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Abstract
We prove that there is no smooth irreducible reduced rational curve of degreee,

2� e� 11, on general hypersurfaces of degree7 in P5.

1. Introduction

Throughout this paper we work over an algebraically closed field k of character-
istic 0.

Let Xd be a general hypersurface inPn of degreed. H. Clemens proved in [2]
that if d � 2n�1 andn � 3 then there is no rational curve inXd. In [9, 10], C. Voisin
sharpened Clemens’ lower bound ford by proving that ifd � 2n� 2 andn � 4 then
Xd contains no rational curve.

On the other hand, ifd = 2n � 3 and n � 3, it has been classically known that
there always exists a line onX2n�3 ([7, Theorem V.4.3.]). Note that forn = 3 and
d = 2n � 2 = 4, every surface of degree 4 inP3 contains a rational curve (although
a general such surface contains nosmoothrational curve). Therefore Voisin’s lower
bound ford and n are sharp in the sense that there is no rational curve on a general
hypersurfaceXd � Pn.

The number of lines onX2n�3 is finite ([7, Theorem V.4.3.]). In [9, 10], C. Voisin
extended this classical fact in casen � 5: If n � 5 then X2n�3 contains at most finite
number of rational curves of each degreee� 1. Note that the analogue of this result
for n = 4 would solve Clemens’ conjecture on the finiteness of rational curves of each
degreee� 1 on general quintic threefolds inP4.

Recently G. Pacienza extended Voisin’s result in [8] by proving that there is, in
fact, no rational curve of degreee� 2 on X2n�3 if n � 6. Therefore the only rational
curves onX2n�3 are lines ifn � 6.

It is natural to raise a question about the casen = 5 in Pacienza’s result: Is there
a rational curve of degree greater than one on general hypersurfaces of degree 7 inP5?

In this paper we prove
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Theorem 1.1. There is no smooth irreducible reduced rational curve of degree e,
2� e� 11, on general hypersurfaces of degree7 in P5.

To do so, we count the dimension of the incidence schemef(C, X) j C � Xg,
whereC is a smooth irreducible reduced rational curve of degreee and X is a hyper-
surface of degree 7 inP5. We use similar techniques in [6], where the authors treat
rational curves of degree at most 9 on general quintic threefolds.

We introduce some notation. For a projective varietyY, let Hilbet+1(Y) be the
Hilbert scheme parametrizing subschemes with the Hilbert polynomial et + 1. We de-
fine a subschemeRe(Y) of Hilbet+1(Y) to be the open subscheme parametrizing smooth
irreducible reduced rational curves of degreee.

Let F = PH0(P5,OP5(7)) be the parameter space of hypersurfaces of degree 7 in
P5, i.e., F �= PN , N =

�5+7
7

�� 1. We define the incidence scheme

Ie := f(C, X) 2 Re(P
5)� F j C � Xg

and let

pR : Ie! Re(P
5) and pF : Ie! F

be the projections. Note thatRe(X) �= p�1
F

(X) for X 2 F.
We defineRe,i (P5) to be the locally closed subset ofRe(P5) parametrizing curves

C with h1(P5, IC,P5(7)) = i whereIC,P5 is the ideal sheaf ofC in P5. Set

Ie,i := p�1
R (Re,i (P

5)).

Finally let G(k, n) be the Grassmannian parametrizingk-linear space inPn.

2. Proof of Theorem 1.1

Throughout this section,X is a general hypersurface inP5 of degree 7 andC is
a smooth irreducible reduced rational curve of degreee� 1.

Theorem 1.1 is a consequence of the following result.

Proposition 2.1. For e� 11, Ie is irreducible of dimension1� e+ N.

Before proving Proposition 2.1, we prove Theorem 1.1 by using the above result.

Proof of Theorem 1.1. By Proposition 2.1, if 2� e� 11, then dimIe < dim F =
N. So pF is not surjective. Therefore

Re(X) �= p�1
F

(X) = ∅

for generalX.
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To prove Proposition 2.1, we need the following lemma.

Lemma 2.2. Re(Pn) is smooth, irreducible, and of dimension(n + 1)e+ n� 3.

Proof. Fix C 2 Re(Pn). The restricted Euler sequence

0! OC ! OC(1)�n+1! TPn jC ! 0

yields H1(C, TPn jC) = 0. The sequence of tangent and normal sheaves

0! TC ! TPn jC ! NC,Pn ! 0

yields H1(C,NC,Pn) = 0. Hence, by the functorial property of the Hilbert scheme,
Re(Pn) is smooth atC of dimensionh0(C,NC,Pn), and

h0(C,NC,Pn) = �(TPn jC)� �(TC)

= �(OC(1)�n+1)� �(OC)� �(TC)

= (n + 1)(e+ 1)� 1� (2 + 1)

= (n + 1)e+ n� 3.

Note that morphisms of degreee from P1 to Pn are parametrized by a Zariski
open set of the projective spaceP((Sek2)n+1), where Sek2 is the symmetric product.
We denote this quasi-projective variety More(P1, Pn). Let RatMore(P1, Pn) be the sub-
set of More(P1, Pn) consisting of all morphisms whose image is a smooth irreducible
reduced rational curve. Then RatMore(P1,Pn) is an open subset of More(P1,Pn). Since
More(P1,Pn) is irreducible, so is RatMore(P1,Pn). There is a surjective morphism from
RatMore(P1, Pn) to Re(Pn). ThereforeRe(Pn) is irreducible.

Proof of Proposition 2.1. AssumeC 2 Re,i (P5). Let

r : H0(P5,OP5(7))! H0(C, OC(7))

be the restriction map. Thenp�1
R (C) is the projectivation of the kernel ofr . From the

standard exact sequence

0! H0(P5, IC,P5(7))! H0(P5,OP5(7))

! H0(C,OC(7))! H1(P5, IC,P5(7))! 0,

we get

dim p�1
R (C) = h0(P5, IC,P5(7))� 1 = (N + 1� (7e+ 1) + i )� 1.
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Therefore

dim Ie,i = dim Re,i (P
5) + dim p�1

R (C)

= dim Re,i + (N + 1� (7e+ 1) + i )� 1.
(1)

Assume thate � 9. By the regularity theorem in [4],C is 8-regular, i.e.,
H1(P5, IC,P5(7)) = 0. So Re,0(P5) = Re(P5), which has dimension 6e+ 2, and the fibers
p�1

R (C) are irreducible of same dimension (N + 1� (7e+ 1))� 1. ThereforeIe is irre-
ducible of dimension 1� e+ N. The proof is done in casee� 9.

Assume thate = 10 or 11. The following Lemma 2.3 implies thatRe,0(P5) is open
and nonempty, and henceRe,0(P5) is irreducible. SoIe,0 is irreducible of dimension
1 � e + N since fibersp�1

R (C) for C 2 Re,0(P5) are irreducible of same dimension
(N + 1� (7e+ 1))� 1.

Also from the following Lemma 2.3 and equation (1)

dim Ie,i < 1� e+ N for i > 0.

It is also clear, from the wayIe is defined, that all its components have dimension at
least 1�e+ N because the corresponding incidence in RatMore(P1,Pn)�PN is cut out
by 7e + 1 equations, so both this incidence, andIe, have codimension at most 7e + 1
(locally). Therefore the closure ofIe,0 is Ie, and henceIe is irreducible of dimension
1� e+ N. Thus Proposition 2.1 is proved if given Lemma 2.3.

Lemma 2.3. For e = 10, 11, if i > 0 and if Re,i (P5) is nonempty, then

codim(Re,i (P
5), Re(P

5)) > i .

Before proving Lemma 2.3, we begin with some general observations.

REMARK 2.4. SupposeC 2 Re(P5).
(1) If e� 3, thenC cannot lie in a 2-plane because its arithmetic genus is 0. More-
over, if e� 4, thenC cannot lie in a 2-dimensional quadric cone by [5, V, Ex. 2.9].
(2) If C lies in a k-linear subspaceH in P5 with the ideal sheafIC,H , then

h1(P5, IC,P5(7)) = h1(H , IC,H (7)).

We briefly prove this formula. Consider the following exact sequence of twisted ideals

0! IH,Ps(7)! IC,Ps(7)! IC,H(7)! 0,

wherek + 1 � s � 5 andH is a hyperplanePs�1 in Ps. Note thatIH,Ps(7) = OPs(6);
hence we haveh1(Ps�1,IC,Ps�1(7)) = h1(Ps,IC,Ps(7)) becauseOPs(6) has noH1 or H2.
Using this formula 5� k times proves the desired formula.
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We recall the following useful facts which will be used when proving Lemma 2.3.

Lemma 2.5 ([4]). Let C be a nondegenerate(e + 1� r )-irregular curve in Pr

(r � 3) of degree e. If e > r + 1, then C is rational, smooth with a(e+ 2� r )-secant
line, and one of the following holds;
(1) r = 3, C is contained in a smooth quadric, and h1(Pr , IC,Pr (e� r )) = e� 3, or
(2) r = 3, C is not contained in a smooth quadric, and h1(Pr , IC,Pr (e� r )) = 1, or
(3) r � 4 and h1(Pr , IC,Pr (e� r )) = 1.

Lemma 2.6 ([3]). Let C be an irreducible smooth curve inP3. Suppose C is
nondegenerate, of degree e, and of genus g. If e � 6 and (e, g) 62 f(7, 0), (7, 1), (8, 0)g,
then h1(P3, IC,P3(e� 4))> 0 if and only if C has a(e� 2)-secant line.

Lemma 2.7 ([6]). Let e� 4 and r � 3. Fix s with e> s � 3. In Re(Pr ) the
subset of curves with a s-secant line has codimension at least (r � 1)(s� 2)� s.

Proof of Lemma 2.3. Assumee = 10. If C is not contained in any hyperplane,
thenC is 7-regular and hence 8-regular, i.e.,H1(P5,IC,P5(7)) = 0. ThereforeR10(P5)�
R10,0(P5) is contained in the closed setG of curves contained in hyperplanes inP5.
Then

codim(G, R10(P
5)) � dim R10(P

5)� (dim R10(P
4) + dim G(4, 5))

= (6� 10 + 2)� (5� 10 + 1 + 5) = 6.

In particular,

codim(R10,1(P
5), R10(P

5)) > 1,

as asserted.
Supposeh1(P5,IC,P5(7))� 2. ThenC must lie in a hyperplaneG, since, if not,C

is 7-regular. IfC is nondegenerate inG, then C is 8-regular, i.e.,h1(P5, IC,P5(7)) = 0,
which contradictsh1(P5,IC,P5(7))� 2. ThereforeC is contained in a 3-linear spaceH
in P5 and, by Remark 2.4 (2),

h1(H , IC,H (7))� 2.

Then, by Lemma 2.5 (1),

h1(H , IC,H (7)) = h1(P5, IC,P5(7)) = 7.

Therefore if R10,i (P5) is nonempty theni is 0, 1, or 7. So it remains to prove that

codim(R10,7(P
5), R10(P

5)) > 7.
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Sinceh1(P5,IC,P5(7)) = 7, from Lemma 2.5 (1),C lies in a smooth quadric surface
Q contained inH . SinceC is smooth, rational, and of degree 10,C is contained in
the linear systemj9L + Mj on Q where L and M are two generators of Pic(Q). Then
Q varies inPH0(H ,OH (2)) and H varies inG(3, 5). Therefore,

codim(R10,7(P
5), R10(P

5)) � dim R10,7(P
5)

� (dim j9L + Mj + dim PH0(H ,OH (2)) + dimG(3, 5))

= 62� (19 + 9 + 8) = 26> 7.

Thus Lemma 2.3 holds fore = 10.
Assume thate = 11. If C is nondegenerate inP5, then C is 8-regular, i.e.,

h1(P5, IC,P5(7)) = 0. HenceR11(P5) � R11,0(P5) is contained in the closed setG of
curves in hyperplanes inP5.

codim(G, R11(P
5)) � dim R11(P

5)� (dim R11(P
4) + dim G(4, 5))

= (6� 11 + 2)� (5� 11 + 1 + 5) = 7.

In particular,

codim(R11,i (P
5), R11(P

5)) � 7> i for i = 1, : : : , 6

as asserted.
Assumeh1(P5, IC,P5(7)) � 7. C lies in a hyperplaneG, since, if not, C is 8-

regular. By Remark 2.4 (2),

h1(G, IC,G(7)) = h1(P5, IC,P5(7))� 7.

Suppose thatC is nondegenerate inG. ThenC is 8-irregular in G sinceh1(G, IC,G(7))�7.
However, from Lemma 2.5 (3), we know that

h1(G, IC,G(7)) = 1,

which contradicts our assumptionh1(G,IC,G(7))� 7. ThusC is contained in a 3-linear
spaceH in P5. There are three possible cases;
(1) C lies in H , and C hasno 9-secant line,
(2) C lies in some smooth quadric surfaceQ with ideal IC,Q.
(3) C lies in H , but C lies in no smooth quadric surface, andC has a 9-secant line.

In case (1), by Lemma 2.6 and Remark 2.4,

h1(H , IC,H (7)) = h1(P5, IC,P5(7)) = 0,

which contradicts our assumptionh1(G, IC,G(7))� 7.
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In case (2), sinceC is rational, smooth, and of degree 11,C is contained in the
linear systemj10L + Mj on Q where L and M are two generators of Pic(Q). Thus

IC,Q(7) = OQ(�3, 6).

Then the Künneth formula yields

h1(Q, IC,Q(7)) = 0� 0 + 2� 7 = 14.

Note that

h1(Q, IC,Q(7)) = h1(H , IC,H (7)) = h1(P5, IC,P5(7)) = 14.

Indeed, the second equality is Remark 2.4 (2), and the first can be proved similarly.
Therefore

h1(P5, IC,P5(7)) = 14

and it remains to prove that

codim(R11,14(P
5), R11(P

5)) > 14.

Let G be the subset ofR11(P5) consisting of all curvesC included in the case (2).
These C are contained in the linear systemj10L + Mj on Q and Q varies in
PH0(H ,OH (2)) and H varies inG(3, 5). Therefore

codim(R11,14(P
5), R11(P

5)) � dim R11(P
5)

� (dimj10L + Mj + dim PH0(H ,OH (2)) + dimG(3, 5))

= 68� (21 + 9 + 8) = 30> 14.

In particular,

codim(R11,14(P
5), R14(P

5)) > 14

as asserted.
In case (3), letS be the subset ofR11(H ) consisting of allC satisfying the con-

ditions in case (3). Then, by Lemma 2.7,S is of codimension at least 5 inR11(H ).
Let G be the subset ofR11(P5) consisting of allC satisfying the conditions in

case (3) for a 3-linear spaceH . Note thatH varies inG(3, 5). Therefore

codim(G, R11(P
5)) � dim R11(P

5)� (dim R11(H ) + dim G(3, 5))

+ codim(S, R11(H ))

= 68� (44 + 8) + 5 = 21.
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Therefore it suffices to prove that

h1(P5, IC,P5(7))< 21,

or equivalently, by Remark 2.4 (2), that

h1(H , IC,H (7)) = h1(P5, IC,P5(7))< 21.

Choose a 2-planeU in H that meetsC in 11 distinct points, no three of which
are collinear. Such anU exists by [1, Lemma, p.109].

Let k � 5. These 11 points impose independent conditions on the system of curves
of degreek in U by [1, Lemma, p.115]. Therefore, in the long exact sequence

H0(U , OU (k))! H0(C \U , OC\U (k))

! H1(U , IC\U,U (k))! H1(U , OU (k)),

the first map is surjective. However, the last term vanishes.Therefore

H1(U , IC\U,U (k)) = 0.

Consequently, the exact sequence of sheaves

0! IC,H (k� 1)! IC,H (k)! IC\U,U (k)! 0

yields

(2) h1(H , IC,H (4))� h1(H , IC,H (5))� h1(H , IC,H (6))� � � � .
Consider the standard exact sequence of sheaves

0! IC,H (k)! OH (k)! OC(k)! 0.

Since H1(H ,OH (k)) = 0 for k � 0, taking cohomology yields

(3) h0(H , IC,H (k)) =

�
k + 3

3

�� (11k + 1) +h1(H , IC,H (k)).

Proceeding by contradiction, assumeh1(H , IC,H (7))� 21. We will prove that

h0(H , IC,H (8))� 78.

Then, by the equation (3),

h1(H , IC,H (8))� 2.
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However, by Lemma 2.5,h1(H , IC,H (8)) must be one. Therefore there is a contra-
diction.

By the equation (2) and equation (3), we get

h0(H , IC,H (4))� 11, h0(H , IC,H (7))� 63.

Note thath0(H , IC,H (2)) = 0 sinceC cannot lie neither on a smooth quadric sur-
face by the assumption of case (3) nor on a quadric cone by Remark 2.4. Therefore
every element inH0(H , IC,H (3)) is irreducible.

Supposeh0(H , IC,H (3)) � 2. Take two independent irreducible cubicsF3 and F 0
3

in H0(H , IC,H (3)). Then deg(F3 \ F 0
3) = 9, but C � F3 \ F 0

3 and deg(C) = 11, which
is impossible. Thereforeh0(H , IC,H (3))� 1.

Suppose there exists a nonzero cubicF3 in H0(H , IC,H (3)). Let

� : H0(H , OH (1))! H0(H , IC,H (4))

be the linear map defined by multiplying withF3. The image of� is a subspace of
H0(H , IC,H (4)) of dimension 4. Note that

h0(H , IC,H (1)) = h0(H , IC,H (2)) = 0.

Therefore there exist irreducible quartics inH0(H , IC,H (4)).
Supposeh0(H , IC,H (3)) = 0. Since

h0(H , IC,H (1)) = h0(H , IC,H (2)) = h0(H , IC,H (3)) = 0,

every element inH0(H , IC,H (4)) is irreducible.
Therefore, sinceh0(H , IC,H (3)) � 1, there always exists an irreducible quarticF4

in H0(H , IC,H (4)).
Let

� : H0(H , OH (3))! H0(H , IC,H (7))

be the linear map defined by multiplying withF4. The image of� is a subspace of
H0(H , IC,H (7)) of dimension 20. LetW be a subspace ofH0(H , IC,H (7)) satisfying

H0(H , IC,H (7)) = image(�)�W.

Note that dimW = h0(H , IC,H (7))� dim image(�) � 63� 20 = 43.
Take a nonzeroL 2 H0(H ,OH (1)). Define

X := fF4F : F 2 H0(H ,OH (4))g,
Y := fF L : F 2 Wg.
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X andY are subspaces ofH0(H ,IC,H (8)) of dimension 35 and 43, respectively. More-
over, by the irreducibility ofF4 and by the choice ofW, we haveX\Y = 0. Therefore

h0(H , IC,H (8))� dim X + dim Y = 78,

as asserted.
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