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Abstract
We consider the Cauchy problem for the operatorD2

t �Dxa(t ,x)Dx in the Gevrey
classes. We show that if the coefficienta(t , x) is given by a finite sum of non
negative functions then the Cauchy problem is well posed in the wider Gevrey class
for the larger powers. We also give an example showing that the order of the Gevrey
class obtained here is optimal.

1. Introduction

In this paper we are interested in the Cauchy problem�
Pu = D2

t u� Dxa(t , x)Dxu = 0
u(0, x) = u0(x), Dtu(0, x) = u1(x)

(CP)

on [0,T ] � R, where we always assume thata(t , x) � 0.
For a spaceX of functionsv(x) in R, we say that (CP) is well posed inX if for

every u0, u1 2 X there is a unique solutionu 2 C2([0, T ]; X).
In this paper we prove that, if the coefficienta is given by a sum of powers of

functions, or even by a suitable series of them, then the Cauchy problem (CP) is well
posed in the wider spaceX for the larger powers. Actually in this note we takeX
as  (s)(R), the Gevrey classes of orders for somes > 1. Since we are interested in
studying the influence of the principal part of the symbol andin order to avoid Levi
conditions, we do not allow terms of order one, but only a zeroorder term to be added
to the principal part.

This Cauchy problem, fora(t , x) = a(t), in the more general case ofn space vari-
ables, has been considered in [2], where they proved in particular that, if the coefficient
a(t) 2 Ch([0, T ]), then (CP) is (s)(R) well posed fors< s0, where

(1.1) s0 = 1 +
h

2
.

Moreover they proved by suitable counterexamples that this index s0 is optimal. In [7]
these results have been extended to the case of coefficients depending also on space
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variables, but only for Gevrey indexs0 � 2.
In Section 2 we shall consider the casea(t , x) = a(t) and we prove the following

result:

Theorem 1.1. Assume that a(t , x) = a(t) and

(1.2) a(t) =
+1X
j =1

an
j (t), an

j � 0, a j (t) 2 Ch([0, T ]),
+1X
j =1

ka j k1=hCh < +1
where n and h are positive integers. Then the Cauchy problem(CP) is  (s)(R) well
posed for

(1.3) 1< s< s� = 1 +
nh

2
.

The Gevrey indexs� = 1 + (nh=2) is optimal, as proved by the following:

Theorem 1.2. For every positive integer n and h there exists a1(t) 2 Ch([0, T ]),
satisfying a1(t) � 0, such that the Cauchy problem(CP) with a(t , x) = an

1(t) is not (s)(R) well posed for any s> 1 + (nh=2).

We give now an easy consequence of Theorem 1.1, related to problem of writing a
nonnegative functionf as sum, or series, of squares of functionsf j , with f j of given
regularity.

REMARK . In [1] J.-M. Bony proves that any nonnegative function of class C2m

defined in an interval is the sum of two squares of functionsg j of classCm; moreover,
he proves that it is not possible, in general, to improve thisresult and find functions
g j more regular thanCm. We remark now that, thanks to Theorem 1.1, one can give
another proof of the sharpness of this result, which, although very indirect, is a little
more general. In fact, from [2], it is known that, for every integer m, there exists a
function a(t) 2 C2m([0, T ]) such that the corresponding Cauchy problem (CP) is not
well posed in (s)(R) for s > 1 + (2m=2) = 1 + m. Then, taking Theorem 1.1 into
account, for anyl < 1 or also for l = +1 and for any p > m, it is not possible to

write this functiona(t) as
Pl

j =1 a2
j (t), with a j 2 Cp and

Pl
j =1 ka j k1=p

Cp < +1.

In Sections 3 and 4 we study the case ofa(t ,x) depending also onx, but we limit
to considerh = 2:

(1.4) P = D2
t � Dxa(t , x)Dx.

We say thata(t , x) 2 C2([0, T ];  (s)(R)) if��� j
t �k

xa(t , x)
�� � C j Ak

j k!s, (t , x) 2 [0, T ] � R, k = 0, 1,: : :
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for j = 0, 1, 2 and for some constantsC j and A j . Then we have

Theorem 1.3. Assume that

a(t , x) =
lX

j =1

a j (t , x)n, 0� a j (t , x) 2 C2([�Æ, T + Æ];  (s)(R))

with a positive integer n and someÆ > 0. Then the Cauchy problem for P is (s)(R)
well posed if

1� s< 1 + n = 1 +
2n

2
.

2. Case ofa(t, x) = a(t)

We give now the proof of Theorem 1.1; more precisely we prove an energy esti-
mate from which by a standard argument one can obtain the wellposedness result.

Proof of Theorem 1.1. Let us consider the operatorP in [0, T ] � R

(2.1) P = �2
t � a(t)�2

x

under the assumptions (1.2). Letu(t , x) be a solution of the equationPu = 0. For the
Fourier transformv(t , � ) of u with respect tox, we define the energy

E" = j�tv(t , � )j2 + j� j2(a(t) + ")jv(t , � )j2,

with

" = j� j�� ,

� > 0 to be chosen later. From

�2
t v(t , � ) + j� j2a(t)v(t , � ) = 0

we have

(2.2) �t E" �
� ja0(t)j

a(t) + " + "1=2j� j�E",
which gives

(2.3) E"(t , � ) � E"(0, � ) exp

�
t"1=2j� j + Z t

0

ja0(� )j
a(� ) + " d��
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by Gronwall inequality. Let us consider now the integral in (2.3); thanks to assump-
tions (1.2), we have:

Z T

0

ja0(t)j
a(t) + " dt � Z T

0

P1
j =1 j(an

j (t))
0jP1

j =1 an
j (t) + " dt � n

1X
j =1

Z T

0

ja0j jja j jn�1

ja j jn + " dt

� n2n�1
1X
j =1

Z T

0

ja0j jja j jn�1

(ja j j + "1=n)n
dt � n2n�1

1X
j =1

Z T

0

ja0j jja j j + "1=n dt.

(2.4)

From Corollary 2.5 in [3] (see also [9]), we know that

Z T

0

ja0j jja j j + "1=n dt � Mka j k1=hCh "�1=nh

with M = M(h, T). From this fact and from (2.4) we obtain:

(2.5)
Z T

0

ja0(t)j
a(t) + "dt � n2n�1M

1X
j =1

ka j k1=hCh "�1=nh.

From (2.5) we deduce:

(2.6) E"(t , � ) � E"(0, � ) exp

�
T"1=2j� j + Z T

0

ja0(� )j
a(� ) + " d��.

Taking (2.3) and (2.5) into account, we obtain

(2.7) sup
t2[0,T ]

E"(t , � ) � E"(0, � ) expCf"1=2j� j + "�1=nhg.
The best choice of� ,

� =
2nh

nh + 2
,

and (2.7) yield finally

(2.8) sup
t2[0,T ]

E"(t , � ) � E"(0, � ) exp(Cj� j2=(nh+2)).

This allows us to solve the Cauchy problem forP in Gevrey classes provided that
the Gevrey indexs is related to theCh regularity of a j and to the exponentn by the
assumption (1.3).

Now we prove by construction of a counterexample that the condition (1.3) is
sharp. Our construction is inspired in part by the examples in [4] and in [2].
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Proof of Theorem 1.2. Let us take a real, non-negative, 2�-periodic C1 function' such that'(� ) = 0 for � in a neighborhood of� = 0 and

Z 2�
0

'(� ) cos2 � d� = � .

Then, for every� 2 R, we define

�(� ) = 1 + 4"'(� ) sin 2� � 2"'0(� ) cos2 � � 4"2'2(� ) cos4 � ,

w̃(� ) = cos� exp

��"� + 2" Z �
0
'(s) cos2 s ds

�
,

w(� ) = w̃(� )e"� ,
where" is fixed in such a way that 1=2� �(� ) � 3=2, and let us denote

M = k�0kL1 .

So, �(� ) and w̃(� ) are 2�-periodic C1 functions; furthermorew is the solution of the
Cauchy problem

(2.9) w00(� ) + �(� )w(� ) = 0, w(0) = 1, w0(0) = 0.

Let now �(� ) be a non increasingC1 function such that�(� ) = 1 for � � 0, �(� ) = 0
for � � 1. We use also four positive monotone sequencesfÆkg, f%kg, f�kg, fhkg, where�k are positive integers, such that

hk ! +1, �k ! +1, Æk ! 0, %k ! 0; �k 2 N,

Æ1 � 1, 2
1X
k=1

%k = T < 1.
(2.10)

Finally let us define two families of intervalsIk and Jk, k � 1, by setting

Ik =

�
tk � %k

2
, tk +

%k

2

�
, Jk =

�
tk +

%k

2
, tk +

3%k

2

�

tk =
%k

2
+ 2

k�1X
j =1

% j ,

�
t1 =

%1

2

�
.

(2.11)

Now we are ready to construct the coefficienta(t) for t 2 [0, 1] as follows

(2.12) a(t) =

8>>>><
>>>>:

Æk�
�

4��k
t � tk%k

�
for t 2 Ik

Æk+1 + (Æk � Æk+1)�
�

t � tk%k
� 1

2

�
for t 2 Jk

0 for t � T ,
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and we define

a1(t) = a1=n(t).

It is easy to see thata1 2 C1([0, T [). To estimateka1kCh on Jk and on Ik, we use
Faà di Bruno’s formula (see [5]), withF(x) = x1=n anda(t) given in (2.12). We obtain:

(F Æ a)(h) =
hX

j =1

(F ( j ) Æ a)
X
p(h, j )

h!
hY

i =1

(a(i ))�i

(�i !)(i !)�i
,

where we denote'(m)(y) = (d=dy)m'(y) and where

(2.13) p(h, j ) =

(
(�1, : : : , �h); �i � 0,

hX
i =1

�i = j ,
hX

i =1

i�i = h

)
.

Then on Jk we have, taking (2.10) and (2.13) into account,

ka1kCh(Jk) � C1(n, h, k�kCh)
hX

j =1

Æ(1=n)� j
k+1

X
p(h, j )

hY
i =1

(Æk��i
k )�i

� C2(n, h, k�kCh) ��h
k (Æk+1)

1=n� ÆkÆk+1

�h

.

(2.14)

On the other hand, onIk one easily obtains

(2.15) ka1kCh(Ik) � C3(n, h, k�kCh)Æ1=n
k

� �k�k

�h

.

Now we define a solutionu 2 C1([0, T [;  s(T)) for any s > s0 of Pu = 0, P as
in (2.1), and we takeu0 = u(0, x), u1 = �tu(0, x) as Cauchy data. HereT denotes the
one dimensional torusT = R=2�Z. Let us set

(2.16) u(t , x) =
1X
k=1

vk(t)eihkx.

We have

(2.17) v00k (t) + h2
ka(t)vk(t) = 0

hence, if we imposevk(tk) = 1, v0k(tk) = 0, we have, thanks to (2.9),

(2.18) vk(t) = w�4��k
t � tk%k

�
, t 2 Ik,
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provided that

(2.19) h2
k =

�
4��k%k

�2Æ�1
k .

In particular

vk

�
tk � %k

2

�
= e�2�"�k , v0k

�
tk � %k

2

�
= 0,(2.20)

vk

�
tk +

%k

2

�
= e2�"�k , v0k

�
tk +

%k

2

�
= 0.(2.21)

Now we define the energy:

Ek(t) = jv0k(t)j2 + h2
ka(t)jvk(t)j2.

Taking (2.17) and (2.20) into account, we obtain then, fort � tk � %k=2,

Ek(t) � Ek

�
tk � %k

2

�
exp

�Z tk�%k=2
0

ja0(t)j
a(t)

dt

�

=

�
4��k�k

�2

exp

"
�4�"�k +

k�1X
j =1

Z
I j

ja0(t)j
a(t)

dt +
k�1X
j =1

Z
Jj

ja0(t)j
a(t)

dt

#
.

(2.22)

But Z
I j

ja0(t)j
a(t)

dt � 8�M� j ,

Z
Jj

ja0(t)j
a(t)

dt = log

�
1Æ j +1

�� log

�
1Æ j

�

so, finally, for t � tk � %k=2, taking (2.22) into account, we obtain

(2.23) Ek(t) � C exp

"
�4�"�k + 8�M

k�1X
j =1

� j + log

�
1Æk

�
+ 2 log

� �k%k

�#
.

Now we choose

%k = (k + k0)�2

in such a way that

1X
k=1

%k < 1

2
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and

�k = �k

with � a large integer to be chosen later, and finally

(2.24) Æk =

� �k�k

��hn

k�1.

It is easy to see that, thanks to these choices, the right handmembers of (2.14)
and (2.15) go to 0 ask goes to +1 and soa1 2 Ch([0,1]). On the other hand, one has

(2.25) log

�
1Æk

� � (hn + 1) log

� �k�k

�
.

Now we choose� an integer so large that

(2.26) 4�"�k > 8�M
k�1X
j =1

� j + (hn + 3) log

� �k%k

�
+ "�k.

From (2.23), (2.24), (2.25) and (2.26), we obtain

Ek(t) exp
�
h1=s

k

� � C exp

"
�"�k + C1k1=2s

� �k%k

�(hn+2)=2s
#

and this expression goes to 0 fork!1, for any s> 1 + nh=2.
So, for u defined by (2.16),u(0, x) and �tu(0, x) are in  (s)(T) for any s> s0.
On the other hand, from (2.21) it follows immediately thatu(t , � ) is not bounded

in D0(T) as t ! T , for any s> s0.

3. General case

We first study the casel = 1 and we shall make a remark for the general case at
the end of the last section. Instead ofP in (1.4) we may study

P̃ = D2
t � �2Dxa(t , x)nDx

with a small parameter 0< � � 1. Indeed this is achieved by a different scaling of
the coordinatest and x. Actually we consider

(3.1) P = D2
t � h�Dia(t , x)nh�Di

which differs from P̃ by a zeroth order term which is irrelevant to our result, where

Dt =
1

i

��t
, h�Di = (1 +�2D2

x)1=2.
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To prove the well posedness of the Cauchy problem we derive ana priori estimate
for P.

To derive an a priori estimate it is convenient to use a specified class of pseudo-
differential operators motivated by [8] which is suited to the operatorP. To define the
class we introduce the metric

(3.2) gz(dx, d� ) = (a(t , x) + h��i�Æ)�1 dx2 + h�i�2� d�2

where z = (x, � ), 0 < Æ < 2 and h�i� = ��1h��i. Note thath��is 2 S(h��is, dx2 +h�i�2� d�2) and h��ish�i�t� = �t h��is�t for t � 0. Here we recall thata(t , x) � 0
verifies ��� j

t �k
xa(t , x)

�� � C j Ak
j k!s, (t , x) 2 [0, T ] � R

for j = 0, 1, 2 andk = 0, 1,: : : . We use Weyl-Hörmander calculus of pseudodifferential
operators (see [6]). We denote byaw the Weyl quantization ofa(x, � ) but sometimes
the suffixw is omitted if there is no confusion.

Lemma 3.1. Let 0< Æ < 2. Then g is slowly varying and� temperate.

Proof. Let us writez = (x, � ), w = (y, �). If gw(z�w) < c2 and hencej� � �j <
ch�i� then we see easily

(3.3)
h��i

C
� h��i � Ch��i, h�i�

C
� h�i� � Ch�i�

with C independent of�. With �(t , x, � ) =
p

a(t , x) + h��i�Æ we have

a(t , x) = a(t , y) + ��(t ,w)�xa(t , y) + r ,

jr j � c2

2

�
sup

���2
xa(t , x)

����(t ,w)2, j� j < c

if jx � yj < c�(t ,w). Sincea(t , x) � 0, the right-hand side is bounded by

a(t , y) + cB(a(t , y) + h��i�Æ).
Noting (3.3) it is easy to see that

(3.4) a(t , x) + h��i�Æ � (1 + cB0)(a(t , y) + h��i�Æ).
Repeating the same arguments we conclude thata(t , x) + h��i�Æ is g continuous and
this together with (3.3) proves thatg is slowly varying.

We next show thatg is � temperate. It is enough to show

gw(T) � Cgz(T)(1 + g�w(z� w))N , 8T
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with someC, N when gw(z� w) � c2. Note that

g�w(z� w) = h�i2��(t ,w)2gw(z� w) � c2h�i2��(t ,w)2 � c2h��i2�Æ(3.5)

and

jx � yj2 � h�i�2� g�w(z� w) � g�w(z� w),

j� � �j2 � �(t ,w)�2g�w(z� w) � h��iÆg�w(z� w).

Note now that

a(t , x) � a(t , y) + B(a(t , y) + jx � yj2)

and, by (3.5),jx � yj2 � g�w(z� w) � Ch��i�Æg�w(z� w)1+Æ=(2�Æ). One obtains then:

a(t , x) � C(a(t , y) + h��i�Æ)(1 + g�w(z� w))1+Æ=(2�Æ).
It is easy to see

h��i�Æ � Ch��i�Æ(1 + j� � �j)Æ � Ch��i�Æ(1 + gw(z� w)1=2+Æ=2(2�Æ))Æ
and hence one has

a(t , x) + h��i�Æ � C(a(t , y) + h��i�Æ)(1 + g�w(z� w))N

with someN. The same reasoning shows that

h�i2� � Ch�i2�(1 + j� � �j)2 � Ch�i2�(1 + g�w(z� w))N 0
with someN 0. These prove the assertion.

Let us recall Theorem 18.5.4 in [6].

Proposition 3.1. Let pi 2 S(mi , g), i = 1, 2 where mi > 0 are � , g temperate.
Then we have pw1 pw2 = (p1 # p2)w where

p1 # p2 � X
�+�<k

(�1)�
2�+��! �!

p(�)
1(�) p(�)

2(�) 2 S
�
m1m2h�i�k� (a + h��i�Æ)�k=2, g

�

with p(�)
(�) = ��� (�i �x)� p.

Assume thatpi are real then it is clear that

X
�+�=odd

(�1)�
2�+��! �!

p(�)
1(�) p(�)

2(�)



WEAKLY HYPERBOLIC OPERATORS 131

are pure imaginary and

Re(p1 # p2)� X
�+�=even<k

(�1)�
2�+��! �!

p(�)
1(�) p(�)

2(�)

2 S
�
m1m2h�i�k� (a + h��i�Æ)�k=2, g

�
.

(3.6)

It is also clear that ifp 2 S(m, g) is real then

p # p� X
�+�=even<k

(�1)�
2�+��! �!

p(�)
(�) p(�)

(�)

2 S
�
m2h�i�k� (a + h��i�Æ)�k=2, g

�
.

(3.7)

4. Proof of Theorem 1.3

Let � � 1=s and set

P℄ = e� th�Di�Pe th�Di� .
Eventually we take� = 1=(1 + n). We see that

P℄ = (Dt � i  h�Di� )2� h�Dianh�Di
� h�Dib(t , x, D)h�Di + R

= A2 � h�Dianh�Di � h�Dibh�Di + R

where A = Dt � i  h�Di� and

b(t , z) =
X

1�k+ j<N

ck j D
j +k
x a(t , x)n� j� e� th�� i��k� e th�� i� ,

R 2 �N S
�h��i�(1��)N , dx2 + h�i�2+2�� d�2

�
.

Note that to prove Theorem 1.3 it suffices to derive an aprioriestimate forP℄ because� � 1=s. We introduce the energy:

(4.1) E(u) = kAuk2 + Re(anh�Diu, h�Diu) + kh�Di�uk2.

Then we see easily that:

d

dt
E = �2 Re

�kh�Di�=2Auk2 + kh�Di3�=2uk2 + (anh�Di1+�u, h�Diu)
�

� 2 Im
�h�Di� Au, h�Di�u

�
+ Re

�
nan�1a0h�Diu, h�Diu�

� 2 Im
�
(h�Dibh�Diu, Au)� (Ru, Au) + (P℄u, Au)

�
.
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We now prove that one can boundd E=dt from above by constant times

kh�Di��=2P℄uk2.

We first remark

Lemma 4.1. Let 2� � Æ and K 2 S
�
(a + h��i�Æ)n�1h��i�� , g

�
. Then there are

C1, C such that

C1 Re
�
[(a + h��i�Æ)nh��i� ]wu, u

�� Re(Kwu, u)

� �C�2kh�Di�1+�=2uk2.

Proof. Let us putT = ReK and consider

q = (a + h��i�Æ)n=2h��i�=2�1� C�1
1 T(a + h��i�Æ)�nh��i���1=2

so that

(4.2) Re
��

(a + h��i�Æ)nh��i��wu, u
�� C�1

1 Re(Kwu, u) = Re([q2]wu, u).

Noting that T(a + h��i�Æ)�nh��i�� 2 S(1, g) by the assumption 2� � Æ we see that

q 2 S
�
(a + h��i�Æ�n=2h��i�=2, g) and then (3.7) gives

q # q = q2 +�2S
�
(a + h��i�Æ)n�1h��i��2, g

�
.

Hence the right-hand side of (4.2) is bounded from below by�C�2kh�Di�1+�=2uk2
which proves the assertion.

Lemma 4.2. Let Æn + 2� � 2. Then there are C2, C0
2 such that

C2 Re
�
anh�Di1+�u, h�Diu� � Re

��
(a + h��i�Æ)nh��i��wh�Diu, h�Diu�

� C0
2kh�Di3�=2uk2.

Proof. Note that (3.6) shows

Refan # h��i�g = anh��i� + R, R 2 �2S(h��i��2, g).

From the assumptionnÆ + 2� � 2 it follows that

(4.3) Re
�h�Di�nÆ+�h�Diu, h�Diu� � Ckh�Di3�=2uk2

with someC > 0. This proves that

C2 Re
�
anh�Di1+�u, h�Diu� � Re

��
(an + h��i�nÆ)h��i��wh�Diu, h�Diu�

� C0
2kh�Di3�=2uk2.
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We prove now that one can replace
��

(an +h��i�nÆ)h��i��wh�Diu,h�Diu� by constant

times
��

(a + h��i�Æ)nh��i��wh�Diu, h�Diu�. This proves the assertion. Let us set

q = (a + h��i�Æ)n=2h��i�=2� an + h��i�nÆ
(a + h��i�Æ)n

� B�1

�1=2
.

Take B large so that

(an + h��i�nÆ)(a + h��i�Æ)�n � B�1 � c > 0.

Since (an + h��i�nÆ) 2 S((a + h��i�Æ)n, g) and (a + h��i�Æ)�n 2 S((a + h��i�Æ)�n, g)
one has �

(an + h��i�nÆ)(a + h��i�Æ)�n � B�1�1=2 2 S(1, g).

Then it follows that

q 2 S
�
(a + h��i�Æ)n=2h��i�=2, g

�
and it suffices to repeat the proof of Lemma 4.1.

We now estimate Re(an�1a0h�Diu, h�Diu). Write

an�1a0 = (a + h��i�Æ)(n�1)=2a0h��i�=2 # K + R

where K = an�1(a + h��i�Æ)�(n�1)=2h��i��=2 and ReR 2 �2S(h��i�2, g). Then it is
clear that

2
���an�1a0h�Diu, h�Diu��� � �(a + h��i�Æ)(n�1)=2a0h��i�=2�wh�Diu2

+ kKwh�Diuk2 + C�2kuk2.
(4.4)

Noting that K 2 S
�
(a + h��i�Æ)(n�1)=2h��i��=2, g

�
and hence

K # K 2 S
�
(a + h��i�Æ)n�1h��i�� , g

�
,

one can apply Lemma 4.1 to estimatekKwh�Diuk2; take

(4.5) Æ =
2

n + 1
, � =

1

n + 1

so that 2� = Æ and Æn + 2� = 2. Then we have:

C2 Re
��

(a + h��i�Æ)nh��i��wh�Diu, h�Diu�
� kKwh�Diuk2 � C0

2�2kh�Di3�=2uk2.
(4.6)
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We estimate the first term on the right-hand side of (4.4). Note that

(a + h��i�Æ)(n�1)=2a0h��i�=2 # (a + h��i�Æ)(n�1)=2a0h��i�=2
= (a + h��i�Æ)n�1a02h��i� + R, R 2 �2S(h��i��2, g)

by (3.7). Let us consider

(a + h��i�Æ)nh��i� � B�1(a + h��i�Æ)n�1a02h��i�
= (a + h��i�Æ)nh��i��1� B�1a02(a + h��i�Æ)�1

�
= q2.

Lemma 4.3. Let � = a02(a + h��i�Æ)�1. Then we have

(a + h��i�Æ)k=2Dk
x� 2 S(1, g), k = 0, 1, 2.

Proof. It is enough to note thata02 2 S((a + h��i�Æ), g) which follows from
the assumption 0� a(t , x) 2 C2

�
[�Æ, T + Æ];  (s)(R)

�
with someÆ > 0 and Glaeser

inequality.

From Lemma 4.3 and (3.7) it follows that

q # q = q2 + R, R 2 �2S(h��i��2, g)

and then

C3 Re
��

(a + h��i�Æ)nh��i��wh�Diu, h�Diu�
� B�1

�(a + h��i�Æ)(n�1)=2a0h��i�=2�wh�Diu2 � C0
3�2kh�Di�=2uk2.

(4.7)

From Lemma 4.2 and (4.4), (4.6), (4.7) we have���an�1a0h�Diu, h�Diu���
� C4 Re

�
anh�Di1+�u, h�Diu� + C0

4kh�Di3�=2uk2.
(4.8)

Finally we estimate the remainder terms. Let us study

�h�Dibh�Diu, Au
�

=
�h�Di1��=2bh�Diu, h�Di�=2Au

�
.

We have

Lemma 4.4. Taking� > 0 small we have

Re(anh�Di1+�u, h�Diu)� kh�Di1��=2bh�Diuk2
� �C�2kh�Di3�=2uk2.
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Proof. Thanks to Lemma 4.2 it is enough to show

C�1
0 Re

��
(a + h��i�Æ)nh��i��wh�Diu, h�Diu�� kh�Di1��=2bh�Diuk2

� �C�2kh�Di3�=2uk2.

Recall that

b(x, � ) =
X

1� j +k<N

c jk D j +k
x an� j� e� th�� i��k� e th�� i� = c1 + c2,

wherec1 =  t�� h��i�Dxan and c2 2 �2S(h��i�2+2� , g). Note that

h��i1��=2 # c2 # h��i = b2

with b2 2 �2S(h��i3�=2, g). On the other hand it is clear that

h��i1��=2 # c1 =  th��i1��=2�� h��i�Dxan +�S(h��i�=2�1, g).

With

T = h��i1��=2Dxan�� h��i�
one has h�Di1��=2cw1 h�Diu � CkTwh�Diuk + C�kh�Di�=2uk.
Since

T # T = h��i2�� (�xan�� h��i� )2 +�4S(h��i��2, g)

by (3.7) it is enough to study

(a + h��i�Æ)nh��i� � Ch��i2�� (�xan�� h��i� )2 = (a + h��i�Æ)nq2

where

q = h��i�=2q1� Ch��i2�2� (�xan�� h��i� )2(a + h��i�Æ)�n.

Sincea(t ,x) � 0 it is easy to see that, with� = h��i2�2� (�xan�� h��i� )2(a+h��i�Æ)�n,
we have

(a + h��i�Æ)k=2Dk
x� 2 �2S(1, g), k = 0, 1, 2,

and hence from (3.7)

(a + h��i�Æ)n=2q # (a + h��i�Æ)n=2q = (a + h��i�Æ)nq2 +�2S(h��i��2, g)

which proves the assertion.
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Taking � > 0 small and large, from Lemma 4.4 and (4.8) one getsd E=dt �kh�Di��=2P℄uk2 and hence

E(u; t) � E(u; 0) +
Z t

0
kh�Di��=2P℄uk2 ds.

This shows

 kh�Di�u(t)k2 +  kAu(t)k2 � C
�kh�Di�u(0)k2 + kDtu(0)k2	

+ C
Z t

0

h�Di��=2e� sh�Di� Pe sh�Di�u(s)
2

ds.

Replacingu by e� th�Di�u we have an apriori estimate forP.

Theorem 4.5. Let � > 0 be small and � 0. Then there exists C> 0 such
that we have

 h�Di�e� th�Di�u(t)
2

+  e� th�Di� Dtu(t)
2

� C
�kh�Di�u(0)k2 + kDtu(0)k2	 + C

Z t

0

h�Di��=2e� sh�Di� Pu(s)
2

ds

for 0� t � T .

It is clear that this estimate still holds if we add a zeroth order term to P. Since
P� = P, we see that Theorem 4.5 holds forP�. Then the standard duality arguments
prove Theorem 1.3.

In order to prove Theorem 1.3 for the general

a(t , x) =
lX

j =1

a j (t , x)n

we take the energy

E(u) = kAuk2 +
lX

j =1

Re(an
j h�Diu, h�Diu) + kh�Di�uk2.

Then we have

d

dt
E = �2 Re

"
kh�Di�=2Auk2 + kh�Di3�=2uk2 +

lX
j =1

(an
j h�Di1+�u, h�Diu)

#

� 2 Im
�h�Di� Au, h�Di�u

�
+

lX
j =1

Re
�
nan�1

j a0j h�Diu, h�Diu�

� 2 Im

"
lX

j =1

(h�Dib j h�Diu, Au)� (Ru, Au) + (P℄u, Au)

#
.
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To boundd E=dt from above by constant timeskh�Di��=2P℄uk2 we employ the same
arguments as in Section 4 to estimate each

Re(an
j h�Di1+�u, h�Diu), Re(nan�1

j a0j h�Diu, h�Diu), (h�Dib j h�Diu, Au)

j = 1, 2,: : : , l , applying the calculus inS(m, g j ) with

g j = (a j + h��i�Æ)�1 dx2 + h�i�2� d�2.
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