Shin, D. Osaka J. Math. 44 (2007), 1–10

RATIONAL CURVES ON GENERAL HYPERSURFACES OF DEGREE 7 IN ₽⁵

DONGSOO SHIN

(Received September 20, 2005, revised February 6, 2006)

Abstract

We prove that there is no smooth irreducible reduced rational curve of degree e, $2 \le e \le 11$, on general hypersurfaces of degree 7 in \mathbb{P}^5 .

1. Introduction

Throughout this paper we work over an algebraically closed field k of characteristic 0.

Let X_d be a general hypersurface in \mathbb{P}^n of degree d. H. Clemens proved in [2] that if $d \ge 2n-1$ and $n \ge 3$ then there is no rational curve in X_d . In [9, 10], C. Voisin sharpened Clemens' lower bound for d by proving that if $d \ge 2n-2$ and $n \ge 4$ then X_d contains no rational curve.

On the other hand, if d = 2n - 3 and $n \ge 3$, it has been classically known that there always exists a line on X_{2n-3} ([7, Theorem V.4.3.]). Note that for n = 3 and d = 2n - 2 = 4, every surface of degree 4 in \mathbb{P}^3 contains a rational curve (although a general such surface contains no *smooth* rational curve). Therefore Voisin's lower bound for d and n are sharp in the sense that there is no rational curve on a general hypersurface $X_d \subset \mathbb{P}^n$.

The number of lines on X_{2n-3} is finite ([7, Theorem V.4.3.]). In [9, 10], C. Voisin extended this classical fact in case $n \ge 5$: If $n \ge 5$ then X_{2n-3} contains at most finite number of rational curves of each degree $e \ge 1$. Note that the analogue of this result for n = 4 would solve Clemens' conjecture on the finiteness of rational curves of each degree $e \ge 1$ on general quintic threefolds in \mathbb{P}^4 .

Recently G. Pacienza extended Voisin's result in [8] by proving that there is, in fact, *no* rational curve of degree $e \ge 2$ on X_{2n-3} if $n \ge 6$. Therefore the only rational curves on X_{2n-3} are lines if $n \ge 6$.

It is natural to raise a question about the case n = 5 in Pacienza's result: Is there a rational curve of degree greater than one on general hypersurfaces of degree 7 in \mathbb{P}^5 ?

In this paper we prove

²⁰⁰⁰ Mathematics Subject Classification. Primary 14N05; Secondary 14N25.

Supported by the Brain Korea 21 Project and KOSEF R01-2002-000-00051-0.

Theorem 1.1. There is no smooth irreducible reduced rational curve of degree e, $2 \le e \le 11$, on general hypersurfaces of degree 7 in \mathbb{P}^5 .

To do so, we count the dimension of the incidence scheme $\{(C, X) \mid C \subset X\}$, where *C* is a smooth irreducible reduced rational curve of degree *e* and *X* is a hypersurface of degree 7 in \mathbb{P}^5 . We use similar techniques in [6], where the authors treat rational curves of degree at most 9 on general quintic threefolds.

We introduce some notation. For a projective variety Y, let $\operatorname{Hilb}^{et+1}(Y)$ be the Hilbert scheme parametrizing subschemes with the Hilbert polynomial et + 1. We define a subscheme $R_e(Y)$ of $\operatorname{Hilb}^{et+1}(Y)$ to be the open subscheme parametrizing smooth irreducible reduced rational curves of degree e.

Let $\mathbb{F} = \mathbb{P}H^0(\mathbb{P}^5, \mathcal{O}_{\mathbb{P}^5}(7))$ be the parameter space of hypersurfaces of degree 7 in \mathbb{P}^5 , i.e., $\mathbb{F} \cong \mathbb{P}^N$, $N = \binom{5+7}{7} - 1$. We define the incidence scheme

$$I_e := \{ (C, X) \in R_e(\mathbb{P}^5) \times \mathbb{F} \mid C \subset X \}$$

and let

$$p_R \colon I_e \to R_e(\mathbb{P}^5)$$
 and $p_{\mathbb{F}} \colon I_e \to \mathbb{F}$

be the projections. Note that $R_e(X) \cong p_{\mathbb{F}}^{-1}(X)$ for $X \in \mathbb{F}$.

We define $R_{e,i}(\mathbb{P}^5)$ to be the locally closed subset of $R_e(\mathbb{P}^5)$ parametrizing curves C with $h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) = i$ where $\mathcal{I}_{C,\mathbb{P}^5}$ is the ideal sheaf of C in \mathbb{P}^5 . Set

$$I_{e,i} := p_R^{-1}(R_{e,i}(\mathbb{P}^5)).$$

Finally let $\mathbb{G}(k, n)$ be the Grassmannian parametrizing k-linear space in \mathbb{P}^n .

2. Proof of Theorem 1.1

Throughout this section, X is a general hypersurface in \mathbb{P}^5 of degree 7 and C is a smooth irreducible reduced rational curve of degree $e \ge 1$.

Theorem 1.1 is a consequence of the following result.

Proposition 2.1. For $e \leq 11$, I_e is irreducible of dimension 1 - e + N.

Before proving Proposition 2.1, we prove Theorem 1.1 by using the above result.

Proof of Theorem 1.1. By Proposition 2.1, if $2 \le e \le 11$, then dim $I_e < \dim \mathbb{F} = N$. So $p_{\mathbb{F}}$ is not surjective. Therefore

$$R_e(X) \cong p_{\mathbb{F}}^{-1}(X) = \emptyset$$

for general X.

To prove Proposition 2.1, we need the following lemma.

Lemma 2.2. $R_e(\mathbb{P}^n)$ is smooth, irreducible, and of dimension (n+1)e + n - 3.

Proof. Fix $C \in R_e(\mathbb{P}^n)$. The restricted Euler sequence

$$0 \to \mathcal{O}_C \to \mathcal{O}_C(1)^{\oplus n+1} \to \mathcal{T}_{\mathbb{P}^n}|_C \to 0$$

yields $H^1(C, \mathcal{T}_{\mathbb{P}^n}|_C) = 0$. The sequence of tangent and normal sheaves

$$0 o \mathcal{T}_C o \mathcal{T}_{\mathbb{P}^n}|_C o \mathcal{N}_{C,\mathbb{P}^n} o 0$$

yields $H^1(C, \mathcal{N}_{C,\mathbb{P}^n}) = 0$. Hence, by the functorial property of the Hilbert scheme, $R_e(\mathbb{P}^n)$ is smooth at *C* of dimension $h^0(C, \mathcal{N}_{C,\mathbb{P}^n})$, and

$$h^{0}(C, \mathcal{N}_{C, \mathbb{P}^{n}}) = \chi(\mathcal{T}_{\mathbb{P}^{n}}|_{C}) - \chi(\mathcal{T}_{C})$$

= $\chi(\mathcal{O}_{C}(1)^{\oplus n+1}) - \chi(\mathcal{O}_{C}) - \chi(\mathcal{T}_{C})$
= $(n+1)(e+1) - 1 - (2+1)$
= $(n+1)e + n - 3.$

Note that morphisms of degree e from \mathbb{P}^1 to \mathbb{P}^n are parametrized by a Zariski open set of the projective space $\mathbb{P}((S^e k^2)^{n+1})$, where $S^e k^2$ is the symmetric product. We denote this quasi-projective variety $\operatorname{Mor}_e(\mathbb{P}^1, \mathbb{P}^n)$. Let $\operatorname{RatMor}_e(\mathbb{P}^1, \mathbb{P}^n)$ be the subset of $\operatorname{Mor}_e(\mathbb{P}^1, \mathbb{P}^n)$ consisting of all morphisms whose image is a smooth irreducible reduced rational curve. Then $\operatorname{RatMor}_e(\mathbb{P}^1, \mathbb{P}^n)$ is an open subset of $\operatorname{Mor}_e(\mathbb{P}^1, \mathbb{P}^n)$. Since $\operatorname{Mor}_e(\mathbb{P}^1, \mathbb{P}^n)$ is irreducible, so is $\operatorname{RatMor}_e(\mathbb{P}^1, \mathbb{P}^n)$. There is a surjective morphism from $\operatorname{RatMor}_e(\mathbb{P}^1, \mathbb{P}^n)$ to $R_e(\mathbb{P}^n)$. Therefore $R_e(\mathbb{P}^n)$ is irreducible.

Proof of Proposition 2.1. Assume $C \in R_{e,i}(\mathbb{P}^5)$. Let

$$r: H^0(\mathbb{P}^5, \mathcal{O}_{\mathbb{P}^5}(7)) \to H^0(C, \mathcal{O}_C(7))$$

be the restriction map. Then $p_R^{-1}(C)$ is the projectivation of the kernel of r. From the standard exact sequence

$$0 \to H^{0}(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)) \to H^{0}(\mathbb{P}^{5}, \mathcal{O}_{\mathbb{P}^{5}}(7))$$
$$\to H^{0}(C, \mathcal{O}_{C}(7)) \to H^{1}(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)) \to 0,$$

we get

dim
$$p_R^{-1}(C) = h^0(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) - 1 = (N+1-(7e+1)+i) - 1.$$

Therefore

(1)
$$\dim I_{e,i} = \dim R_{e,i}(\mathbb{P}^5) + \dim p_R^{-1}(C) \\ = \dim R_{e,i} + (N+1 - (7e+1) + i) - 1.$$

Assume that $e \leq 9$. By the regularity theorem in [4], *C* is 8-regular, i.e., $H^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) = 0$. So $R_{e,0}(\mathbb{P}^5) = R_e(\mathbb{P}^5)$, which has dimension 6e + 2, and the fibers $p_R^{-1}(C)$ are irreducible of same dimension (N + 1 - (7e + 1)) - 1. Therefore I_e is irreducible of dimension 1 - e + N. The proof is done in case $e \leq 9$.

Assume that e = 10 or 11. The following Lemma 2.3 implies that $R_{e,0}(\mathbb{P}^5)$ is open and nonempty, and hence $R_{e,0}(\mathbb{P}^5)$ is irreducible. So $I_{e,0}$ is irreducible of dimension 1 - e + N since fibers $p_R^{-1}(C)$ for $C \in R_{e,0}(\mathbb{P}^5)$ are irreducible of same dimension (N + 1 - (7e + 1)) - 1.

Also from the following Lemma 2.3 and equation (1)

dim
$$I_{e,i} < 1 - e + N$$
 for $i > 0$.

It is also clear, from the way I_e is defined, that all its components have dimension at least 1 - e + N because the corresponding incidence in RatMor_e($\mathbb{P}^1, \mathbb{P}^n$) × \mathbb{P}^N is cut out by 7e + 1 equations, so both this incidence, and I_e , have codimension at most 7e + 1 (locally). Therefore the closure of $I_{e,0}$ is I_e , and hence I_e is irreducible of dimension 1 - e + N. Thus Proposition 2.1 is proved if given Lemma 2.3.

Lemma 2.3. For e = 10, 11, if i > 0 and if $R_{e,i}(\mathbb{P}^5)$ is nonempty, then

$$\operatorname{codim}(R_{e,i}(\mathbb{P}^5), R_e(\mathbb{P}^5)) > i$$

Before proving Lemma 2.3, we begin with some general observations.

REMARK 2.4. Suppose $C \in R_e(\mathbb{P}^5)$.

(1) If $e \ge 3$, then C cannot lie in a 2-plane because its arithmetic genus is 0. Moreover, if $e \ge 4$, then C cannot lie in a 2-dimensional quadric cone by [5, V, Ex. 2.9]. (2) If C lies in a k-linear subspace H in \mathbb{P}^5 with the ideal sheaf $\mathcal{I}_{C,H}$, then

$$h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) = h^1(H, \mathcal{I}_{C,H}(7)).$$

We briefly prove this formula. Consider the following exact sequence of twisted ideals

$$0 \to \mathcal{I}_{\mathcal{H},\mathbb{P}^s}(7) \to \mathcal{I}_{C,\mathbb{P}^s}(7) \to \mathcal{I}_{C,\mathcal{H}}(7) \to 0,$$

where $k + 1 \le s \le 5$ and \mathcal{H} is a hyperplane \mathbb{P}^{s-1} in \mathbb{P}^s . Note that $\mathcal{I}_{\mathcal{H},\mathbb{P}^s}(7) = \mathcal{O}_{\mathbb{P}^s}(6)$; hence we have $h^1(\mathbb{P}^{s-1}, \mathcal{I}_{C,\mathbb{P}^{s-1}}(7)) = h^1(\mathbb{P}^s, \mathcal{I}_{C,\mathbb{P}^s}(7))$ because $\mathcal{O}_{\mathbb{P}^s}(6)$ has no H^1 or H^2 . Using this formula 5 - k times proves the desired formula. We recall the following useful facts which will be used when proving Lemma 2.3.

Lemma 2.5 ([4]). Let C be a nondegenerate (e + 1 - r)-irregular curve in \mathbb{P}^r $(r \ge 3)$ of degree e. If e > r + 1, then C is rational, smooth with a (e + 2 - r)-secant line, and one of the following holds;

(1) r = 3, *C* is contained in a smooth quadric, and $h^1(\mathbb{P}^r, \mathcal{I}_{C,\mathbb{P}^r}(e-r)) = e-3$, or (2) r = 3, *C* is not contained in a smooth quadric, and $h^1(\mathbb{P}^r, \mathcal{I}_{C,\mathbb{P}^r}(e-r)) = 1$, or (3) $r \ge 4$ and $h^1(\mathbb{P}^r, \mathcal{I}_{C,\mathbb{P}^r}(e-r)) = 1$.

Lemma 2.6 ([3]). Let C be an irreducible smooth curve in \mathbb{P}^3 . Suppose C is nondegenerate, of degree e, and of genus g. If $e \ge 6$ and $(e, g) \notin \{(7, 0), (7, 1), (8, 0)\}$, then $h^1(\mathbb{P}^3, \mathcal{I}_{C,\mathbb{P}^3}(e-4)) > 0$ if and only if C has a (e-2)-secant line.

Lemma 2.7 ([6]). Let $e \ge 4$ and $r \ge 3$. Fix s with $e > s \ge 3$. In $R_e(\mathbb{P}^r)$ the subset of curves with a s-secant line has codimension at least (r-1)(s-2) - s.

Proof of Lemma 2.3. Assume e = 10. If *C* is not contained in any hyperplane, then *C* is 7-regular and hence 8-regular, i.e., $H^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) = 0$. Therefore $R_{10}(\mathbb{P}^5) - R_{10,0}(\mathbb{P}^5)$ is contained in the closed set \mathcal{G} of curves contained in hyperplanes in \mathbb{P}^5 . Then

$$\operatorname{codim}(\mathcal{G}, R_{10}(\mathbb{P}^5)) \ge \dim R_{10}(\mathbb{P}^5) - (\dim R_{10}(\mathbb{P}^4) + \dim \mathbb{G}(4, 5))$$

= $(6 \times 10 + 2) - (5 \times 10 + 1 + 5) = 6.$

In particular,

$$\operatorname{codim}(R_{10,1}(\mathbb{P}^5), R_{10}(\mathbb{P}^5)) > 1,$$

as asserted.

Suppose $h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) \ge 2$. Then *C* must lie in a hyperplane *G*, since, if not, *C* is 7-regular. If *C* is nondegenerate in *G*, then *C* is 8-regular, i.e., $h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) = 0$, which contradicts $h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) \ge 2$. Therefore *C* is contained in a 3-linear space *H* in \mathbb{P}^5 and, by Remark 2.4 (2),

$$h^1(H, \mathcal{I}_{C,H}(7)) \ge 2.$$

Then, by Lemma 2.5 (1),

$$h^{1}(H, \mathcal{I}_{C,H}(7)) = h^{1}(\mathbb{P}^{5}, \mathcal{I}_{C,\mathbb{P}^{5}}(7)) = 7.$$

Therefore if $R_{10,i}(\mathbb{P}^5)$ is nonempty then *i* is 0, 1, or 7. So it remains to prove that

$$\operatorname{codim}(R_{10,7}(\mathbb{P}^5), R_{10}(\mathbb{P}^5)) > 7.$$

Since $h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) = 7$, from Lemma 2.5 (1), *C* lies in a smooth quadric surface *Q* contained in *H*. Since *C* is smooth, rational, and of degree 10, *C* is contained in the linear system |9L + M| on *Q* where *L* and *M* are two generators of Pic(*Q*). Then *Q* varies in $\mathbb{P}H^0(H, \mathcal{O}_H(2))$ and *H* varies in $\mathbb{G}(3, 5)$. Therefore,

$$\operatorname{codim}(R_{10,7}(\mathbb{P}^5), R_{10}(\mathbb{P}^5)) \ge \dim R_{10,7}(\mathbb{P}^5)$$
$$- (\dim |9L + M| + \dim \mathbb{P}H^0(H, \mathcal{O}_H(2)) + \dim \mathbb{G}(3, 5))$$
$$= 62 - (19 + 9 + 8) = 26 > 7.$$

Thus Lemma 2.3 holds for e = 10.

Assume that e = 11. If *C* is nondegenerate in \mathbb{P}^5 , then *C* is 8-regular, i.e., $h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) = 0$. Hence $R_{11}(\mathbb{P}^5) - R_{11,0}(\mathbb{P}^5)$ is contained in the closed set \mathcal{G} of curves in hyperplanes in \mathbb{P}^5 .

$$\operatorname{codim}(\mathcal{G}, R_{11}(\mathbb{P}^5)) \ge \dim R_{11}(\mathbb{P}^5) - (\dim R_{11}(\mathbb{P}^4) + \dim \mathbb{G}(4, 5))$$
$$= (6 \times 11 + 2) - (5 \times 11 + 1 + 5) = 7.$$

In particular,

$$\operatorname{codim}(R_{11,i}(\mathbb{P}^5), R_{11}(\mathbb{P}^5)) \ge 7 > i \text{ for } i = 1, \dots, 6$$

as asserted.

Assume $h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) \ge 7$. *C* lies in a hyperplane *G*, since, if not, *C* is 8-regular. By Remark 2.4 (2),

$$h^{1}(G, \mathcal{I}_{C,G}(7)) = h^{1}(\mathbb{P}^{5}, \mathcal{I}_{C,\mathbb{P}^{5}}(7)) \geq 7.$$

Suppose that *C* is nondegenerate in *G*. Then *C* is 8-*irregular* in *G* since $h^1(G, \mathcal{I}_{C,G}(7)) \ge 7$. However, from Lemma 2.5 (3), we know that

$$h^1(G, \mathcal{I}_{C,G}(7)) = 1,$$

which contradicts our assumption $h^1(G, \mathcal{I}_{C,G}(7)) \ge 7$. Thus *C* is contained in a 3-linear space *H* in \mathbb{P}^5 . There are three possible cases;

(1) C lies in H, and C has no 9-secant line,

- (2) C lies in some smooth quadric surface Q with ideal $\mathcal{I}_{C,Q}$.
- (3) C lies in H, but C lies in no smooth quadric surface, and C has a 9-secant line. In case (1), by Lemma 2.6 and Remark 2.4,

$$h^{1}(H, \mathcal{I}_{C,H}(7)) = h^{1}(\mathbb{P}^{5}, \mathcal{I}_{C,\mathbb{P}^{5}}(7)) = 0,$$

which contradicts our assumption $h^1(G, \mathcal{I}_{C,G}(7)) \geq 7$.

In case (2), since C is rational, smooth, and of degree 11, C is contained in the linear system |10L + M| on Q where L and M are two generators of Pic(Q). Thus

$$\mathcal{I}_{C,Q}(7) = \mathcal{O}_Q(-3, 6).$$

Then the Künneth formula yields

$$h^{1}(Q, \mathcal{I}_{C,Q}(7)) = 0 \times 0 + 2 \times 7 = 14.$$

Note that

$$h^{1}(Q, \mathcal{I}_{C,Q}(7)) = h^{1}(H, \mathcal{I}_{C,H}(7)) = h^{1}(\mathbb{P}^{5}, \mathcal{I}_{C,\mathbb{P}^{5}}(7)) = 14$$

Indeed, the second equality is Remark 2.4 (2), and the first can be proved similarly. Therefore

$$h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) = 14$$

and it remains to prove that

$$\operatorname{codim}(R_{11,14}(\mathbb{P}^5), R_{11}(\mathbb{P}^5)) > 14.$$

Let \mathcal{G} be the subset of $R_{11}(\mathbb{P}^5)$ consisting of all curves C included in the case (2). These C are contained in the linear system |10L + M| on Q and Q varies in $\mathbb{P}H^0(H, \mathcal{O}_H(2))$ and H varies in $\mathbb{G}(3, 5)$. Therefore

$$\operatorname{codim}(R_{11,14}(\mathbb{P}^5), R_{11}(\mathbb{P}^5)) \ge \dim R_{11}(\mathbb{P}^5)$$
$$- (\dim|10L + M| + \dim \mathbb{P}H^0(H, \mathcal{O}_H(2)) + \dim \mathbb{G}(3, 5))$$
$$= 68 - (21 + 9 + 8) = 30 > 14.$$

In particular,

$$\operatorname{codim}(R_{11,14}(\mathbb{P}^5), R_{14}(\mathbb{P}^5)) > 14$$

as asserted.

In case (3), let S be the subset of $R_{11}(H)$ consisting of all C satisfying the conditions in case (3). Then, by Lemma 2.7, S is of codimension at least 5 in $R_{11}(H)$.

Let \mathcal{G} be the subset of $R_{11}(\mathbb{P}^5)$ consisting of all C satisfying the conditions in case (3) for a 3-linear space H. Note that H varies in $\mathbb{G}(3, 5)$. Therefore

$$\operatorname{codim}(\mathcal{G}, R_{11}(\mathbb{P}^5)) \ge \dim R_{11}(\mathbb{P}^5) - (\dim R_{11}(H) + \dim \mathbb{G}(3, 5))$$

+ $\operatorname{codim}(\mathcal{S}, R_{11}(H))$
= $68 - (44 + 8) + 5 = 21.$

Therefore it suffices to prove that

$$h^1(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(7)) < 21,$$

or equivalently, by Remark 2.4 (2), that

$$h^{1}(H, \mathcal{I}_{C,H}(7)) = h^{1}(\mathbb{P}^{5}, \mathcal{I}_{C,\mathbb{P}^{5}}(7)) < 21.$$

Choose a 2-plane U in H that meets C in 11 distinct points, no three of which are collinear. Such an U exists by [1, Lemma, p.109].

Let $k \ge 5$. These 11 points impose independent conditions on the system of curves of degree k in U by [1, Lemma, p.115]. Therefore, in the long exact sequence

$$H^{0}(U, \mathcal{O}_{U}(k)) \to H^{0}(C \cap U, \mathcal{O}_{C \cap U}(k))$$

$$\to H^{1}(U, \mathcal{I}_{C \cap U, U}(k)) \to H^{1}(U, \mathcal{O}_{U}(k)),$$

the first map is surjective. However, the last term vanishes. Therefore

$$H^{1}(U, I_{C \cap U, U}(k)) = 0.$$

Consequently, the exact sequence of sheaves

$$0 \to \mathcal{I}_{C,H}(k-1) \to \mathcal{I}_{C,H}(k) \to \mathcal{I}_{C \cap U,U}(k) \to 0$$

yields

(2)
$$h^{1}(H, \mathcal{I}_{C,H}(4)) \ge h^{1}(H, \mathcal{I}_{C,H}(5)) \ge h^{1}(H, \mathcal{I}_{C,H}(6)) \ge \cdots$$

Consider the standard exact sequence of sheaves

$$0 \to \mathcal{I}_{C,H}(k) \to \mathcal{O}_H(k) \to \mathcal{O}_C(k) \to 0.$$

Since $H^1(H, \mathcal{O}_H(k)) = 0$ for $k \ge 0$, taking cohomology yields

(3)
$$h^{0}(H, \mathcal{I}_{C,H}(k)) = \binom{k+3}{3} - (11k+1) + h^{1}(H, \mathcal{I}_{C,H}(k)).$$

~

Proceeding by contradiction, assume $h^1(H, \mathcal{I}_{C,H}(7)) \ge 21$. We will prove that

$$h^0(H, \mathcal{I}_{C,H}(8)) \ge 78.$$

Then, by the equation (3),

$$h^1(H, \mathcal{I}_{C,H}(8)) \ge 2.$$

However, by Lemma 2.5, $h^1(H, \mathcal{I}_{C,H}(8))$ must be one. Therefore there is a contradiction.

By the equation (2) and equation (3), we get

$$h^0(H, \mathcal{I}_{C,H}(4)) \ge 11, \quad h^0(H, \mathcal{I}_{C,H}(7)) \ge 63.$$

Note that $h^0(H, \mathcal{I}_{C,H}(2)) = 0$ since *C* cannot lie neither on a smooth quadric surface by the assumption of case (3) nor on a quadric cone by Remark 2.4. Therefore every element in $H^0(H, \mathcal{I}_{C,H}(3))$ is irreducible.

Suppose $h^0(H, \mathcal{I}_{C,H}(3)) \geq 2$. Take two independent irreducible cubics F_3 and F'_3 in $H^0(H, \mathcal{I}_{C,H}(3))$. Then deg $(F_3 \cap F'_3) = 9$, but $C \subset F_3 \cap F'_3$ and deg(C) = 11, which is impossible. Therefore $h^0(H, \mathcal{I}_{C,H}(3)) \leq 1$.

Suppose there exists a nonzero cubic F_3 in $H^0(H, \mathcal{I}_{C,H}(3))$. Let

$$\alpha: H^0(H, \mathcal{O}_H(1)) \to H^0(H, \mathcal{I}_{C,H}(4))$$

be the linear map defined by multiplying with F_3 . The image of α is a subspace of $H^0(H, \mathcal{I}_{C,H}(4))$ of dimension 4. Note that

$$h^{0}(H, \mathcal{I}_{C,H}(1)) = h^{0}(H, \mathcal{I}_{C,H}(2)) = 0.$$

Therefore there exist irreducible quartics in $H^0(H, \mathcal{I}_{C,H}(4))$.

Suppose $h^0(H, \mathcal{I}_{C,H}(3)) = 0$. Since

$$h^{0}(H, \mathcal{I}_{C,H}(1)) = h^{0}(H, \mathcal{I}_{C,H}(2)) = h^{0}(H, \mathcal{I}_{C,H}(3)) = 0,$$

every element in $H^0(H, \mathcal{I}_{C,H}(4))$ is irreducible.

Therefore, since $h^0(H, \mathcal{I}_{C,H}(3)) \leq 1$, there always exists an irreducible quartic F_4 in $H^0(H, \mathcal{I}_{C,H}(4))$.

Let

$$\alpha: H^0(H, \mathcal{O}_H(3)) \to H^0(H, \mathcal{I}_{C,H}(7))$$

be the linear map defined by multiplying with F_4 . The image of α is a subspace of $H^0(H, \mathcal{I}_{C,H}(7))$ of dimension 20. Let W be a subspace of $H^0(H, \mathcal{I}_{C,H}(7))$ satisfying

$$H^0(H, \mathcal{I}_{C,H}(7)) = \operatorname{image}(\alpha) \oplus W.$$

Note that dim $W = h^0(H, \mathcal{I}_{C,H}(7)) - \dim \operatorname{image}(\alpha) \ge 63 - 20 = 43.$

Take a nonzero $L \in H^0(H, \mathcal{O}_H(1))$. Define

$$X := \{F_4F : F \in H^0(H, \mathcal{O}_H(4))\},\$$

$$Y := \{FL : F \in W\}.$$

X and Y are subspaces of $H^0(H, \mathcal{I}_{C,H}(8))$ of dimension 35 and 43, respectively. Moreover, by the irreducibility of F_4 and by the choice of W, we have $X \cap Y = 0$. Therefore

$$h^{0}(H, \mathcal{I}_{C,H}(8)) \ge \dim X + \dim Y = 78,$$

as asserted.

ACKNOWLEDGEMENT. This work is a part of Ph. D. Thesis of the author submitted to Seoul National University. I am extremely grateful to Changho Keem for uncounted discussions and steady encouragement. I thank Gianluca Pacienza, who suggested this problem at a summer school held at Byen-San, Korea, in 2003.

References

- E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Geometry of Algebraic Curves, I, Springer-Verlag, New York, 1985.
- [2] H. Clemens: Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 19 (1986), 629–636.
- J. d'Almeida: Courbes de l'espace projectif : séries linéaires incomplètes et multisécantes, J. Reine Angew. Math. 370 (1986), 30–51.
- [4] L. Gruson, R. Lazarsfeld and C. Peskine: On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), 491–506.
- [5] R. Hartshorne: Algebraic Geometry, Springer-Verlag, New York, 1977.
- [6] T. Johnsen and S.L. Kleiman: Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra 24 (1996), 2721–2753.
- [7] J. Kollár: Rational Curves on Algebraic Varieties, Springer-Verlag, Berlin, 1996.
- [8] G. Pacienza: Rational curves on general projective hypersurfaces, J. Algebraic Geom. 12 (2003), 245–267.
- [9] C. Voisin: On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), 200–213.
- [10] C. Voisin: A correction: On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 49 (1998), 601–611.

Department of Mathematical Sciences Seoul National University Seoul 151-747 Korea e-mail: dsshin@math.snu.ac.kr

10