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Abstract
Some quotient algebras arising from the quantum toroidgekab Uq(sh1(C,))
(n > 2) are considered. They are related to integrable highesjhweepresentations
of the algebra and are shown to be isomorphic to tensor ptedidwo algebras of
symmetric Laurent polynomials and Macdonald’s differenperators.

1. Introduction

The quantum toroidal algebras were introduced in [1] andg®}l deformations
of the universal enveloping algebras of toroidal Lie algesbf3]. Since then, the alge-
bras and representations of them have been studied in [2J1M. In [12], we stud-
ied some quotient algebras arising from the quantum toraittpebra of typesl, and
found a connection with Macdonald’s difference operatof3].[In this paper we ex-
tend this result to the case of the quantum toroidal algebitgp® sl.1 (n > 2).

Let C, be the algebra ove€(y) of Laurent polynomials in noncommutative vari-
ablesx, y satisfyingxy = y?yx. The C(y) Lie algebra’l = sh.1(C,) is defined to be
the derived subalgebra fi,+1(C,). Lie algebras of this kind and central extensions of
them were considered in the study of extended affine Lie adge [14] and repre-
sentations of these algebras were investigated in [15]-[@e quantum toroidal alge-
bra which we study is & deformation of the universal enveloping algebra of this Lie
algebral. We shall briefly explain what quotient algebras we consider

As was shown in [14],

rwe € CHXY

= {u € glha(C,)
(k,1)#(0,0)

Therefore if we let\™* (resp. N ™) be the subalgebra of strictly upper (resp. strictly
lower) triangular matrices an#i the subalgebra of diagonal matrices, ther N~ &

H @ NT'. Let Qn be the root lattice ofslh+1 and the Ej; matrix units. Sinceh; :=

Ei —Ei+vjsa€e Hforl<i <n, £LandU(L) are Q, graded as in the case of the Lie
algebrasl,+1. We denote the homogeneous subspace of degrekU (£) by U(L),.
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Set

I = Z UL)-yn mie U )y, mya,
my,..., mpeZ
m;>0 for some j

andB=U(L)/l. Thenl =%, UWN7)_UH)UWN™), and B ~ U(H) as algebras.
Let V be an£ module generated by a nonzero vectosuch that\*v =0 andhjv =
Nijv for someN; € C(y) (L <i <n). ThenV admits a weight space decomposition
V=@,.0Vi-« Wherer =3, _. Niw; with the w; being the fundamental weights of
slh+1. Suppose further that the elemer§ xXy' (i # j) act locally nilpotently onV.
Then theN; are nonngegative integers aMi_my,, = 0 (M > N;) for 1 <i < n. Let
In,...n, be the ideal ofU (L) generated by, h; — N; and Zm>,\,i U (L) meg; U (L) —m

(1 <i <n)and setBy,..n, = U(L)o/IN,...N,- ThenV, becomes &3y, .n, module
sinceU(L)o preservesV, and |y, . n, annihilates it.

The quotient algebras which we consider in this papercaanalogues of5 and
_____ N, Our main results are thafy, n, = O unlessN, = --- = Ny_g = 0
and thatBn, 0__on, IS isomorphic to the tensor product of two algebras of symmet
ric Laurent polynomials and Macdonald’s difference opamatiVe hope that this result
will help us to study integrable highest weight represéaist of Uq(L).

This paper is organized as follows. After summarizing sor&ations which we
use in this papaer in Section 2, the definitions of the quantoroidal algebra and
their automorphisms are given in Section 3. In Section 4 smsalts [12] on quotient
algebras fromJq(sk(C,)) are reviewed. In Section 5 we study quotient algebraragisi
from Ug(sh+1(C,)) with n > 2. In Sections 6, 7 and 8, the proofs of some technical
details are given.

2. Notations

In this section we summarize several notations which we oshis paper.

2.1. Miscellaneous notations. Let q and y be formal vairables and sdf =
C(q, y). For an integem and a nonnegative integér we set ] =(q™ - q™)/(q —

g~Y) and ]! = [1][2] - - - [I]. For a positive integem we let (ai(jm))0<i,j<m denote the
Cartan matrix of typeA(.
Forr € F and elementsy,...,an of any F algebra, we defineal, ..., anlr

inductively by a1, a2]r = aya, —raya; and
[a,....a] =[[a,....,a-1]r,alr =1 =m).
Note that this satisfiesa], ..., am]r = [a1, [a, ..., am]/]r if [&,a;]=0 for |i —j| > 1.

For an algebraA and a family of elementsaf);jc; of A we let(a; | j € J)
denote the ideal ofA generated by the elements (j € J). For anya € A we
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shall denote the image & in a quotient algebra ofA simply by a unless otherwise
mentioned.

2.2. The algebraC,n. For a nonnegative integel andp = (p1,..., pn) €
(F*)N, define theF algebraCy n to be the vector spacE(y, ..., yn)® F[xi, ... x5
with multiplication rule

(ro11) fperte)-rwerts

whereg/(y1, -, Ym) = 9(PIV1, - -, Pl yn). In the caseN =0, C, n should be under-

stood asF. For simplicity we shall writef []; x' for f ® [, X' € Cpn.
N

Forp=(p,..., p) we shall writeC, y for C, . Define elements, and D, (r €
Z)of Cyn bye=Dg=1,& =D, =0 for [r| > N and

- Z [Ty O - Z (-9 yJ]‘[x.,

c{L2...N}iel Ic{L2,...N}iel R
[1=r [|=r J¢|

e, = eN—r(eN)il, D_ = DN—r(DNr1

for 0 <r < N. We denote the subalgebra Gf, n generated by the elemengs and
D (r € Z) by Cyn.

2.3. The vector spaceVp n,m. For a nonnegative integeM, p = (pg, ..., pn) €
(F*)N and a positive integem, setVpnm = Con ® (F™M®N. We shall write fg for
f ®g € Co n@ENd(F™)®N) and regard this as an element of Evigd(, m) by letting f
act onCp N by left multiplication. Forp = (p, ..., p) we shall denoteV, n.m Simply
by Vp.N.m-

We denote the canonical basis B by v1, ..., vm. We setEi(jk) =1%1Q E; ®
IN-K € End((F™®N) for 1 <k < N.

3. Definition of algebras and automorphisms

3.1. The quantum toroidal algebra Uq(sm).

3.1.1. The aIgebraUq(sm). For a positive integen we shall define the
guantum toroidal algebra of typ&h+; as follows.

In the casen > 2, for any& € F* we define theF aIgebraUq(sIn/ﬂ\(Cg)) [1], [2]
by generators

%t hi kKT CE (0<i<n meZ, rez\{0)
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and relations

(3.1) C*! centra] k*'kF=Cc*CFl=1
3.2) [ki.kj]=[ki,hj]=0
_ )
(3.3) kX kTt = g
+ - 8ij +

(3.4) (X - Xj.l] = q —”q—l (C” q)l( n)"|+l -C mq>|(n)1+|)
(3.5) [Xmer X Jqee ¥ [Xa2 Xim]gee = O

a™ —

cr—-Cc™
(3.6) i [hir, hys] = 8”5'0[ r ]W
)

@7 i Xin] = L[] - ]C“*""/fo,w
(3.8) @(Jn) =0, [%%x5]=0,
If 8 = —
(3.9) Kij [Xij,El+1v inm]gﬁ1 + [inm+1v Xiil]qxl =0,
(3.10) Xim Xim, X1 = (216 X5 X, + XG0 %, X, + (M1 < Mp) = 0

where«i; = 1 for (i, j) # (n,0),(0,n), no = kg = £2/q™1, @, =0 ( < 0) and
@fﬁ, (r > 0) is expressed in terms d;qil and theh; s by

Y ol 7 =k exp (i(q —q7Y) ) hiw z') .

r>=0 r>0

In the casen = 1, for any£ € F* the F algebraUq(sh(C:)) is defined [6], [12]
by generators

= hi kELCEL (=01, meZ, rez\{0)

1,m>

and relations (3.1)—(3.5) and

2r]C’ -
(3-11) [hll’a IS]_(SHSO[Y]W’
FIET +6TYCr —C~'
(3.12) ] = —drasg 20 IE = E
(3.13) [hieoxt ] = £ 2 cornze
ri(g" +&—"
(3.14) [hir. X ] = [](ri)c(r:mr\)/z £
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(3.15) SY My, ms.mg I:Xi%ml’ [Xi%mz’ [ Xf—i.n]q’z]]qz =0

where Sym, ., m, Means symmetrization img, mp and ma.

Hereafter forn > 1 andé € F* we shall denotellq(Sh+1(Ce)) by U(n, &). For
n>1letQ,=Zu @ ®Zay and setwg = —(og + - - +an) € Qn. We givell(n, &)
a structure ofQ, ® Z & Z graded algebras by assigning

(i, 80, m) to x5, (0,0,r) toh; and (Q0,0) tok*' andC**

and denote the homogeneous subspace of degfdenﬁ) by M(n E)@l.m). FOra e

Qn setu(n E)a = 2. mez u(n £)(e.l.m). BY declarlngu(n £). to be the homogenous

subspace of degree, L{(n, &) is endowed with a structure d, graded algebras.
3.1.2. Some automorphisms otiq (sln/ﬂ(?e)) For a positive integen and 0<

j <nlet X; be the automorphism df/(n, £) determined by

X] . X m ( 1)J8'JX hi,r = hi,ra ki — Ciai‘jki’ C—C

i,MFG;
and sety; = XX (1< j <n).
In the casen > 2, settingx = £2/q™*, we further define an automorphis of
U(n, &) by
£ X ((—1)”+1x)i8i'oxﬁtm, hiy = hi,, k—k, C—C
and setXp+1 = ¢ Ay and Ype1 = Xn+1Xn_l. In this case, we also need the automorphisms
S and ¢y (a € F*) of U(n, &) determined by

. m,.—mg; n
S.x- m = (1) Xﬁm

hiy — (= 1)« 7r8lnh|+lrv ki > kg, CrH—C,

Ca: | |—>ax hi —ah,, k~k, Cr~C.

Herei denotes the integer between 0 amdvhich is equal toi mod n + 1.

In the casen = 1, we set) = ); and define automorphism$ and ¢z b, b, (&, bo,
b; € F*) of U(1, &) by

S:xt = (1™ e hir = (=1)hiiy, k> ki, CHC,

mbiilxi%m’ hi.r = arhi.r, k| = ki, C— C.

La.bo.bl- ijfm = a
3.2. The quantum affine aIgebraUq(sI/n:l). To study quotient algebras arising
from the quantum toroidal algebra, we need other automsmmhiofZ{/(n, &) in addi-
tion to those defined in the previous subsection. To definmthe need the quantum
affine algebradJq (sln+1) with n > 1 and their (anti)automorphisms.
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3.2.1. The aIgebraUq(sI/nTl). For a positive integen, Ugq(She) [22] is de-
fined to be theF algebra generated by*,, hi,, k*' andC*! (1 <i <n, me Z,
r € Z\ {0}) with relations (3.1)—(3.10) where the subscript$ are between 1 and.
This algebra is endowed with a structure @f, graded algebras by assigning

+a; to x5, and 0 toh;,, k™ and C*™.

We denote the homogeneous subspace of degreg U, (sTn:l)a.
As was proved in [23], this algebra admits the presentatits, [[25] in terms of
generatorss, fi andt*! (0 <i < n) and relations

(3.16) tS21F =1, 4t =t
(3.17) tet =g e,
(3.18) Gt =g £,
8..

(3.19) [e fi]= 5 _';,1 (t—t7).

1-af’ @

1-a-s ,

(3.20) > (-15e%% a< ") 2o @ 71

s=0

1 ™

1-a™W_

(3.21) (—1P 91, fi( W-s) 0 (#j)

s=0

where xO = x'/[I]! for x
generators [23]:

e, fi. We choose the following correspondence of the

(3.22) e=x9 fi=x, t=k (@A<i=n), t - t,=C,
(3.23) & =C(ks - kn) [X{1. X505 - - - xn‘_o]q,
(3.24) fo = [Xos -+ X300 X1 _g]qake - - knCH.

Here the last two equalities should be understood()akal‘lxlfl and fg = xj__lk1C*l
in the casen = 1. Note that

(3.25) X{_1 =[f2,..., fn, folqt; 'C,  X; 4 =C 'taen, €n, ..., &g
under this correspondence. Note also that Uq(sTn:l)ai and f; e Uq(sTnjl)wi for
O<i<nwith ayg=—(ay+---+ap).

3.2.2. Some (anti)automorphisms qu(sI/njl). For 0<i <n let T; [26] be
the automorphism obg(sh+1) determined by

_aMm
Tie)=—fit, T(f)=—tla, T(t)=tt ",
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)

o S~—S (781'(1”)75) () e i
Ti(e) = > (-1°q°¢ ee” if i #j,

s=0

—_aM

il S~S £ (S) (—aﬂ“’—s) PR ;
Ti(f) =Y (-1t 1 1, it 0]

s=0

Let furthero andn be the antiautomorphisms afy (s/lnjl) determined by
c:egr—g, fi fi, ti|—>ti_1,

n: Xij.Em = Xi%—m’ hir — —C'hi—r, k- ki_l, Cw— C.

3.3. The automorphismsy and 7Z; of Uq(sm). Let on and o, be the
homomorphisms fronJq(Sh+1) to Z(n, £) determined by

on:&>Xo firXxy tk (0<i<n)
and
+

Qv: Xi = Xi:f:m, hir—=hir, kreKk (1 <ic< n)? C— C,

respectively. Note that these are homomorphism®pfgraded algebras.
Now we can define automorphisms andZ (0 <i < n) of Z(n, &).

Proposition 1. (1) For n > 1 there exists an automorphisg of L?(n,g) deter-
mined by

Yooy,=0n Yooh=gyonoo.
(2) v maps as follows

X0 X0 ki ko (1<i=<n),

Xi -1+ [0 -+ X0 Xgolgky (ko -~ k).

xpq > (ko- - kn) ke[ X5 0. X101 - Xz.o]q—lv
X507 [Xn0r -+ X200 X1 _1] ko (Ko - kn)C,
X0 > C (Ko - Kn) 'Ko[X{ 1, X301+ -+ + X 0]t

ko---ky+—>C™L, Cr> ko---ky.

3) v satisfiesw(ﬁ(n,é)(w,m)) C ﬁ(n, E)@.m—1) for (a,I,m) e Qu®Z S Z. In par-
ticular ¥ presereves eact((n, &),.
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Proof. Part (1)Awas proved in [8] and [10]. Part (2) followsorfr (1) and
(3.22)—(3.25). Sincd/(n, £) is generated by the elemenss,, xi_,, k™ and C*!
(0 <i <n), part (2) proves (3). ]

The following two propositions were proved in [8] and [10].

Proposition 2. For n > 1 there exist automorphism& (0 < i < n) of ﬁ(n,é)
determined by

Tiogy=0gvoTi (L<i=<n), Tjopon=¢gnoTj, SoTj:TjTloS O<j=n).

Proposition 3. Letn>2. Sety; =735 7, *ST,---7; for 1< j <n+1and
S=771...7;71y;L. Then the automorphisms;, S, 7 and v of U(n, £) satisfy the
following equalities
(1) yoYj=Yjoy 1=j=n+1).

2) yoS=So.
@) yoTi=Toy (L<i=<n).

4. Quotient algebras from Uq(sl2(Ce))

In this section we shall summarize several results [12]7@, &) and quotient al-
gebras from it. These results play an essential role in thdysbf quotient algebras
arising fromﬁ(n, &) (n > 2) in the next section.

In this section, fixingé € F*, we denotel/(1,£¢) by U and setU = U/(C —

1, kiko — 1). U inherits a structure of); graded algebras fro. We letU, signify
the homogeneous subspace of degreelhe automorphisms of in Sections 3.1.2
and 3.3 induce automorphisms Of, which we denote by the same letters. Hereafter,
in particular, we let® signify the isomorphismy of U.

4.1. Notations. First we prepare some notations. Letting =1 and & =
-1, set

&fhy . +a-"h
%,r:% and ay; = ®(aur)

forr e Z\ {0} anda =1, 2, so that
apr +ayr =hg, and %ﬁral,r +§r3-2,r = _qir ho,r.
Define Ay € Up (¢ = 1,2, r € Z) by the generating series

Z Ay 7 = exp<_ Z a‘["r:]tf zr)

r>0 r>0
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and setA,r = O(Agr).
For a pair of nonnegative integers= (r, s) we set

P = Al_rA]__,r A2_SA2’,S and P = CD(PI-)

For a nonnegative integel let Zy be the set of pairs of nonnegative integers
(r1,r2) such thatr; +ro = N.

4.2. The quotient algebras.A, Ay and A;.

4.21. Setl =% oU_me,Ume,- Thenl is an ideal ofUy. Set A = Ug/l. Since
the automorphismgy and & of U preserveU, for any « € Q,, they induce auto-
morphisms ofA4, which we denote by the same symbols. lor 1, 2 let A* be the
subalgebra of4 generated by the elemends, anda,, (r € Z\ {0}).

Proposition 4. In A the following hold.
(1) Y@ar) = 8ar, V(@ar) = (—0E*) Qar-
(2) P(aur)=0a "ay,

Proposition 5. (1) The algebraA* is generated by the elements@ a, 1, a1
and a,, 1.
(2) The algebraA is generated byd', A2, k; and k.

4.2.2. For a nonnegative integeN let Iy be the ideal ofUy generated by,
Y on Ume, U me, @ndky — N, and setdy = Uo/In. Note thatAy can be regarded
as a qutotient algebra oA.

Lemma 1. The following hold inAy.
(1) ) PreZ(An) (r € Zn).

(i) Drez Pr=1

(i) P Ps=4, P (r,se Zy).
(2) The P, satisfy the above containment and equalities with the rdplaced by
the P,.

4.2.3. Letr,r’ € Zy for some nonnegative integét and set
A =AN/(1— P, 1=Py) and A = A .

Lemma 2. A =0if r #r'.

Proposition 6. The following hold inA, with r = (ry, r2).

(1) AO(.:H = 0, Azx.:l:l =0 (| >Ty, @ = 1, 2)
(2) Aot.l’aAoz.fl = Aa.rﬂfla AO{.I’QA(X.7| = Aoz.l’mfl (0 < | Sl = 17 2)
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Proposition 7. (1) For r = (N, 0) there exists an isomorphisrﬁ'quz,N — A
determined by e~ A1) and Q — Ay,.
(2) For r = (0, N) there exists an iSOI"ﬂOfphiSléqzsfz_N — A, determined by e~
App and O — Ayy.

4.3. Representations ofU.

Proposition 8. Set @/> = g&* for « = 1,2. Let Hl(') = Ef{ Egz and
HO = _HO
o~ M
(1) For «¢=1,2 and a nonnegative integer N there exists a homomorphism
TeeN: U — EndVy, n 2 determined by

N HO
gy —q " y i
XI.m = ZH ;, — i yimEgz)v
i=1i<]j ! )
Ly —a Yy e
Xy m > ZH Vi A=
i=1 j<i J
022y, —1/2\—HY
0P Yj
o ST 1<(ﬂ ey E),
/2 H 2
i=1i<j pa Po Vi
N Hé’) . —1/2 Héj) )
- pe (ap™) ™y 2ymy—1EQ),
om = Zl—[ ~1/2 HY /2 P, YR
i=1 j<i Po Vi — P« yj

N
r . .
e DSy 0 e - arel).

N
r _
hor > [r_] > "y (a7 p/2ES — o' p;"2ED).

ki — qZ'Nzl H,

(2) For @ = 1,2 and a nonnegative integer ,Nhere exists an automorphism pGy
of the vector space ¢ such thatz,, : U — EndVp, n2 (U= (Gp,n®1) to
‘L’D,,g,N(U) o (G pe.N ® 1)) satisfies

ena)(f @) =af @of, 1, yAu)(f @ vPY) =D f @ vfY,
To/,,g,N(A3fa,l)(f & Ui@N) =f® U?N, Tolt_g_N(ABﬂx,l)(f ® U?N) =f® U?N

for any f e Cp, n.

Proof. Part (1) is a special case of [12, Proposition 4.5}. &d € F* let m,
signify the algebra automorphism &, n determined byx; — ax andy; — by.
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Part (2) follows from the results in the proof of [12, Propimsi 4.6] and the use of
the automorphisnm, p,. O

5. Quotient algebras from Uqy(sln+1(C,)) (n > 2)

Now we can start to considedq(sh+1(C,)), the quantum toroidal algebra of type
sl+1 with & = y, for n > 2 and study quotient algebras arising from it. Hereafter we
fix n > 2 and setl{ = U(n,y) andU = U/(C — 1, koky - --ky — 1). We further set
¥ =y ogqn1. The algebrd/ inherits a structure oQ, graded algebras frol. We
let U, signify the homogeneous subspace of degre&Ve denote the algebrads, A,

An and A, in Section 4 byU (¢), A(§), An(§) and A, (&), respectively, to specify the
dependence on the parameter

5.1. The homomorphisme;. In order to study quotient algebras arising from
U, the homomorphisms in the following proposition are usefinice we already have
some results on the quotient algebras arising ftdmwhich we have reviewed in Sec-
tion 4.

For 1<i <n setU[i] =} 7z Uny and

I[I] = Z umi/ailegj#isn mjaiumiai +Zl§j#i§n mjej -

m;>0 for some je(l.....n}\{i}

Then!{[i] is a subalgebra off andZ[i] is an ideal ofi/[i]. Since x; and ¥ are auto-
morphisms of theQ,, graded algebrd/, they preserve botl{[i] and Z[i]. Therefore
they induce automorphisms of the quotient algelafa] /Z[i], which we denote by the
same letters.

Proposition 9. (1) For 1 <i < n there exists a homomorphisg: U(y/q') —
Uli]/Z]i] determined by

+

il hl.r = hi.h kl = ki,

X3, > X
Xo) = -1 Ma/y) (%10 Xno) (K10 X1 0) %o,
Xo1 F> (—1)i71(Q/7/)IX0_,| (X0 %_1.0) (00" X310)»

i—1 n
s > (@) (zq'rm.f s q—'rh._r) |
=0

I=i+1
(2) The homomorphism; satisfies the following equalities
() Vogi=g¢iod.
@i oXpotyniqriy,1n If 0< ] <,
(i) Xjowi=qgioXiow 1y if j=i,
@ioXpoty(1yigriya If T <j<n+Ll
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The proof of this proposition will be given in Section 8.

5.2. The quotitent algebra’B. Now let us consider the quotient algebBa=
Up/Z where

L= Z s Z?ﬂ"‘i“iuZTﬂmJO‘J'

my,..., mpeZ X
m;>0 for some j

The automorphismst; and ¥ of ¢/ induce automorphisms d8 as before, which we
denote by the same symbols.

Sincelp N Z[i] C Z, there exists a homomorphism : (U[i]/Z[i])o = Uo/Uo N
I[i] — Up/Z = B (U U). It is easy to see that for £ i < n the composite map
i o ¢ilugq), INduces a homomorphism(y /q') — B, which we denote byp;.

Defineb, el (1<l <n+1,reZ\{0}) by

(5.1) b =hor +q'hy +-o +q0 Ny, +y* (q_lr hpt-o+ q_mhn.r)

and setb; = ¥(b ). Note thatb, — bs1, = (¥ q™" — " )h;,. Since the elements
b, commute with each other itX, so do theb, .

Proposition 10. (1) The homomorphisng;: A(y/q) — B is determined by
ki — ki and

Qyr > gabi+a71,r/(yzrq7ir - qir), Qqr €abi+a¢71,r/(y2rq7ir - qir)'

(2) The homomorphisi; and the automorphisms of(y/q') and B satisfy the equali-
ties in part (2) of Proposition 9with ¢; replaced byg;.

Proof. By Proposition 5 the homomorphis@ is determined by specifying the
images ofk;, the a,, and thea,,. The expressions for th&;(a,,) follow from
part (2)-(i) of Proposition 9. ]

Combining the above proposition with Propositions 4 and &,oltain the follow-
ing two propositions, which will be proven in the next suligat

Proposition 11. In B the following hold forl <i,l <n+1and re Z\ {0}.
(1) W) =bir, W(bir)=—(y/a)*br .
2 Yib,)=hr,

q~"by if 1<I<i-1,
Vi) = (=1 { (g 2y?) b, if 1 =i,
q'by if i+1<l<n+1
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(3) Yi(bi,)=hi,,

q'b if 1<Il<i—1,
Nilor)=(=1) 3 (@2y?) b, if 1 =i,
q b, if i+l1<l<n+1

For 1<1 <n+1 let B be the subalgebra 08 generated by the elemenis,
andb, (r € 2\ {0}).

Proposition 12. (1) B' is generated by the elementg;bb _1, b1 and by _;.
(2 [B,BM=0if 1<l #m<n+1.
(3) B is generated by3', ki and k! (1<l <n+1, 1<i <n).

5.3. Proof of Propositions 11 and 12. First we prepare the following lemma.

Lemma 3. (1) tabyb,(@.r) = (bob1) 8.
(2) calbiy) =Dh.

Proof. The elemeng, is in U(1, &)©0r) and tap, b, (U) = al (boby)" bf'u for u €
UL, £)may.ry. Therefore part (3) of Proposition 1 proves (1). The proof (8f is
similar. ]

Proof of Proposition 11. (1) Fixing € {1,2,...,n} anda € (1,2}, setc =
go/((¥/9') — (¥/q')"). Then by Propositions 10 and 4

cy W DOisg—1r) = (¥ 0 &) (Bur)
= (%ZI o ‘b)(aa.r)
= q—2r @i (g, —r)
= _q—2r Cyrbi+ot—1,—r~
This proves the second equality.

(2) The first equality follows from the definitions @f; and by .. Part (2) of
Proposition 10 implies

i ot1-q1 if 1<j<i,
~ gi oY ou1 (~1y-1q-1y (~1y-1 it j=i,
Vjog = N' ) (=1ta7y.(-1) . a

@i oY rolyciyigiy—yr Ifj =i+,

ai Ol1—g-11 if i+1< J Sn"’l.

Apply the above equality ta;, and a,. Then we obtain the second equality by
Proposition 10, Lemma 3 (1) and Proposition 4 (1).
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(3) By the definition of ¥ and Lemma 3 (2),y(b,) = (-q)~" Y, and
v(b ) = Y(b,). So by applyingy to the equalities in (2), we obtain the claim
thanks to Proposition 3 (1) and part (1). ]

To prove Proposition 12, we need the following lemma, whidli e proven in
Section 7.

Lemma 4. For|l #m and ts=+1, [b,, bns] =0 in B.

Proof of Proposition 12. Part (1) follows from Propositiochsand 10 since
(5.2) BH =5 (A(r /d))

forl<i <nanda=1,2. Part (2) follows from part (1) and Lemma 4. Part (3) can
be proven by specialization argument as in [12]. We mainlg tiee argument in the
proof of part (2) of [12, Lemma 7.5] and do not need a countemia[12, Lemma 7.3].

]

5.4. The quotient algebraBy,,...n,- FOr (Ni,...,Nn) € Z2, let Zy, .n, be
the ideal ofify generated byZ, Zm>Ni U U-me; and ki — g™ (i < i < N). Set
Bn,...N, = Uo/ZIn,...N,- This quotient algebra is the main object of our study. We can
and do regard this algebra as a quotient algebr#.of

5.4.1. Main result. Setp, =y? and p_ =g2™V/y2 Forl =1,n+1 andr € Z
definel, I, € B by

(5.3) Cir =@1(A1r), Tir =01(A1r),  Tnerr = 0n(A2r),  Therr = 0n(Azr).

Note thatI, = W(I'|;) by Proposition 10 (2).

Theorem 1. (1) Bn,..n, =0unless N=---=N,_1 =0.
(2) Bn,o...on, is generated by, and Ty, (| =L n+1,r € Z) and the following
relations hold in this algebra fo2 < j <nand I=1,n+1:
() bjr=bj, =0 €Z\{0).
(@) Ty =0, =0(r|>m).
(i) TmT o+ =Tim—r, OmO o =Lm (O<T1 <m).
Here my = Ny and mh+1 = Np.
(3) There exists an isomorphismy,fy, : Cp..n, ® Cp N, — Bnyo.on, determined by

&€®1l—=T1, Di®1—=T1, 16 I'nitr, 1® Dy = Thiay.

The proof of this theorem will be given in the next subsulisecand Section 6.
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5.4.2. Proof of Theorem 1 except for the injectivity offy,n,. First we pre-
pare two lemmas. For £ i < n and a pair of nonnegative integarsset PO = i (P)
and P{) = G (P,).

Lemma 5. The following hold inBy,
@ 0 PV eZBy,..n) (e Zn).

(i) Yrez, BV =1

iy RYPY =5 PV (r,s€ Zy).
2) T(t;e PEi) satisfy the above containment and equalities with thﬂ% feplaced by
the P{".

N, for 1<i <n.

n, be the quotient map. Clearly the composite map

Ay/d") “Bs Bn,....n, induces a homomorphismly, (v/q') — Bn,...n,» Which

we denote byui. This homomorphismu; and Lemma 1 prove (1)-(ii), (1)-(iii) and

erated by the images df' and B'*! in By,...n,. Therefore part (1)-(i) follows from
Proposition 12. As for part (2), the claim follows from (1nse P#) = \I/(Pr(')) by
Proposition 10 (2). U

For r1,...,rn), (ry, ..., rp) € Zn, X -+ - x Zy, Set

By, .try.ry = By Nn/<1 - Pr(li), 1- Psi,) 1<i< n)

n

and IetBrl ..... ton = Bro, o rarafn-

Lemma 6. For (ra,...,rn),(ry,...,rp) € Zn, x -+ x Zy, the following hold
(1) Br,..ro:iry.r, =0 unlessri =r; for any i.

_____ rm=0unless N=---=Ny,_1=0and (rs,...,rn) = ((N1,0),0,...,0,(0, Np)).

Proof. (1) Suppose that # r; for somei. Let ui: An(¥/d') — Bn,..N,
be the map in the proof of the previous lemma andhe quotient map3y,
Br,...t; ...y~ Clearly the map™ o u; induces a homomorphismd,, ./ (y/q') —
Br...rni vy, (%) Since Ay, 1(y/9') = 0 by Lemma 1, this implies that the identity
element ofB;, _r,:r,...r, IS O.

(2) Setrj =(rj,s;) for 1 <j <n. Let us denote the induced homomorphiseh (
in the caser| =r;j for all j by vi. Then

Ny —

(5.4) Vi(@yr) = GiarBive—1r and vi(ayr) = G a,rbiva—1r

With G or = £./(¥¥q~'" — ') by Proposition 10. Fixing € {1,...,n — 1}, setA, =
Vi(Azr) and By = viwg(Agy) forr > 0. Let A(2) = X .0 AZ andB(2) = .0 B Z.
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Then

A2/ A = oo ) <mla (e
Therefore
(5.5) Aa'2)B(d'"'2) = A(y*2/d')B(r?z/d"™).

By Proposition 6

A=0 (>s), B =0 (>ri),

Now we can give the following proof.
Proof of Theorem 1 except the injectivity diy, n,- By Lemma 5

= 1
1BN1‘___‘N,-, - Z Pr(ll)PE&) . Pr(nn) PEI:)

(F1seestn), (P TR EZNg XX ZNy

is a decomposition of 1 into a sum of orthogonal central idetepts if we allow some
of the summands to be 0. This implies

and

where the sum is taken overy(...,rn), (ry,...,ry) € Zn, X --- X Zn,. SO Lemma 6
proves (1) and

(5.6) Bn,.0.....0,Ny == B(Ny.0).0.....0,(0,Ny) -

Set A1 = An,o(r/a), A = Ao(y/d) (2 < i <= n—1), Ay = Aony(y/d")
and B = Bn,.0)0,...0,0Ny)- FOr 1<i <nletv:A — B be the homomorphism in
the proof of Lemma 6. These homomorphisms satisfy (5.4) @i, ;) = Di+e_1r,
Vi(Agr) = Tisg_1r for (i, ) = (1, 1), (n, 2). Therefore (2)-(i) through (2)-(iii) follow
from (5.6) and Proposition 6. Part (2)-(i) and Propositiah (B) prove the fact that
Bn,o...onN, iS generated by, andI, (I =1, n+1r € Z).
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The algebasA; and A, are generated by the elemerds;, a;r (r € Z \ {0})
and the elementsy,, axr (r € Z \ {0}), respectively, by Proposition 7. This, (5.2)
and Proposition 12 (2) imply that [Im, Imv,] = 0. Therefore the linear mapg; ®
A, = B (a®b > vi(a)vy(b)) is an algebra homomorphism. Now the existence of the
homomorphismfy, n, follows from Proposition 7 and (5.6). Part (2) proves thas th
homomorphism is surjective. ]

6. Proof of the injectivity of fy, n,

In this section we fix nonnegative integdvsand N and denote the algebiy, ..
and the idealZy, n, with (N1,..., Ny) = (M,0,...,0,N) by Bu,n and IM,N, e-
spectively.

6.1. Representation ofi{. Recalling thatp, = y? and p_ = g?™V/y2?, set
W = Vp mennst With p = (ps, ..., Ps, poy..., po). For 1< 1 < M + N define &,

M N
FO, HO e Endw (0<i <n), oy € {1, -1} and p € F* by

g=e" . V=", HU=EY-€l.. a=1 p=p

ii+1’ i+1i°

for1<l <M and
V=g, FU=e"  HU=gY..-E" a=-1 p=p_

i+1,0’ ii+1’ i

for M <l <M+ N.

Proposition 13. There exists a homomorphispt ¢/ — EndW determined by

M+N i R
NATI B | ik Bl LSTRVOD
" =1 I<m qn'yi — qgmI Ym ! ’
M+N H™ 40, ™ 4,
- gh ity —g =M oy o
Xip > q l y ‘7: ’
o ,;,l;ll g Y — gl Ym
[l (< padl
i - | . “r e |
i > == (Zq”y{(q B —a V) Y gy (@B, —a E”)>,
I=M+1
K > qZM+N H(|)
M+N H<m> (1+g|)/2 _um™  (HM+om)/2
+ 3 —q " Pm Ym @+a)r/2. 1 o)
%o g Il<_r£ p|(1+m)/2y ol o2 P %o
- - m
M+N H(m) (—1+01)/2 _Hm (Hém)+am)/2
- &) Yi—q " Pm Ym _(—1+0)r/2, 1 o—1 ()
OEDMIE L)z, (B om)2 B WX Fo

I=1 m<l P Yi — Pm Ym
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[I’] M M+N
- | | —r =( (
ho T (Z W (q "n Er(h)Ll n+l T Eg)l Z y ' Eg)l -q'p- Er(h)Ll n+1))
1=1 I=M+1
wherel <i <n.
Proof. LetSbe the endomorphism & determined by sendin@i(yi, - .., Ym+N) X
M+N m|
® iy ® -+ @ Uiy, 10

M+N

F@y ... g™ yman) [T %
=1

M —018i n+1

QU ® - ® v, 51

Let X, Hir and K; be the images ok, m Nir andk; under the assignment in
the proposition. Then, for & i <n,

SX;_trgl_ 75|nrxli+1r SHj:rgl_ 75|nl‘Hlflr SK‘gl:Km
wherekx = y2/q™ and Ko = (K1 --- K,) L.

The claim can be proven by checking the relations by dire@tutaions except
for (3.10). The use of the above linear m&psimplifies the calculations. The rela-
tions (3.10) follow from (3.7) and (3.10) withy, =m, =0, i.e., X7, [%T. xf,]q,l]q =
0 (a; = —1), which are proved as in the proof of [12, Proposition 4.5].

6.2. The homomorphismBy,,o,...,o,v, = ENA(Cp,,n, ® Cp_n,). FOr 1 <1 <

n+1 setg =(0,...,0, Itlh, 0,...,0) € Z™% We identify Q, with a subgroup ofz"*

via the correspondencg <> ¢ — €i+1 (L < i < n). The vector spac&V is endowed

with a structure ofZ"* graded vector spaces by defining the homogeneous subspace
of degreeg, Wg, to be

Wg = Z CpMN ® Uiy ® - -+ @ Vi,
Zlhil €iy _ZI’!KA’L € =p
for any g € Z™1. This structure satisfieg(l,)Ws C Wﬁﬂ, for aeQ,andg e ZM
Let A = Me; — Neps1. Then W, = Cp,M+N ® U:i@ n+1 Set Qn = @l 1Z>00lJ
and letW[i]= > o W, _m for 1 <i <n.
Lemma 7. (1) W= ZﬁeQ; Wi _g.
(2) W[i]=W, if 1<i <n and

M
W[l] = Zwk—mal = Z Cp M+N ® Vi, ® -+ ® Vi, &® Un+1,
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N
W[n]=ZWx,man = Z Comen @M ®vj, ® - ®@ vj,,.
m=0 j j

(3) p(@ZmNn)W, =0.

Proof. Parts (1) and (2) are immediate from the definitiond part (3) follows
from (1) and (2). U

We shall identifyCp,, m®C,_ N With a subspace o€, m+n Via the correspondence

N

M N M
(f®l_lxljj)®(g®l_[x;n]) = f(yls”-ﬂyM)g(yM‘Fl’~--7yM+N)®1_[XIjJHX:\;‘LJ.
j=1 j=1

=1 j=

This enables us to identify,, m n+1®Vp_ n,n+1 With @ subspace oV sinceVp, m n+1®
Vp,.N.n+1 = (Cp+.M by Cp,.N) ® (Fn+1)®M+N-

Let 01: Vp, . m2 = Vp, mne1 @and 6z Vp N2 — Vp_ none1 be the linear maps de-
termined by

(fLi®v,®--- Q)= 1 v, @ - ®vj,,
O2(f2 @ vi, @ -+ ® viy) = f2 ® vneo—iy @+ @ Vnwziy
where f; € Cy, M, f2 € Cp_n and thei; are in{1, 2}.
For 1<i < n pU]i]) clearly preservedN[i] and p(Z[i]) annihilatesW[i] thanks

to Lemma 7 (1). Thereforep defines a homomorphism; : U[i]/Z[i] — EndWIJi]
(U~ p(u)lwgip). For the homomorphismg; and p, the following lemma holds.

Lemma 8. Sett; = 11,/q.m ©tg,1,1 @and 72 = T2, /0N © g0 (—1yp-1,1. If we regard
Vp, M.n+1 ® Vp_ N+t @S @ subspace of Wihe following hold
(1) Forue Vy, w2 andw e Cp_ n @ 03N (C Vp_ nnst),

(P10 1)(X)(01(U) ® w) = Oo(ra(x)u) @ w  (x € U(y/0q)).

(2) ForueCp v ® U?M (C Vp.mn+1) and w € Vp_ N2,

(Pn 0 en)(X)(U ® O2(w)) = U ® O2(z2(X)w)  (x € U(y/q").

Proof. It is sufficient to check the equalities far= x7, hi, and ki'*. Here we
show part (1) forx = x5, as an example.
_____ v =V, ®- ® vy, ®v] e (F™HEM*N By Propositions 9 and 13, we
find that for f € Cp.m+N andiq,...,im € {1, 2}
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M gy i1 i o1
=@ Y 6,0y [ <M> [ Tlevi-apiy,

T ] -1
=1 j <m=M P+Yj — Ym M<m<mM+N  P+Yi = P="¥m

w = l—[ (qyi - qum)&m.z l—[ "ty — q7nilymx- f @i, i ,2i .
] y] _ ym M —hehaN qnyJ _ q_nym ] I, -1, 40+, Im o

j<m=<M

p: = y2 and p:p_ = q?™D, we can see that the above expression is equal to

v a7y —ar e\ ™
a > sy J1 ( ’ m)
=1

[Zmem N VYTV m

(CIYj — a7 Ym
X —_—
Yi = Ym

For f = f1 ® f2 € Cp, .M ® Cp_ N, this coincides with
q'601(tLyjam (}g) (L @ vi, ® - @ 1i,,)) ® (F2 @ vEY)

if we identify Vp, mn+1 ® Vp_ non+1 With a subspace ofV. O

Proposition 14. There exists a homomorphisa: By n — EndCp,.m ® Cp_n)
determined by

ol )(fReg=6f®y, o@yu)(f®0=Df®a0,
oM )(F®0)=FReg, @ )(f®09)=f®Dg

where f® g€ Cp v ® Cp_n.

Proof. Sincep(Up) preservesh,, we can see by Lemma 7 (3) that there exists a
homomorphismg: Bu.n = Uo/Zm.n — EndW, (U — p(u)|w,). Let j be the guotient
map B — By .n. It is easy to show that the homomorphiginsatisfies

(6.1) (5o jo@)(T)=(oo@)U)lw, (ueU(r/d)o)

for1<i<n.
Foru=f®vf™ eV, w2 andw € Cp_n ® v3 (C Vp_ n.ne1), We find that

B(C1r)(O1(u) ® w) = (p1 0 p1)(A1r)(62(u) ® w) (by (5.3) and (6.1))
=g 01(t1, jqom (A )u) @ w  (by Lemma 8)
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=q (Gp.ma G,y f ®vfM)®@w (by Proposition 8 (2))

This and similar calculations prove tha{l’;;) and p(Iy,) (I = 1,n+1r € Z) pre-
serveW, := (Cp,.m ® Cp n) ® (vPM ® v3N )(C W,). Therefores(Bu.n)W, € W, by
Theorem 1 (2).

Let us identifyW, with C,, Mm®C, ~ and defingp’: Bu,n — EndCp,.m®Cp_n)
by ur Glo p(U)lw; o G where G = Gy, v ® Gp_n. Then the above calculations
show that

PT)(feg=d@E&f®g), PIu)(fe®g=Dfxg,
PT)(f®9) = "(f®eg), 7(Tnw)(f®0)=(-1)"(f®D0Q)

for f ® g€ Cp, .m ® Cp_n. This proves the claim. ]

6.3. Proof of the injectivity of fy, n,. Now, to complete the proof of Theo-
rem 1, we give the proof of the injectivity ofy, n,. Proposition 14 implies that there
exists a homomorphisrgn, n, : Bny, N, = Cping ® Cp N, determined by

MNr>&6®1l Tiyy—=>D0®1L Ty 106, Ty > 1D,
The injectivity of fy, n, follows from gn, N, © fn,. N, = id. O

7. Proof of Lemma 4

In this section we shall prove Lemma 4. Before doing so, we@ane several equal-
ities in Uq(Sh+1) and g (sh+1(Cy)) (n > 2) in the first two subsections.

7.1. Some equalities iNUg(dne1) (N > 2). Set

J[I] = Z Uq (S|n+1)m|lailesj#i§n mjaj Uq (S|n+l)miai+21§j#i§n mjaj

m;>0 for some’jel{l ..... ni\{i}

for1<i <n and

‘] = Z Uq(s/lr:l)—zjllmjajUq(s/lr.1:1)2?=lmjaj'

ma,..., mpeZ .
m; >0 for some j

First we note the following result, which follows from [23].

Lemma 9. In Uq(s’lr:l) the following hold forl <i, j <n.
(1) Ti(x) =xg if I —jl> 1,
@) Ti(x})) = 5o X g Ti0G0) = [X73 X0l 1 N = j1=1.

Using this lemma, we can prove the following lemma.
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Lemma 10. In Uq(s/lr:l) the following hold forl <i <n.

D O x;=CE0"-g) " NC (g4 -en)(@-1---e)ep mod J[i],
(i) Xy = (=1 "(=q)" L fo(F1-- fi_1)(fa--- fian)t7"C mod J[i],
(i) hi1=(-1)"-q)™Ve(g:+1---en)(@-1--€)ep mod J.

(@) (Tn---T)(h11) = —[[en, ... €ilqs, €], -

@B) () (Moo)xy) = (—a)"Pkx _kC? mod J[i],
(i) (noo)(x_y) = (—q)"-C-2k x" k1 mod J[i].

Proof. (1) By Lemma 9 and the definition of thg, (3.9) with m,1) = (0, 0)
and (3.25) (for thex,) are rewritten as

(7.1) Ti(x,) +Tj(x1) =0 if Ji—jI=1
(7.2) X2 = (T T ) (to o).

From these we obtain
X1 =0T T (T T Y) (to veo)

for 1 <i < n. This proves the expression for;. The claim forx;f_1 can be shown
similarly and the claim forh; ; follows from the equality

(7.3) hi1= Clﬁ_l[xiva X1
) By (7.2) and (7.3)
hy1=—[T, % T, ten, 91]qu~

SetX = T, 1. T7lep. Then X = [en, €, -+, €3]gs and T, 1+ T ley = [X, &gt
Therefore

Tihya = [[[el, Xlg-1. [e1, €2lg1] s fl] ty,

= —[e1. [X. &g

Applying T, --- T, to the above, we obtain the claim.
(3) The automorphismy o o preserves][i] and

(n 0 o)(€0) = 1(€0) = [X7gs - - -+ X5 0 xl‘_fl]qkl ke C

by (3.23). Noting these, apply o o to the first equality of (1). Then we obtain the
claim for x7;. The proof forx’_, is similar. O
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7.2. Some equalities inUq(Sn+1(C,)) (n > 2). Recall that we fixech > 2 and
setyd = U(n, y). We further setx = y2/q™?L. First note the following simple fact,
which follows from the relation (3.9).

Lemma 11. If ai(j“) = —1, the following hold in/.
(D) ki1 X = ey X me1 Mod 35, u/)fifr-
(2 Kijxi]+lxj_,m =ax, Xj_,m+1 mod Zrez Xj_,ru'

Using the above lemma and the results in Section 3.3, we oan e following
lemma.

R Lg\mma 12. Sethj, =y (hi;) € U for O <i<nandre Z/B {0}. Define an ideal
7 of U as we didZ for U. Let = denote the equality modul®d. Then the following
hold in U.

@) hiz= (=1 =a) ™I (XLe Xn0) (X no Xio)Xge (=i = ).

(2) hp1 = —« [[x;_l, x;_l,o,...,xio]q,l,xa_l]q = (—1)nx[[xil, xzo,...,xg_o]q,l,
xgﬁl]qu.

3 Yo dhi = —Xq 1 X0 10" " X1 0%0, 1
@) ¥ %ho1+ XL, q hia = (=1)"q "X x50 X3 0% -

-2

Proof. (1) By Proposition 1 (1)y oo, = on. Applying this to the third equality
of Lemma 10 (1), we obtain the claim singg is a homomorphism ofQ, graded
algebras.

(2) By Propositions 1, 2 and 3,

ho1 = —8 *hys,
= =Yn+1(¥ 0 0y)(Tn - - - Trhp 1),
= =h+1(on(Tn - - - Trhy 1)),

This and part (2) of Lemma 10 prove the first equality. The sdcequality follows
from this and (3.9).
(3) Using the first equality of part (2) and Lemma 11, we camwsho

_ + + + + + U+
ho1 = —Kk[X71. X1 10: - X|.O]q*1x|71.0 " X1,0%0,-1
-1
i—-n-1,,+ + + + + +
+Z(—Q)' "X (Kh0 Xn0) (Ko X1 0)X00
i=1

for 1 <1 < n by induction onl. The casd =n and part (1) give the claim.
(4) Using the second equality of part (2), the claim can bevshsimilarly to (3).
]
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The following lemma is proven by direct calculations.

Lemma 13. In I/ the following equalities hotd
[br, X] =0 if @ #0,1—
by, Xgm] = i[ ]c(”F“W2 xq- (1 Y ) X mer

b ]::}:u

[

[br COFM2 5 (@™ — g )Xgme for 2<Il<n,
(e 3] = L ]C(mr\)/z (@ — g™ [y )
[

[

bl rXE 1m] i[r_]c(rﬂr\)/Z x (qlr _ Vzrqilr)xljil.mﬂ for 2<l<n+1,

r
bir. X' = i[r—]C(W‘”)/z x (y*qtr —qt=)x= o for 1<1<n
REMARK 1. We can also show the following equality I

[b 1= 8 md [r]C’ Cr(r+—r_ 24121\ (2.1-20\~T
Ir, m.s. Imr+sOr'q_q_1 q q (Vq ) ()/q ) )

7.3. Proof of Lemma 4. Now we can give the proof of Lemma 4. Thanks to
part (1) of Proposition 11, it is sufficient to show the claior f = s = 1. Here we
shall prove by1,b1]=0 for 2<1 <n+1 (x) as an example.

By Lemmas 12 and 13 the elemetits; (2 <i <n) and Y /5 q'hi_l in B=Uy/Z
have the formXx; oX; , where X is an element ot/ which commutes withb;; and
m is an integer. Lemmas 11 and 13 imply tHath 1, X] 03] = (¥ — D)X 1 X m —
07X} X me1) =0 modZ. Therefore

[Pr1,ha]=0 (2<1<n) and P11, ho1+gh1s]=0
in B. This and (5.1) proves) sinceb; ; = (—q)" 1y (b 1). ]

8. Proof of Proposition 9

The purpose of this section is to prove Proposition 15 befowm which Propo-
sition 9 follows. We keep the notation of Section 5 and furthetU(s) :ﬁ(l, &) for
£ ek~

For 1<i < n define a subalgebi@]i] of Z/ and an ideak][i] of Z/[i] in the same
way that we defined/[i] and Z[i] for &/ in Section 5.1. The automorphisnd; and
W induce automorphisms of the quotient algeﬁﬁ]/f[i] as in the caseé/[i]/Z[i],
which we denote by the same letters.
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Proposition 15. (1) For 1 <i < n there exists a homomorphisg: U(y/q') —
Uli]1/Zli] determined by

+
il

ko> (ko kn)k !, C—C,
Xg) F> (-1 a/y) (Xi++1,0 e XrT,O) (Xitl,o e Xio)xa.h
Xo1 = (=1)74a/¥) %01 (X0 X _1.0) (X0 * Xiv1.0):

i—1 n
hor > (/) (Z q"h +y? Y q"hl.r) :

1=0 I=i+1

X;ﬁ = X hir = hir, ki ki,

(2) The homomorphisrg; satisfies the following equalities
() Yoy =¢iod.
?ﬁi oXpo l1,(~1)igtiy-1,1 if 0< j <,

(i) Xjopi={@ioXio l1,1,(~1)-1 if j=i,

@i o Xpo L (—nig-ips I I <j<n+l

To prove Proposition 15, we need the following lemma, whiem de proven by
checking the relations.
For m > 2 settd(m) =U(m, y), V(M) = ZﬂeQ,m U(m)g and

T = Y Uporanld(M)prira,
B.B'€Qn
r>0
where Qf, = D1j<m 129 C Qm. Then 9(m) is a subalgebra oﬁ(m) and f(m) is
an ideal of V(m).

Lemma 14. For m > 3 there exists a homomorphispm,: Z/(m—1) — V(m) /7 (m)
determined by
X X e hie ke ko (<] =m-1)
Xo1 P> XmoXar:  Xoi > X0 %m0

hor + hor + (¥2/a™) hmr, ko> kokm, C > C.

Proof of Proposition 15. (1) First we show that the casen follows from the
casei = 1. Setl/’ = U(n,q™!/y) and denoteZ[i] defined fori/’ (instead ofi{) by
Zi] for 1 <i < n. Setx = y2/q™! and letw be the isomorphisnd/ — f' deter-
mined by

+
n+1—j,I°

Xoi.l = (_1)n_1KIXojf|, hor = «"hor, ko ko, Cr C.

le] = X hir = nesjr, K= ke (<) <n),
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Sincew(U[1]) =U'[n] andw(Z[1]) =Z'[n],  induces an isomorphism: U[1] /Z[1] —
U'[n]/Z'[n]. Noting thatU(¢) = U(¢ ") for £ € F*, we obtain the desired homo-
morphism @, from the composite mapw 5 @1: U(y/q) — ﬁ’[n]/f’[n] by letting
y = g™y,

Next we show the claim by induction am The casen = 2 andi = 1 was proven
in [12]. This and the argument in the previous paragraph erie casen = 2. Now,
supposing that we have shown the case m — 1 (m > 3), we shall prove the case
n=mand 1<i <m-—1, from which the casé = m follows as before.

For any integel > 2 and 1< i < | we defineﬁ(l)[i] and Z()[i] for #(1)
as we didZ{[i] and Z[i] for . In the casen = |, we denote the homomorphism

0 Uy/d') — UDIT/ZON] by @iy. Let — V(m) N V(m)/j(m) be the canoni-
cal map. Then for I< i < m -1, smcej(m) NUM)[i] c Z(m)[i], we obtain the
following composite map:

am - il 2 T[] ~ a1/ (Fm) ndmil) — A1 /Zm)i]

where the last map is defined ly+ f(m) ﬂﬁ(m)[i] —u +f(m)[i]. The above map
induces a homomorphis@(m — 1)[i]/Z(m — 1)[i] — U(m)[i]/Z(m)[i] and the com-
position of this homomorphism ang n_; yields @i m.

(2) The claims are proven by checking the equalities on thm@orsxﬁo, Xfﬂ,
k™ (I =0,1) andC*! of U(y/q'). Here we show

(8.1) W o) (X50) = (@ o P)(Xg0)

and (i) onxg, as examples.
Let ﬁ[i] — ﬁ[i]/f[i] be the quotient map. Noting tha¥, o, and o, are
homomorphisms ofQ, graded algebras, we find that

the Lh.s. of (8.1) =€a)" (¥ o on)(k 'Cx ;) (by Lemma 10 (1))
= (—q)" (ki C)~(oy onoo)(%,) (by Proposition 1)
=X _,kC (by Lemma 10 (3))

By part (2) of Proposition 1.9(x5,) = X;_;kiC. This enables us to see that the
r.h.s. coincides with the above.
Next we consider (ii). Fixing € {1,2,...,n}, set

2= (a0 Xh0) (610 Xi0)X5) € Uli1/Zi]
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for | € Z. Then by Lemma 11

(-9)'z-1 if 0<j<i,
Xi(@2)= 1z it j=i,
y2(—q)lz .y if i<j<n+l

Using the above, it is easy to check the equality (ii) >gpy. Ul
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