alpha}(t)$ be the solution of (19). Then every point (w, z) on \mathcal{O}_{α} determines the time t so that the boundary condition

$$
v(a)=v(1)=0
$$

is converted into

$$
\begin{equation*}
w\left(t^{-}\right)-2 t^{-}+M=0 \quad \text { and } \quad w\left(t^{+}\right)-2 t^{+}+M=0 \tag{20}
\end{equation*}
$$

for

$$
\begin{equation*}
t^{-}=\log \frac{a}{B} \quad \text { and } \quad t^{+}=\log \frac{1}{B} \tag{21}
\end{equation*}
$$

Henceforward we omit the subscripts α and so on unless there is any confusion. Further $w^{ \pm}$and $z^{ \pm}$denote $w_{\alpha}\left(t^{ \pm}\right)$and $z_{\alpha}\left(t^{ \pm}\right)$, respectively. From (20) and (21), it holds that

$$
\begin{equation*}
w^{+}-w^{-}=-2 \log a \quad \text { and } \quad t^{+}-t^{-}=-\log a . \tag{22}
\end{equation*}
$$

Conversely, if there exists a pair of points $P^{ \pm}\left(w^{ \pm}, z^{ \pm}\right)$on O_{α} satisfying (22), we have a radial solution $v=v(r)$ for (18) with some positive constant σ. In fact, we define B, M, L, σ and $v(r)$ as

$$
\begin{aligned}
& B=a e^{-t^{-}}=e^{-t^{+}}, \\
& M=2 t^{-}-w^{-}=2 t^{+}-w^{+}, \\
& L=\alpha(n-2) a^{n-2} e^{-(n-2) t^{-}}=\alpha(n-2) e^{-(n-2) t^{+}}, \\
& \sigma=2(n-2) e^{w^{+}}=2(n-2) a^{-2} e^{w^{-}}, \\
& v(r)=w(t)-2 t+M .
\end{aligned}
$$

Therefore the structure of the solution of (18) is reduced to that of pairs of $P^{ \pm}$ on \mathcal{O}_{α}. We call $\left\{P_{\alpha}^{ \pm}\right\}$the boundary pair on \mathcal{O}_{α} associated with the annulus A_{a} in \mathbf{R}^{n}.

For every $a \in(0,1)$, there exists a unique pair of points $P_{\alpha}^{ \pm}=P^{ \pm}\left(w_{\alpha}^{ \pm}, z_{\alpha}^{ \pm}\right)$satisfying (22) on each orbit $\mathcal{O}_{\alpha}(\alpha>0)$. The points P_{α}^{+}and P_{α}^{-}lie below and above the line $z=2$ respectively, and further, these points $P_{\alpha}^{ \pm}$depend on α continuously. Conversely for each point $\left(w_{\alpha}(t), z_{\alpha}(t)\right)$ on \mathcal{O}_{α} with $z_{\alpha}(t)<2\left(z_{\alpha}(t)>2\right)$, there exists a unique $a^{*}=a^{*}(t) \in(0,1)\left(a_{*}=a_{*}(t) \in(0,1)\right)$ such that

$$
\begin{aligned}
w_{\alpha}(t)-w_{\alpha}\left(t+\log a^{*}\right) & =-2 \log a^{*} . \\
\left(w_{\alpha}\left(t-\log a_{*}\right)-w_{\alpha}(t)\right. & \left.=-2 \log a_{* .}\right)
\end{aligned}
$$

Hence we have only to study $K_{a}=\left\{P_{\alpha}^{-}\left(w_{\alpha}^{-}, z_{\alpha}^{-}\right) \mid \alpha>0\right\}$ to get the structure of solution of (18). The set K_{a} forms a continuous curve in \mathbf{R}^{2}, which is homeomorphic to \mathbf{R}. Now we have two lemmas.

Lemma 1 ([14], Lemmas 4.8 and 4.9). For any fixed $a \in(0,1)$, we have

$$
\left\{\begin{array}{l}
\lim _{\alpha \rightarrow 0} w_{\alpha}^{+}=\lim _{\alpha \rightarrow 0} w_{\alpha}^{-}=-\infty \\
\lim _{\alpha \rightarrow 0} z_{\alpha}^{+}=\lim _{\alpha \rightarrow 0} z_{\alpha}^{-}=2, \\
\lim _{\alpha \rightarrow 0}\left\|v_{\alpha}\right\|_{C(\bar{\Omega})}=0 \\
\lim _{\alpha \rightarrow 0} \sigma_{\alpha}=0
\end{array}\right.
$$

where $P_{\alpha}^{ \pm}\left(w_{\alpha}^{ \pm}, z_{\alpha}^{ \pm}\right)$are the pair of boundary points on O_{α} associated with A_{a}.

Lemma 2 ([14], Remark 6.1). For any fixed $a \in(0,1)$, we have

$$
\left\{\begin{array}{l}
\lim _{\alpha \rightarrow+\infty} w_{\alpha}^{+}=\lim _{\alpha \rightarrow+\infty} w_{\alpha}^{-}=-\infty \\
\lim _{\alpha \rightarrow+\infty}\left\|v_{\alpha}\right\|_{C\left(\overline{A_{a}}\right)}=+\infty \\
\lim _{\alpha \rightarrow+\infty} \sigma_{\alpha}=0
\end{array}\right.
$$

where $P_{\alpha}^{ \pm}\left(w_{\alpha}^{ \pm}, z_{\alpha}^{ \pm}\right)$are the pair of boundary points on O_{α} associated with A_{a}.
Proof of Theorem 4. We concentrate on the case of $3 \leq n \leq 9$. The behaviour of λ_{α} and v_{α} as $\alpha \rightarrow+0$ follows from Lemma 1, that is,

$$
\lim _{\alpha \rightarrow 0} \lambda_{\alpha}=\lim _{\alpha \rightarrow 0} \sigma_{\alpha}\left(\int_{A_{a}} e^{v_{\alpha}} d x\right)^{p}=0 \quad \text { and } \quad \lim _{\alpha \rightarrow 0}\left\|v_{\alpha}\right\|_{C\left(\overline{A_{a}}\right)}=0
$$

Integrating (1) over A_{a}, we have

$$
\begin{equation*}
\lambda=\omega_{n}^{p}\left(2(n-2) a^{-2} e^{w^{-}}\right)^{1-p}\left(a^{n-2}\left(z^{-}-2\right)-\left(z^{+}-2\right)\right) \tag{23}
\end{equation*}
$$

in the same way as we deduce (11). Now it holds that

$$
\lim _{\alpha \rightarrow+\infty} z_{\alpha}^{-}=+\infty
$$

In fact, we assume that $z_{\alpha}^{-}<M$ for any $\alpha \in \mathbf{R}$, where M is a positive constant owing to $z_{\alpha}^{-}>2$. Since K_{a} is homeomorphic to \mathbf{R}, there is a constant $K>0$ such that $w_{\alpha}^{-}<K$ for any $\alpha \in \mathbf{R}$ by Lemma 2. By setting $Q=\{(w, z) \mid w<K, 2<z<M\}$, it holds that $\mathcal{O}_{\beta} \cap \bar{Q}=\emptyset$ for some $\beta \in \mathbf{R}$. Actually, for $(w, z)=(K, M)$ there is $\alpha>0$ such that $(K, M) \in \mathcal{O}_{\alpha}$ because of $(K, M) \in \Sigma \subset \bigcup_{\alpha \geq 0} \mathcal{O}_{\alpha}$. Since z - and w-coordinate are decreasing and increasing with respect to t respectively in $\{(w, z) \mid$ $w>g(z), z>0\}, \mathcal{O}_{\alpha} \cap \bar{Q}=(K, M)$. Hence if we put $\beta=\alpha+\delta$ for any $\delta>0$, we have $\mathcal{O}_{\beta} \cap \bar{Q}=\emptyset$ because \mathcal{O}_{β} lies in the left side of \mathcal{O}_{α} as t increases. The points $\left\{\left(w_{\alpha}^{-}, z_{\alpha}^{-}\right) \mid \alpha>0\right\}$ on \mathcal{O}_{β} don't satisfy $w_{\alpha}^{-}<K, z_{\alpha}^{-}<M$ simultaneously, which is a contradiction. Therefore we have $\lim _{\alpha \rightarrow+\infty} z_{\alpha}^{-}=+\infty$. Finally from (23), $z_{\alpha}^{+}<2$ and $p \geq 1$, we have $\lim _{\alpha \rightarrow+\infty} \lambda_{\alpha}=+\infty$. In the case of $n \geq 10$, we chage Σ and K by $\{(w, z) \mid w<0, z>2\}$ and a negative constant, respectively.

References

[1] J. Bebernes and D. Eberly: Mathematical Problems from Combustion Theory, Springer-Verlag, New York, 1989.
[2] J.W. Bebernes and A.A. Lacey: Global existence and finite-time blow-up for a class of nonlocal parabolic problems, Adv. Differential Equations 2 (1997), 927-953.
[3] J.W. Bebernes and P. Talaga: Nonlocal problems modelling shear banding, Comm. Appl. Nonlinear Anal. 3 (1996), 836-844.
[4] S. Chandrasekhar: An Introduction to the Study of Stellar Structure, Dover, New York, 1957.
[5] I.M. Gel'fand: Some problems in the theory of quasilinear equations, Amer. Math. Soc. Transl. (2) 29 (1963), 295-381.
[6] B. Gidas, W.-M. Ni and L. Nirenberg: Symmetry and related properties via the maximal principle, Comm. Math. Phys. 68 (1979), 209-243.
[7] D.D. Joseph and T.S. Lundgren: Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241-269.
[8] T. Kato: Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
[9] E.F. Keller and L.A. Segel: Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 36 (1970), 399-415.
[10] A.A. Lacey: Thermal runaway in a nonlocal problem modelling Ohmic heating: Part I, European J. Appl. Math. 6 (1995), 127-144.
[11] A.A. Lacey: Thermal runaway in a nonlocal problem modelling Ohmic heating: Part II, European J. Appl. Math. 6 (1995), 201-224.
[12] C.-S. Lin and W.-M. Ni: A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Math. Soc. 102 (1988), 271-277.
[13] T. Miyasita and T. Suzuki: Non-local Gel'fand problem in higher dimension; in Nonlocal Elliptic and Parabolic Problems, Banach Center Publ. 66 Polish Acad. Sci., Warsaw, 2004, 221-235.
[14] K. Nagasaki and T. Suzuki: Radial solutions for $\Delta u+\lambda e^{u}=0$ on annuli in higher dimensions, J. Differential Equations 100 (1992), 137-161.
[15] K. Nagasaki and T. Suzuki: Spectral and related properties about the Emden-Fowler equation $-\Delta u=\lambda e^{u}$ on circular domains, Math. Ann. 299 (1994), 1-15.
[16] S.I. Pohozaev: Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Soviet Math. Dokl. 6 (1965), 1408-1411.
[17] P.H. Rabinowitz: Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487-513.
[18] P.H. Rabinowitz: Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math. 3 (1973), 161-202.
[19] T. Suzuki: Semilinear Elliptic Equations, Gakkōtosho Co., Ltd., Tokyo, 1994.
[20] G. Wolansky: A critical parabolic estimate and application to nonlocal equations arising in chemotaxis, Appl. Anal. 66 (1997), 291-321.

[^0]
[^0]: Graduate School of Engineering Science
 Osaka University
 1-3 Machikaneyama, Toyonaka
 Osaka 560-8531
 Japan
 Current address:
 Department of Mathematics
 Graduate School of Science
 Kyoto University
 Kyoto, 606-8502
 Japan
 e-mail: miyasita@math.kyoto-u.ac.jp

