RATIONAL CURVES ON GENERAL HYPERSURFACES OF DEGREE 7 IN \mathbb{P}^{5}

Dongsoo SHIN

(Received September 20, 2005, revised February 6, 2006)

Abstract

We prove that there is no smooth irreducible reduced rational curve of degree e, $2 \leq e \leq 11$, on general hypersurfaces of degree 7 in \mathbb{P}^{5}.

1. Introduction

Throughout this paper we work over an algebraically closed field k of characteristic 0 .

Let X_{d} be a general hypersurface in \mathbb{P}^{n} of degree d. H. Clemens proved in [2] that if $d \geq 2 n-1$ and $n \geq 3$ then there is no rational curve in X_{d}. In [9, 10], C. Voisin sharpened Clemens' lower bound for d by proving that if $d \geq 2 n-2$ and $n \geq 4$ then X_{d} contains no rational curve.

On the other hand, if $d=2 n-3$ and $n \geq 3$, it has been classically known that there always exists a line on $X_{2 n-3}$ ([7, Theorem V.4.3.]). Note that for $n=3$ and $d=2 n-2=4$, every surface of degree 4 in \mathbb{P}^{3} contains a rational curve (although a general such surface contains no smooth rational curve). Therefore Voisin's lower bound for d and n are sharp in the sense that there is no rational curve on a general hypersurface $X_{d} \subset \mathbb{P}^{n}$.

The number of lines on $X_{2 n-3}$ is finite ([7, Theorem V.4.3.]). In [9, 10], C. Voisin extended this classical fact in case $n \geq 5$: If $n \geq 5$ then $X_{2 n-3}$ contains at most finite number of rational curves of each degree $e \geq 1$. Note that the analogue of this result for $n=4$ would solve Clemens' conjecture on the finiteness of rational curves of each degree $e \geq 1$ on general quintic threefolds in \mathbb{P}^{4}.

Recently G. Pacienza extended Voisin's result in [8] by proving that there is, in fact, no rational curve of degree $e \geq 2$ on $X_{2 n-3}$ if $n \geq 6$. Therefore the only rational curves on $X_{2 n-3}$ are lines if $n \geq 6$.

It is natural to raise a question about the case $n=5$ in Pacienza's result: Is there a rational curve of degree greater than one on general hypersurfaces of degree 7 in \mathbb{P}^{5} ?

In this paper we prove

[^0]Theorem 1.1. There is no smooth irreducible reduced rational curve of degree e, $2 \leq e \leq 11$, on general hypersurfaces of degree 7 in \mathbb{P}^{5}.

To do so, we count the dimension of the incidence scheme $\{(C, X) \mid C \subset X\}$, where C is a smooth irreducible reduced rational curve of degree e and X is a hypersurface of degree 7 in \mathbb{P}^{5}. We use similar techniques in [6], where the authors treat rational curves of degree at most 9 on general quintic threefolds.

We introduce some notation. For a projective variety Y, let $\operatorname{Hilb}^{e t+1}(Y)$ be the Hilbert scheme parametrizing subschemes with the Hilbert polynomial et +1 . We define a subscheme $R_{e}(Y)$ of $\operatorname{Hilb}^{e t+1}(Y)$ to be the open subscheme parametrizing smooth irreducible reduced rational curves of degree e.

Let $\mathbb{F}=\mathbb{P} H^{0}\left(\mathbb{P}^{5}, \mathcal{O}_{\mathbb{P}^{5}}(7)\right)$ be the parameter space of hypersurfaces of degree 7 in \mathbb{P}^{5}, i.e., $\mathbb{F} \cong \mathbb{P}^{N}, N=\binom{5+7}{7}-1$. We define the incidence scheme

$$
I_{e}:=\left\{(C, X) \in R_{e}\left(\mathbb{P}^{5}\right) \times \mathbb{F} \mid C \subset X\right\}
$$

and let

$$
p_{R}: I_{e} \rightarrow R_{e}\left(\mathbb{P}^{5}\right) \text { and } p_{\mathbb{F}}: I_{e} \rightarrow \mathbb{F}
$$

be the projections. Note that $R_{e}(X) \cong p_{\mathbb{F}}^{-1}(X)$ for $X \in \mathbb{F}$.
We define $R_{e, i}\left(\mathbb{P}^{5}\right)$ to be the locally closed subset of $R_{e}\left(\mathbb{P}^{5}\right)$ parametrizing curves C with $h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=i$ where $\mathcal{I}_{C, \mathbb{P}^{5}}$ is the ideal sheaf of C in \mathbb{P}^{5}. Set

$$
I_{e, i}:=p_{R}^{-1}\left(R_{e, i}\left(\mathbb{P}^{5}\right)\right) .
$$

Finally let $\mathbb{G}(k, n)$ be the Grassmannian parametrizing k-linear space in \mathbb{P}^{n}.

2. Proof of Theorem 1.1

Throughout this section, X is a general hypersurface in \mathbb{P}^{5} of degree 7 and C is a smooth irreducible reduced rational curve of degree $e \geq 1$.

Theorem 1.1 is a consequence of the following result.
Proposition 2.1. For $e \leq 11, I_{e}$ is irreducible of dimension $1-e+N$.
Before proving Proposition 2.1, we prove Theorem 1.1 by using the above result.
Proof of Theorem 1.1. By Proposition 2.1, if $2 \leq e \leq 11$, then $\operatorname{dim} I_{e}<\operatorname{dim} \mathbb{F}=$ N. So $p_{\mathbb{F}}$ is not surjective. Therefore

$$
R_{e}(X) \cong p_{\mathbb{F}}^{-1}(X)=\varnothing
$$

for general X.

To prove Proposition 2.1, we need the following lemma.

Lemma 2.2. $\quad R_{e}\left(\mathbb{P}^{n}\right)$ is smooth, irreducible, and of dimension $(n+1) e+n-3$.

Proof. Fix $C \in R_{e}\left(\mathbb{P}^{n}\right)$. The restricted Euler sequence

$$
\left.0 \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{O}_{C}(1)^{\oplus n+1} \rightarrow \mathcal{I}_{\mathbb{P}^{n}}\right|_{C} \rightarrow 0
$$

yields $H^{1}\left(C,\left.\mathcal{T}_{\mathbb{P}^{n}}\right|_{C}\right)=0$. The sequence of tangent and normal sheaves

$$
\left.0 \rightarrow \mathcal{T}_{C} \rightarrow \mathcal{T}_{\mathbb{P}^{n}}\right|_{C} \rightarrow \mathcal{N}_{C, \mathbb{P}^{n}} \rightarrow 0
$$

yields $H^{1}\left(C, \mathcal{N}_{C, \mathbb{P}^{n}}\right)=0$. Hence, by the functorial property of the Hilbert scheme, $R_{e}\left(\mathbb{P}^{n}\right)$ is smooth at C of dimension $h^{0}\left(C, \mathcal{N}_{C, \mathbb{P}^{n}}\right)$, and

$$
\begin{aligned}
h^{0}\left(C, \mathcal{N}_{C, \mathbb{P}^{n}}\right) & =\chi\left(\left.\mathcal{T}_{\mathbb{P}^{n}}\right|_{C}\right)-\chi\left(\mathcal{T}_{C}\right) \\
& =\chi\left(\mathcal{O}_{C}(1)^{\oplus n+1}\right)-\chi\left(\mathcal{O}_{C}\right)-\chi\left(\mathcal{T}_{C}\right) \\
& =(n+1)(e+1)-1-(2+1) \\
& =(n+1) e+n-3 .
\end{aligned}
$$

Note that morphisms of degree e from \mathbb{P}^{1} to \mathbb{P}^{n} are parametrized by a Zariski open set of the projective space $\mathbb{P}\left(\left(S^{e} k^{2}\right)^{n+1}\right)$, where $S^{e} k^{2}$ is the symmetric product. We denote this quasi-projective variety $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$. Let RatMor $\operatorname{Ra}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$ be the subset of $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$ consisting of all morphisms whose image is a smooth irreducible reduced rational curve. Then $\operatorname{RatMor}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$ is an open subset of $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$. Since $\operatorname{Mor}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$ is irreducible, so is $\operatorname{RatMor} \mathrm{Mo}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$. There is a surjective morphism from $\operatorname{RatMor}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right)$ to $R_{e}\left(\mathbb{P}^{n}\right)$. Therefore $R_{e}\left(\mathbb{P}^{n}\right)$ is irreducible.

Proof of Proposition 2.1. Assume $C \in R_{e, i}\left(\mathbb{P}^{5}\right)$. Let

$$
r: H^{0}\left(\mathbb{P}^{5}, \mathcal{O}_{\mathbb{P}^{5}}(7)\right) \rightarrow H^{0}\left(C, \mathcal{O}_{C}(7)\right)
$$

be the restriction map. Then $p_{R}^{-1}(C)$ is the projectivation of the kernel of r. From the standard exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{0}\left(\mathbb{P}^{5}, \mathcal{I}_{\left.C, \mathbb{P}^{5}(7)\right)} \rightarrow H^{0}\left(\mathbb{P}^{5}, \mathcal{O}_{\mathbb{P}^{5}}(7)\right)\right. \\
& \rightarrow H^{0}\left(C, \mathcal{O}_{C}(7)\right) \rightarrow H^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right) \rightarrow 0,
\end{aligned}
$$

we get

$$
\operatorname{dim} p_{R}^{-1}(C)=h^{0}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)-1=(N+1-(7 e+1)+i)-1
$$

Therefore

$$
\begin{align*}
\operatorname{dim} I_{e, i} & =\operatorname{dim} R_{e, i}\left(\mathbb{P}^{5}\right)+\operatorname{dim} p_{R}^{-1}(C) \tag{1}\\
& =\operatorname{dim} R_{e, i}+(N+1-(7 e+1)+i)-1 .
\end{align*}
$$

Assume that $e \leq 9$. By the regularity theorem in [4], C is 8 -regular, i.e., $H^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=0$. So $R_{e, 0}\left(\mathbb{P}^{5}\right)=R_{e}\left(\mathbb{P}^{5}\right)$, which has dimension $6 e+2$, and the fibers $p_{R}^{-1}(C)$ are irreducible of same dimension $(N+1-(7 e+1))-1$. Therefore I_{e} is irreducible of dimension $1-e+N$. The proof is done in case $e \leq 9$.

Assume that $e=10$ or 11 . The following Lemma 2.3 implies that $R_{e, 0}\left(\mathbb{P}^{5}\right)$ is open and nonempty, and hence $R_{e, 0}\left(\mathbb{P}^{5}\right)$ is irreducible. So $I_{e, 0}$ is irreducible of dimension $1-e+N$ since fibers $p_{R}^{-1}(C)$ for $C \in R_{e, 0}\left(\mathbb{P}^{5}\right)$ are irreducible of same dimension $(N+1-(7 e+1))-1$.

Also from the following Lemma 2.3 and equation (1)

$$
\operatorname{dim} I_{e, i}<1-e+N \quad \text { for } \quad i>0 .
$$

It is also clear, from the way I_{e} is defined, that all its components have dimension at least $1-e+N$ because the corresponding incidence in $\operatorname{RatMor}_{e}\left(\mathbb{P}^{1}, \mathbb{P}^{n}\right) \times \mathbb{P}^{N}$ is cut out by $7 e+1$ equations, so both this incidence, and I_{e}, have codimension at most $7 e+1$ (locally). Therefore the closure of $I_{e, 0}$ is I_{e}, and hence I_{e} is irreducible of dimension $1-e+N$. Thus Proposition 2.1 is proved if given Lemma 2.3.

Lemma 2.3. For $e=10,11$, if $i>0$ and if $R_{e, i}\left(\mathbb{P}^{5}\right)$ is nonempty, then

$$
\operatorname{codim}\left(R_{e, i}\left(\mathbb{P}^{5}\right), R_{e}\left(\mathbb{P}^{5}\right)\right)>i
$$

Before proving Lemma 2.3, we begin with some general observations.
Remark 2.4. Suppose $C \in R_{e}\left(\mathbb{P}^{5}\right)$.
(1) If $e \geq 3$, then C cannot lie in a 2-plane because its arithmetic genus is 0 . Moreover, if $e \geq 4$, then C cannot lie in a 2 -dimensional quadric cone by [5, V, Ex. 2.9].
(2) If C lies in a k-linear subspace H in \mathbb{P}^{5} with the ideal sheaf $\mathcal{I}_{C, H}$, then

$$
h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=h^{1}\left(H, \mathcal{I}_{C, H}(7)\right) .
$$

We briefly prove this formula. Consider the following exact sequence of twisted ideals

$$
0 \rightarrow \mathcal{I}_{\mathcal{H}, \mathbb{P}^{s}}(7) \rightarrow \mathcal{I}_{C, \mathbb{P}^{s}}(7) \rightarrow \mathcal{I}_{C, \mathcal{H}}(7) \rightarrow 0,
$$

where $k+1 \leq s \leq 5$ and \mathcal{H} is a hyperplane \mathbb{P}^{s-1} in \mathbb{P}^{s}. Note that $\mathcal{I}_{\mathcal{H}, \mathbb{P}^{s}}(7)=\mathcal{O}_{\mathbb{P}^{s}}(6)$; hence we have $h^{1}\left(\mathbb{P}^{s-1}, \mathcal{I}_{C, \mathbb{P}^{s-1}}(7)\right)=h^{1}\left(\mathbb{P}^{s}, \mathcal{I}_{C, \mathbb{P}^{s}}(7)\right)$ because $\mathcal{O}_{\mathbb{P}^{s}}(6)$ has no H^{1} or H^{2}. Using this formula $5-k$ times proves the desired formula.

We recall the following useful facts which will be used when proving Lemma 2.3.
Lemma 2.5 ([4]). Let C be a nondegenerate $(e+1-r)$-irregular curve in \mathbb{P}^{r} $(r \geq 3)$ of degree e. If $e>r+1$, then C is rational, smooth with $a(e+2-r)$-secant line, and one of the following holds;
(1) $r=3, C$ is contained in a smooth quadric, and $h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{C, \mathbb{P}^{r}}(e-r)\right)=e-3$, or
(2) $r=3, C$ is not contained in a smooth quadric, and $h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{C, \mathbb{P}^{r}}(e-r)\right)=1$, or
(3) $r \geq 4$ and $h^{1}\left(\mathbb{P}^{r}, \mathcal{I}_{C, \mathbb{P}^{r}}(e-r)\right)=1$.

Lemma 2.6 ([3]). Let C be an irreducible smooth curve in \mathbb{P}^{3}. Suppose C is nondegenerate, of degree e, and of genus g. If $e \geq 6$ and $(e, g) \notin\{(7,0),(7,1),(8,0)\}$, then $h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{C, \mathbb{P}^{3}}(e-4)\right)>0$ if and only if C has $a(e-2)$-secant line.

Lemma 2.7 ([6]). Let $e \geq 4$ and $r \geq 3$. Fix s with $e>s \geq 3$. In $R_{e}\left(\mathbb{P}^{r}\right)$ the subset of curves with a s-secant line has codimension at least $(r-1)(s-2)-s$.

Proof of Lemma 2.3. Assume $e=10$. If C is not contained in any hyperplane, then C is 7 -regular and hence 8 -regular, i.e., $H^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=0$. Therefore $R_{10}\left(\mathbb{P}^{5}\right)-$ $R_{10,0}\left(\mathbb{P}^{5}\right)$ is contained in the closed set \mathcal{G} of curves contained in hyperplanes in \mathbb{P}^{5}. Then

$$
\begin{aligned}
\operatorname{codim}\left(\mathcal{G}, R_{10}\left(\mathbb{P}^{5}\right)\right) & \geq \operatorname{dim} R_{10}\left(\mathbb{P}^{5}\right)-\left(\operatorname{dim} R_{10}\left(\mathbb{P}^{4}\right)+\operatorname{dim} \mathbb{G}(4,5)\right) \\
& =(6 \times 10+2)-(5 \times 10+1+5)=6
\end{aligned}
$$

In particular,

$$
\operatorname{codim}\left(R_{10,1}\left(\mathbb{P}^{5}\right), R_{10}\left(\mathbb{P}^{5}\right)\right)>1,
$$

as asserted.
Suppose $h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{\left.C, \mathbb{P}^{5}(7)\right)} \geq 2\right.$. Then C must lie in a hyperplane G, since, if not, C is 7 -regular. If C is nondegenerate in G, then C is 8 -regular, i.e., $h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=0$, which contradicts $h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right) \geq 2$. Therefore C is contained in a 3-linear space H in \mathbb{P}^{5} and, by Remark 2.4 (2),

$$
h^{1}\left(H, \mathcal{I}_{C, H}(7)\right) \geq 2
$$

Then, by Lemma 2.5 (1),

$$
h^{1}\left(H, \mathcal{I}_{C, H}(7)\right)=h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}(7)}\right)=7
$$

Therefore if $R_{10, i}\left(\mathbb{P}^{5}\right)$ is nonempty then i is 0,1 , or 7 . So it remains to prove that

$$
\operatorname{codim}\left(R_{10,7}\left(\mathbb{P}^{5}\right), R_{10}\left(\mathbb{P}^{5}\right)\right)>7
$$

Since $h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=7$, from Lemma 2.5 (1), C lies in a smooth quadric surface Q contained in H. Since C is smooth, rational, and of degree $10, C$ is contained in the linear system $|9 L+M|$ on Q where L and M are two generators of $\operatorname{Pic}(Q)$. Then Q varies in $\mathbb{P} H^{0}\left(H, \mathcal{O}_{H}(2)\right)$ and H varies in $\mathbb{G}(3,5)$. Therefore,

$$
\begin{aligned}
\operatorname{codim}\left(R_{10,7}\left(\mathbb{P}^{5}\right), R_{10}\left(\mathbb{P}^{5}\right)\right) \geq & \operatorname{dim} R_{10,7}\left(\mathbb{P}^{5}\right) \\
& -\left(\operatorname{dim}|9 L+M|+\operatorname{dim} \mathbb{P} H^{0}\left(H, \mathcal{O}_{H}(2)\right)+\operatorname{dim} \mathbb{G}(3,5)\right) \\
= & 62-(19+9+8)=26>7 .
\end{aligned}
$$

Thus Lemma 2.3 holds for $e=10$.
Assume that $e=11$. If C is nondegenerate in \mathbb{P}^{5}, then C is 8 -regular, i.e., $h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=0$. Hence $R_{11}\left(\mathbb{P}^{5}\right)-R_{11,0}\left(\mathbb{P}^{5}\right)$ is contained in the closed set \mathcal{G} of curves in hyperplanes in \mathbb{P}^{5}.

$$
\begin{aligned}
\operatorname{codim}\left(\mathcal{G}, R_{11}\left(\mathbb{P}^{5}\right)\right) & \geq \operatorname{dim} R_{11}\left(\mathbb{P}^{5}\right)-\left(\operatorname{dim} R_{11}\left(\mathbb{P}^{4}\right)+\operatorname{dim} \mathbb{G}(4,5)\right) \\
& =(6 \times 11+2)-(5 \times 11+1+5)=7
\end{aligned}
$$

In particular,

$$
\operatorname{codim}\left(R_{11, i}\left(\mathbb{P}^{5}\right), R_{11}\left(\mathbb{P}^{5}\right)\right) \geq 7>i \quad \text { for } \quad i=1, \ldots, 6
$$

as asserted.
Assume $h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{\left.C, \mathbb{P}^{5}(7)\right)} \geq 7 . \quad C\right.$ lies in a hyperplane G, since, if not, C is 8 regular. By Remark 2.4 (2),

$$
h^{1}\left(G, \mathcal{I}_{C, G}(7)\right)=h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right) \geq 7
$$

Suppose that C is nondegenerate in G. Then C is 8 -irregular in G since $h^{1}\left(G, \mathcal{I}_{C, G}(7)\right) \geq 7$.
However, from Lemma 2.5 (3), we know that

$$
h^{1}\left(G, \mathcal{I}_{C, G}(7)\right)=1,
$$

which contradicts our assumption $h^{1}\left(G, \mathcal{I}_{C, G}(7)\right) \geq 7$. Thus C is contained in a 3-linear space H in \mathbb{P}^{5}. There are three possible cases;
(1) C lies in H, and C has no 9 -secant line,
(2) C lies in some smooth quadric surface Q with ideal $\mathcal{I}_{C, Q}$.
(3) C lies in H, but C lies in no smooth quadric surface, and C has a 9 -secant line. In case (1), by Lemma 2.6 and Remark 2.4,

$$
h^{1}\left(H, \mathcal{I}_{C, H}(7)\right)=h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=0,
$$

which contradicts our assumption $h^{1}\left(G, \mathcal{I}_{C, G}(7)\right) \geq 7$.

In case (2), since C is rational, smooth, and of degree $11, C$ is contained in the linear system $|10 L+M|$ on Q where L and M are two generators of $\operatorname{Pic}(Q)$. Thus

$$
\mathcal{I}_{C, Q}(7)=\mathcal{O}_{Q}(-3,6)
$$

Then the Künneth formula yields

$$
h^{1}\left(Q, \mathcal{I}_{C, Q}(7)\right)=0 \times 0+2 \times 7=14 .
$$

Note that

$$
h^{1}\left(Q, \mathcal{I}_{C, Q}(7)\right)=h^{1}\left(H, \mathcal{I}_{C, H}(7)\right)=h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=14 .
$$

Indeed, the second equality is Remark 2.4 (2), and the first can be proved similarly. Therefore

$$
h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)=14
$$

and it remains to prove that

$$
\operatorname{codim}\left(R_{11,14}\left(\mathbb{P}^{5}\right), R_{11}\left(\mathbb{P}^{5}\right)\right)>14
$$

Let \mathcal{G} be the subset of $R_{11}\left(\mathbb{P}^{5}\right)$ consisting of all curves C included in the case (2). These C are contained in the linear system $|10 L+M|$ on Q and Q varies in $\mathbb{P} H^{0}\left(H, \mathcal{O}_{H}(2)\right)$ and H varies in $\mathbb{G}(3,5)$. Therefore

$$
\begin{aligned}
\operatorname{codim}\left(R_{11,14}\left(\mathbb{P}^{5}\right), R_{11}\left(\mathbb{P}^{5}\right)\right) \geq & \operatorname{dim} R_{11}\left(\mathbb{P}^{5}\right) \\
& -\left(\operatorname{dim}|10 L+M|+\operatorname{dim} \mathbb{P} H^{0}\left(H, \mathcal{O}_{H}(2)\right)+\operatorname{dim} \mathbb{G}(3,5)\right) \\
= & 68-(21+9+8)=30>14 .
\end{aligned}
$$

In particular,

$$
\operatorname{codim}\left(R_{11,14}\left(\mathbb{P}^{5}\right), R_{14}\left(\mathbb{P}^{5}\right)\right)>14
$$

as asserted.
In case (3), let \mathcal{S} be the subset of $R_{11}(H)$ consisting of all C satisfying the conditions in case (3). Then, by Lemma 2.7, \mathcal{S} is of codimension at least 5 in $R_{11}(H)$.

Let \mathcal{G} be the subset of $R_{11}\left(\mathbb{P}^{5}\right)$ consisting of all C satisfying the conditions in case (3) for a 3 -linear space H. Note that H varies in $\mathbb{G}(3,5)$. Therefore

$$
\begin{aligned}
\operatorname{codim}\left(\mathcal{G}, R_{11}\left(\mathbb{P}^{5}\right)\right) \geq & \operatorname{dim} R_{11}\left(\mathbb{P}^{5}\right)-\left(\operatorname{dim} R_{11}(H)+\operatorname{dim} \mathbb{G}(3,5)\right) \\
& +\operatorname{codim}\left(\mathcal{S}, R_{11}(H)\right) \\
= & 68-(44+8)+5=21 .
\end{aligned}
$$

Therefore it suffices to prove that

$$
h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)<21
$$

or equivalently, by Remark 2.4 (2), that

$$
h^{1}\left(H, \mathcal{I}_{C, H}(7)\right)=h^{1}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(7)\right)<21
$$

Choose a 2-plane U in H that meets C in 11 distinct points, no three of which are collinear. Such an U exists by [1, Lemma, p.109].

Let $k \geq 5$. These 11 points impose independent conditions on the system of curves of degree k in U by [1, Lemma, p.115]. Therefore, in the long exact sequence

$$
\begin{aligned}
& H^{0}\left(U, \mathcal{O}_{U}(k)\right) \rightarrow H^{0}\left(C \cap U, \mathcal{O}_{C \cap U}(k)\right) \\
& \rightarrow H^{1}\left(U, \mathcal{I}_{C \cap U, U}(k)\right) \rightarrow H^{1}\left(U, \mathcal{O}_{U}(k)\right)
\end{aligned}
$$

the first map is surjective. However, the last term vanishes. Therefore

$$
H^{1}\left(U, I_{C \cap U, U}(k)\right)=0
$$

Consequently, the exact sequence of sheaves

$$
0 \rightarrow \mathcal{I}_{C, H}(k-1) \rightarrow \mathcal{I}_{C, H}(k) \rightarrow \mathcal{I}_{C \cap U, U}(k) \rightarrow 0
$$

yields

$$
\begin{equation*}
h^{1}\left(H, \mathcal{I}_{C, H}(4)\right) \geq h^{1}\left(H, \mathcal{I}_{C, H}(5)\right) \geq h^{1}\left(H, \mathcal{I}_{C, H}(6)\right) \geq \cdots \tag{2}
\end{equation*}
$$

Consider the standard exact sequence of sheaves

$$
0 \rightarrow \mathcal{I}_{C, H}(k) \rightarrow \mathcal{O}_{H}(k) \rightarrow \mathcal{O}_{C}(k) \rightarrow 0
$$

Since $H^{1}\left(H, \mathcal{O}_{H}(k)\right)=0$ for $k \geq 0$, taking cohomology yields

$$
\begin{equation*}
h^{0}\left(H, \mathcal{I}_{C, H}(k)\right)=\binom{k+3}{3}-(11 k+1)+h^{1}\left(H, \mathcal{I}_{C, H}(k)\right) \tag{3}
\end{equation*}
$$

Proceeding by contradiction, assume $h^{1}\left(H, \mathcal{I}_{C, H}(7)\right) \geq 21$. We will prove that

$$
h^{0}\left(H, \mathcal{I}_{C, H}(8)\right) \geq 78
$$

Then, by the equation (3),

$$
h^{1}\left(H, \mathcal{I}_{C, H}(8)\right) \geq 2
$$

However, by Lemma $2.5, h^{1}\left(H, \mathcal{I}_{C, H}(8)\right)$ must be one. Therefore there is a contradiction.

By the equation (2) and equation (3), we get

$$
h^{0}\left(H, \mathcal{I}_{C, H}(4)\right) \geq 11, \quad h^{0}\left(H, \mathcal{I}_{C, H}(7)\right) \geq 63
$$

Note that $h^{0}\left(H, \mathcal{I}_{C, H}(2)\right)=0$ since C cannot lie neither on a smooth quadric surface by the assumption of case (3) nor on a quadric cone by Remark 2.4. Therefore every element in $H^{0}\left(H, \mathcal{I}_{C, H}(3)\right)$ is irreducible.

Suppose $h^{0}\left(H, \mathcal{I}_{C, H}(3)\right) \geq 2$. Take two independent irreducible cubics F_{3} and F_{3}^{\prime} in $H^{0}\left(H, \mathcal{I}_{C, H}(3)\right)$. Then $\operatorname{deg}\left(F_{3} \cap F_{3}^{\prime}\right)=9$, but $C \subset F_{3} \cap F_{3}^{\prime}$ and $\operatorname{deg}(C)=11$, which is impossible. Therefore $h^{0}\left(H, \mathcal{I}_{C, H}(3)\right) \leq 1$.

Suppose there exists a nonzero cubic F_{3} in $H^{0}\left(H, \mathcal{I}_{C, H}(3)\right)$. Let

$$
\alpha: H^{0}\left(H, \mathcal{O}_{H}(1)\right) \rightarrow H^{0}\left(H, \mathcal{I}_{C, H}(4)\right)
$$

be the linear map defined by multiplying with F_{3}. The image of α is a subspace of $H^{0}\left(H, \mathcal{I}_{C, H}(4)\right)$ of dimension 4. Note that

$$
h^{0}\left(H, \mathcal{I}_{C, H}(1)\right)=h^{0}\left(H, \mathcal{I}_{C, H}(2)\right)=0
$$

Therefore there exist irreducible quartics in $H^{0}\left(H, \mathcal{I}_{C, H}(4)\right)$.
Suppose $h^{0}\left(H, \mathcal{I}_{C, H}(3)\right)=0$. Since

$$
h^{0}\left(H, \mathcal{I}_{C, H}(1)\right)=h^{0}\left(H, \mathcal{I}_{C, H}(2)\right)=h^{0}\left(H, \mathcal{I}_{C, H}(3)\right)=0
$$

every element in $H^{0}\left(H, \mathcal{I}_{C, H}(4)\right)$ is irreducible.
Therefore, since $h^{0}\left(H, \mathcal{I}_{C, H}(3)\right) \leq 1$, there always exists an irreducible quartic F_{4} in $H^{0}\left(H, \mathcal{I}_{C, H}(4)\right)$.

Let

$$
\alpha: H^{0}\left(H, \mathcal{O}_{H}(3)\right) \rightarrow H^{0}\left(H, \mathcal{I}_{C, H}(7)\right)
$$

be the linear map defined by multiplying with F_{4}. The image of α is a subspace of $H^{0}\left(H, \mathcal{I}_{C, H}(7)\right)$ of dimension 20. Let W be a subspace of $H^{0}\left(H, \mathcal{I}_{C, H}(7)\right)$ satisfying

$$
H^{0}\left(H, \mathcal{I}_{C, H}(7)\right)=\operatorname{image}(\alpha) \oplus W
$$

Note that $\operatorname{dim} W=h^{0}\left(H, \mathcal{I}_{C, H}(7)\right)-\operatorname{dim} \operatorname{image}(\alpha) \geq 63-20=43$.
Take a nonzero $L \in H^{0}\left(H, \mathcal{O}_{H}(1)\right)$. Define

$$
\begin{aligned}
X & :=\left\{F_{4} F: F \in H^{0}\left(H, \mathcal{O}_{H}(4)\right)\right\}, \\
Y & :=\{F L: F \in W\} .
\end{aligned}
$$

X and Y are subspaces of $H^{0}\left(H, \mathcal{I}_{C, H}(8)\right)$ of dimension 35 and 43, respectively. Moreover, by the irreducibility of F_{4} and by the choice of W, we have $X \cap Y=0$. Therefore

$$
h^{0}\left(H, \mathcal{I}_{C, H}(8)\right) \geq \operatorname{dim} X+\operatorname{dim} Y=78
$$

as asserted.

Acknowledgement. This work is a part of Ph. D. Thesis of the author submitted to Seoul National University. I am extremely grateful to Changho Keem for uncounted discussions and steady encouragement. I thank Gianluca Pacienza, who suggested this problem at a summer school held at Byen-San, Korea, in 2003.

References

[1] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Geometry of Algebraic Curves, I, Springer-Verlag, New York, 1985.
[2] H. Clemens: Curves on generic hypersurfaces, Ann. Sci. École Norm. Sup. (4) 19 (1986), 629-636.
[3] J. d'Almeida: Courbes de l'espace projectif : séries linéaires incomplètes et multisécantes, J. Reine Angew. Math. 370 (1986), 30-51.
[4] L. Gruson, R. Lazarsfeld and C. Peskine: On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), 491-506.
[5] R. Hartshorne: Algebraic Geometry, Springer-Verlag, New York, 1977.
[6] T. Johnsen and S.L. Kleiman: Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra 24 (1996), 2721-2753.
[7] J. Kollár: Rational Curves on Algebraic Varieties, Springer-Verlag, Berlin, 1996.
[8] G. Pacienza: Rational curves on general projective hypersurfaces, J. Algebraic Geom. 12 (2003), 245-267.
[9] C. Voisin: On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 44 (1996), 200-213.
[10] C. Voisin: A correction: On a conjecture of Clemens on rational curves on hypersurfaces, J. Differential Geom. 49 (1998), 601-611.

Department of Mathematical Sciences Seoul National University Seoul 151-747
Korea
e-mail: dsshin@math.snu.ac.kr

[^0]: 2000 Mathematics Subject Classification. Primary 14N05; Secondary 14N25.
 Supported by the Brain Korea 21 Project and KOSEF R01-2002-000-00051-0.

