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Abstract
We construct automorphic functions on the r@alimensional hyperbolic space
H® for the Whitehead-link-complement grolpy ¢ GL»(Z[i]) and for a few groups
commensurable wittW. These automorphic functions give embeddings of the orbit
spaces off® under these groups, and arithmetical characterizatiorthesf.

Contents
Lo INtrodUCHION oo 840
2. A hyperbolic structure on the complement of the Whitehkad ....... 841
3. Discrete subgroups @BL,(C), especiallyA ......cocoviiiiiiiiiiiiiiii 843
4.  Symmetry of the Whitehead link ..o 846
4.1, Symmetries OL. ..o 846
4.2, FiXed I0CI. oot 847
5. Orbit spaces undeiV, STo(1 +i) aNd A .....ccooeeeeieiiiiiiieeeeeeeeeeiiii, 848
5.1.  The orbifoldH3 /W. ...ccooiiiiiiiiiiiiiiice e 849
5.2.  The orbifoldHZ/STo(L +1).  cvivriririii e B4
5.3.  The orbifoldHZ/A.  ..ooviiiii i, 850
6.  Theta fUNCLIONS .. .ot e 851
6.1.  Theta functions OM. ..........ccoeiiiiiiiiiiiiii e, 851

6.2. Embedding of® into D and the pull-back of the theta functions. 853
6.3.  Automorphic functions fof'"(2) and an embedding dfi®/T'T(2). 854

6.4.  Automorphic functions foA and an embedding dfi®/A. ........ 854
7. Automorphic functions fOMW ... 856
7.1. Fundamental properties @f;, @, and ®3.  .......covvviiiiiiennn. 856
7.2. ISOtropy SUDQIOUPS.  .oeeiii e 857
7.3.  An arithmetical characterization of the WhiteheadHcomplement
[0 0] 0 o P 859
8. Embeddings of the quotient spaces .............occceciiiiiiiiiiiinnnn. 865
8.1.  Automorphic functions foW vanishing alongFj. ................... 865
8.2.  An embedding of3/STo(L +i). .eeoiviririeiiiiiie e 871
8.3.  An embedding OF/W. .....cccccooiiiiiiiiiiiiiiii e 873
8.4. An embedding of3/W. ... ... 874

2000 Mathematics Subject Classification. 11F55, 14P05, 57M25



840 K. MATSUMOTO, H. NISHI AND M. YOSHIDA

Fy F

"/

F; / ]
u
S~

Fig. 1. Whitehead link with its symmetry axes
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1. Introduction

Fig. 1 shows the Whitehead link = Lo U L, in S*=R3U {0}. The Whitehead-
link-complementS® — L is known to admit a hyperbolic structure: there is a graMp
acting properly discontinuously on the 3-dimensional migpic spaceH?®, and there
is a homeomorphism

h: H3 /W 5 S° — L.

No one has ever tried to make the homeomorphisexplicit.

In this paper we construct automorphic functions ¥ (analytic functions de-
fined in H® which are invariant undew), and express the homeomorphismn terms
of these automorphic functions. Since our embeddingdéfW requires many auto-
morphic functions (codimension of the embedding is highg, fimd several extensions
of W, and give their embeddings, which have lower embedding wtsoas. In particu-
lar, for the extensioW’ such thatW’/W (= (Z/2Z)?) represents the group of symme-
tries (orientation-preserving ambient homotopies)Lof S, we find five automorphic
functions, sayhy, ..., hs, so that the map

H® 5 x > (hy(X), ..., hs(x)) € R®

gives an embedding dfl®/W'. Its image is explicitly presented as part of an affine
algebraic variety.
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Our automorphic functions are made from theta functions ¢lve ring Z[i]. Our
proofs heavily depends on properties of these theta fumgtiand on quadratic rela-
tions among them established in [2], [3] and [5].

2. A hyperbolic structure on the complement of the Whiteheadlink
Let H® be the upper half space model
H={(zt) e CxR|t> 0}

of the 3-dimensional real hyperbolic space. The gr@ip(C) and an involutionT act
on H® as

g- (Z t) — 911521t2 + (9112 + glz)m |det(q)|t
’ 1921122 + (G212 + 922)(021Z + G22) * 1021/2t% + (9212 + G22) (G212 + G2) |
T- (Z’ t) = (Z t),

where g = (gjk) € GLx(C). Let GL! (C) be the group generated B3L,(C) and an
involution T with relationsT -g=g- T for g € GLy(C).

The Whitehead-link-complemer8®—L admits a hyperbolic structure (cf. [6], [7]):
Let W be the discrete subgroly of GL,(C) generated by the two elements

(1Y ag e 1O
Q= 1 21+ 1)

We have the homeomorphism
He /W S S° L.

We call W the Whitehead-link-complement group fundamental domain, which will
be denoted byFD, for W in H® is given in Fig. 2 (cf. [7]); two pyramids are shown.
Each face of the pyramids is a mirror of a reflection belondim@L,(Z[i]) - T. The
faces (together with the corresponding reflections) of the pyramids and their patch-
ing rules are as follows:



K. MATSUMOTO, H. NISHI AND M. YOSHIDA

842

Im(z)

#9

Re(z)

#10

#2

#3

#4

#6

#5

#3

#7

#1

-1+

NN

NN
72NN ///
\\\\\\\\\\\\\“V//////Z/// ///
\\\\\\\\\\\\\ NN
W)

1

N
== N\
DRI

NN

S

N\

2\

Z
7

\\\\\
S /777
SS=7/
=7
7/
)

N

N
DM
Il

Fig. 2. Fundamental domaiBD of W in H?3

The faces of the two pyramids
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The groupW has two cusps. They are represented by the vertices of tlammys:

(£1,0) ~ (F1+£i,0).

0) ~

’

(0,0) ~ (i

(z.1) = (%, +00),
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REMARK 1. The translatiort, := (3 2) is an element ofN. Indeed one finds the
relation g, 20705 197 102010207 = —1 in [7]. We can decide whether a givenx22
matrix is an element oV by Theorem 5 ing7.3.

3. Discrete subgroups ofGL,(C), especially A
We define some discrete subgroupsGif,(C):

I' = GLo(Z[i]),

Fo(L+i)={g=(gj) € I' | 921 € (L +i)Z[i]},

STo(1+i) ={g € T'o(1 +i) | det@@) = +£1},
FA+i)={geTl |011—1 012 01, 02— 1e (1+i)Z[i]},
I'(2)={g €' | g1 — 1, 912, G21, 922 — 1 € 2Z][i]},

W=TWT=({g|ge W},
W=WnW,
W = (W, W).

CONVENTION. Since we are interested only in the action of these group&Hn
we regard these groups as subgroups of the projectified d@lp(C); in other words,
every element of the groups represented by a scalar matregerded as the identity.
For any subgroufg in ', we denoteGT the group generated bg and T in GLJ (C).

It is known ([5]) that the groud™" (2) is a Coxeter group generated by the eight

reflections
-1 0 -1 -2 1 2
T (o) (o) )T

1 O —1+2 -2 1+2 2i -1 0
(& D) (757 35) (0% 2 (Z )

The mirrors of the reflections are four walls IZhE O, Re@) = 0, Reg) = —1, Im(z) =
1, and four northern hemispheres with radiy? \and centers/2, —1/2 +i, —1+i/2,
—1/2, respectively, see Fig. 3. Note that the Weyl chamber bedinay these eight
mirrors is an (ideal) octahedron in the hyperbolic sp&ce

The groupI'"(2) is well-studied in [5]. To relate'"(2) with the Whitehead-
link-complement groupV, we consider the smallest group which contains biott{2)
andW:

A =(r'T(2), W).

Lemma 1. 1. T'T(2) is a normal subgroup ofA, and A/T'T(2) is isomorphic
to the dihedral group of order eight o
2. [A,W]=8, W is not a normal subgroup oA: TWT=W.
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Fig. 3. Weyl chamber of'7(2)

1. We extend the reflection group'(2) by adding the reflectiory; T

with mirror Imz = 1/2, and the 2-fold rotation with axis the geodesic arc jointhg
points {,t) = (0,0) and (1 +i, 0), which is given by

Proof.

These reflection and rotation preserve the Weyl chamberegtsovd generate a group

isomorphic to the dihedral group of order eight. Since weehav

(‘21 2) (; _01>GFT(2)
)(

and

9>

)

(L

)=
2. By comparing the Weyl chamber &' (2) with the fundamental domaiRD

-1 0
1
of W, we see thaWW has the same co-volume wifA"

0
—i 2

(L

1
2

this extended group coincides with.

O

W] = 8.

’

(2). Thus A

From the proof of this lemma, we have

Corollary 1. The domain bounded by the four walls

1
=5

c: Im(2)

:O’

b: Re(2

:O,

Im(2)

a:
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Fig. 4. Fundamental domain of

and the big hemispher#9 in §2 is a fundamental domain of\, seeFig. 4. The hemi-
sphere part is folded by the rotation R above

We use this fundamental domain §5.3.
Lemma 2. We haveA = ST (1 +i) and [STo(1 +i), W] = 4.
Proof. It is clear thatA C SI'J (1 +i). Since
[[S(@+0),TT(2] =16 and [[§(L+i), SIG(L+i)]=2
we haveA = SI'J (1 +i). O

So far we defined many subgroups Iof = GL! (Z[i]); their inclusion relation can
be depicted as follows:

ri(1+i)
/ |
T +i) A =S (1+i)
| / |
SIT(1+i) STo(1 +i)
| |
* W = (W, W)
| VRN
r’) W W
| N/
rQ) W=wnw
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When two groups are connected by a segment, the one belowuisgaosip of the one
above of index 2. More explanation about these groups will ibengin §7.2.

4. Symmetry of the Whitehead link

In this section, we study the symmetries of the Whiteheaki, land express each
symmetry as an extension of the grouh

4.1. Symmetries ofL. The z-rotations with axes, F, and F3 in Fig. 1 are
orientation preserving homeomorphisms 8f keeping L fixed; they form a group
(Z/2Z)?. Here the axes are defined in Fig. E; (resp. F») meet L., (resp.Lo) at
two points, andF3 meetsL,, at two points andLy at two points.

Recall that there is a homeomorphis®d — L = H3/W where the stringd, and
L correspond to the cusps o¥ represented by

0:=(0,0), and oo := (%, +00) € JH°,

respectively. Under this identification, we show

Proposition 1. The threer-rotations with axes | F, and F; can be represented
by the transformations

Z+— —z+1, z—~2z+1, and z—~ —z
respectively of H® modulo W

This assertion will be clear as soon as we study the fixed pahthese transforma-
tions in the next subsection. Note that the three rotationduio W (and the identity)
form a group isomorphic toZ/2Z)?, since g+ z+2] € W (see Remark 1).

We make some convention. The symbblsand O stand for the points in th&V-

orbits of
0= —1+i 1 and O = i1 c H°
- 2 5 \/z 5 - 27 2 >

respectively. Letr be the projection
n:H35 (zt)> zeC: z-plane

In the figures on the-plane, a thick segment stands for a geodesic curve (in therup
half spaceH?3) on the hemispheres with centet(@l —i)/2,0) and radius A/2 (the
big hemispheres #9 and #10 §2); its image underr is the given segment.

The eight geodesics in the fundamental domfaih shown in Fig. 2, given as the
intersections of walls

#1N#9, #3NH#9, #S5NH9, #HINH, #2N#LO #4AN#10 #O6N#10, #B8N#10
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-1+

Fig. 5. Identification of eight geodesics ¥D

are identified moduloW as is seen in Fig. 5. This identification will be used
freely later.

4.2. Fixed loci. We study the fixed points of the transformations in Proposi-
tion 1 in H3/W. Recall that the translations [~ z+i] and [z — z + 2] belong
to W.
1. The transformation of[®/W represented byz[— —z+ 1] fixes pointwise the fol-
lowing geodesics irFD:
—1+i

Z= Z= Z_l_i Z=
B 2 T 20 T2

1 1 1 1
_ = —(-Z)+1=-242=—-- mod
. ( ) - , 2

+1 +i 1 modii
— — = = .

2 2 2 2
Thus the set of fixed points consists of two geodesics bottirsjaand ending ato €
dHS, and passing throughl and (), respectively. These can be easily understood by
the diagram:

oco—}——o00, oco——(O)—0.

This implies that this transformation represents the imtatvith axis F;.
2. The transformationz[— z + 1] fixes pointwise the following geodesics KD:

geodesic joining 0 and i,(0) through O,
geodesic joining i(0) and ¢1,0) through O.

In fact, the former can be seen by the translation of zkane byi, and the identi-
fication of the eight geodesics shown in Fig. 5; and the lditethe same translation
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Fig. 6. The fixed loci of f+> —z+1],[z+> z+ 1], [z~ —Z]

and the transformation patching the big hemispheres #9 afOdagipeared ir§2. Thus

the set of fixed points consists of two geodesics both stpdimd ending at @ 9H?,

and passing throughl and O, respectively. These can be easily understood by the
diagram:

0—{—0 0—(O—0.

This implies that this transformation represents the imatvith axis F.
3. The transformationz[— —Z] fixes pointwise the following geodesics FD:

geodesic joining 0 and H1+i,0) through O,
i i
z=0, z=-1 z=-1+_-, z=-_-.
b bl 2’ 2
One can check these in the same way as the above two cases. ddrede visual-
ized as

0 D 0 O 00, oo—(O)——o0, oo——=0.

This implies that this transformation represents the imtatvith axis Fs.

The fixed loci inFD, as well as inH3/W, of the rotations  — —z+1], [z z+1]
and z — —z] are also called the axeB;, F, and F3; they are depicted irD as in
Fig. 6. A bullete stands for a vertical line: the inverse image of the pointeund.

5. Orbit spaces underW, SCo(1 +i) and A

Note thatW c W C SI'g(1 +i) C A,
|W/W| = |STo(1+i)/W| = |A/STo(L+i)| =2, STo(l+i)/W ¥ (Z/2Z),
and that

[z> —z+1]e W—W, [z —Z] € STo(1+i)—W, [z+> 7] € A — STo(1+i).
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Fig. 7. A fundamental domain foW and the orbifoldH?3 /W

By quotienting out the symmetry of the Whitehead link, welvgike an essence of
the Whitehead link. In fact, though the Whitehead link hadeast five crossings, we
will see that the quotient space has only one crossing; ofseothe ambient space
necessarily has orbifold singularities.

5.1. The orbifold H®/W. Fig. 7 (left) shows a fundamental domain fv in
FD; every wall has a counterpart to be identified with (under thder-2-rotations
around the geodesics = +(1 — i)/2, together with the patching rules of the walls
tabulated ing2).

In the figure, a very thick segment stands for a vertical plahe inverse image
of the segment under.

The quotient ofS®, where L lives, by thex-rotation around the axi§; is again
a 3-sphere but with orbifold-singularities of index 2 aloagcurve; in Fig. 7 (right),
this curve is labeled by; and the numeral 2 is attached.

5.2. The orbifold H3/Sy(1 +i). Fig. 8 (left) shows a fundamental domain for
STo(1 +i) in FD bounded by the four walls and the rectangle (part of the hameie
#9 cut out by the four walls). Every wall has a counterpart ¢oidentified with (un-
der the order-2-rotations around the geodegics i/2,(—1 +i)/2, together with the
displacementZ — z+i]). The rectangle is divided into two squares; the upper sgua
is folded (identified) by the rotation centered along thedgsic joiningd and (, 0),
and the lower one is folded by the rotation centered alonggeesics joinindg] and
0=(0,0).

The quotient ofS®, whereL lives, by ther-rotations around the axes;, F, and
Fs—this is equivalent to the quotient of the 0rbifoI«ﬂ3/\7V obtained in the previous
subsection by ther-rotation around the horizontal axis shown in Fig. 7 (right}
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Fig. 8. A fundamental domain foBIg(1 +i) and the orbifold
H3/SIo(1 +1i)

Fig. 9. A better picture of the fundamental domain f&irg(1+i)
corresponding to the left figure in Fig. 8

again a 3-sphere but with orbifold-singularities of inderl@ng three curves; in Fig. 8
(right), these curves are labeled Iy, F, and F3, and the numeral 2 is attached to
each of these.

5.3. The orbifold H3/A. Fig. 10 (left) shows a fundamental domain far in
FD bounded by the four walls, b,c and d defined in Corollary 1, and the square
(part of the hemisphere #9 cut out by the four walls). Everyl Wwas no counterpart
to be identified with. The square is folded (identified) by tb&ation centered with the
geodesic joiningd and 0 = (Q0). Thus the orbifoldH3/A must be a 3-ball bounded
by the 2-sphere divided by four (triangular) walls, whicke ahown in Fig. 10 (right).
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Fig. 10. A fundamental domain fok and the boundary dff®/A

On the other hand the orbifolHI®/A should be equivalent to the quotient of the
orbifold H3/SI'o(1+i) obtained in the previous subsection by the reflection sepred
by T: z+ z The mirror of the reflection in the orbifol@3/SI'o(1 +i) is shown in
Fig. 11 as the union of foutriangles they are labeled bg, b, c andd for the obvious
reason.

6. Theta functions

In §6.1, 6.2, 6.3, we introduce some results for theta functidened on a
Hermitian symmetric domaif®, and restrict them ofil®> embedded irD; refer to [1],
[2], [3] and [5]. In §6.4, the final subsection, we give an embeddingdsf A.

6.1. Theta functions onD. The symmetric domaif® of type I, is defined as

T—1*
2i

D= {r € M2(C) ‘ is positive definit% .

The group

Usa(0) = {a e 6L [ @3g = 3= (0 22)]

P
and an involutionT act onD as
g7 =(0ut +012)(@ur +g2)™t, T .t ="r,

whereg = (gjk) € U22(C), and gjx are 2x 2 matrices.
Theta functions®(5)(r) on D are defined as

@(2) ()= Y e(n+ayr(n+a) +2Reb)],

neZ[il?
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Lo
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Fig. 11. The mirror of the reflection in the orbifoldi®/SIo(1+i)
is shown as the union of four parts

wheret € D, a,b € Q[i]? and g[x] = exp[rix]. By definition, we have the following
theta-transformation-formulas.

FACT 1. 1. Ifbe (Z[i]/(L+))? then®(2)(r) = O(3)(2).

If b e (Z[i]/2), then®()(x) = O()(x).
2. ForkeZ andm,n e Z[i]?, we have

o(l)o=0(})o.
@(‘Zir:)(r) = g2 Re(mb*)]@(‘z) (7).

3. We have

@(2)(919*) = @(b(;g_l) (r) for geT,
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@(Z)(T 1) = @(a(f).

It is shown in [3] that theta function@(;‘)(r) satisfy the following quadratic relations.
Proposition 2. We have
a+c a—c
4
®(b + d>(T)®(b - d)(’)

= - (€T @ tia e+(L+i)c
_e fElﬁ%;}z/z[i]ze[Z Re((1 +i)(b+d)e )](9(]c (1 +i)b>(t)®(f .\ (1+i)d>(f)_

Especially
(3 @2= Y d2re(@+peNo( 1+ o))
b - . f+(L+i)b AN
e feliz[i12/z[i]2
6.2. Embedding of H® into D and the pull-back of the theta functions. We

embedH?® into D by

. 3 i (tP+]z” z .
J H 9(z,t)r—>t< > 1 e D;

accordingly, we define the homomorphism

g/+/1det@)] O
0 (g*/v/1det@))

which we denote by the same symhgl sorry. They satisfy

1:GL(C)>g~ < ) € Uy »(C),

J(g-(z1))=,(9)-s(z1) forany geGLy(C),
JT-Z))=T-,(z1).

We denote the pull back @(f)(z) under the embedding: H? — D by ©({)(z, t).
The following is shown in [2] and [5].

FACT 2. 1. Fora,b € (Z[i]/2)? each®(})(z.t) is real valued. If Refb*) +
Im(ab*) ¢ Z[i]/2 then©(§)(z. t) is identically zero.
2. 1f b=(0,0) then®(f)(z t) is non-negative.
3. Fora,be (Z[i]/(1+i))% eachO(})(z t) is invariant under the action dfT(2).

4. The function® = ©(J)(z,1) is positive and invariant under the action bf .
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6.3. Automorphic functions for I''(2) and an embedding of H3/T'T(2). Set

o[ -e[sJuome((Den macar

PRI ¢ EUE 0 IR TN} RN [ R
07 AT sia+i |0 TP U oa+i |0 BT 7 1+i0]

One of the main results in [5] is

and

Theorem 1. The map
9 HS > (z,t) — Xio(xl, X2, X3) € R®
induces an isomorphism betwe&R/I'T (2) and the octahedron
Oct = {(t1. t2, ta) € R® | |tu] + [ta] + Its] < 1
minus the six vertice§t+1, 0, 0), (0, +1, 0), (0, 0, +1).

There are essentially ten non-ze®})(r) for a, b € (Z[i]/2)?. Their restrictions

on H® are expressed in terms af, ..., X3 in [5]; we cite these expression as
FacT 3.
1+i,1+i1? [ 00 7% 1
@ ) :® .7 ) :—X2+X2—X2_X2,

[ 0,0 | _1+|,1+|] 500 =% =)
1+i,0°_ [ 00 J*_ 1
[ 0,0 | :®_O,1+i} =300 TG )
0,1+i1>_ [ 00 7?_1
[ 0.0 | :®_1+i,0] I I e e

6.4. Automorphic functions for A and an embedding of H3/A. Once an
embedding ofH3/I"T(2) is obtained, in terms ok;, for a supergroupA of I'"(2),
an embedding ofH3/A can be obtained by polynomials of thej’s invariant
under the finite groupA/T'T(2); this is a routine process. Since we have=
(I'T(2), g1, g2), we study the actions of the generatays and g, of the Whitehead-
link-complement groupV on the theta function® [{] for a,b € (1 +i)Z[i]% The
theta-transformation-formulas (Fact 1) leads to the fuilhgy.
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Proposition 3. The generators gand @ induce linear transformations of;xx,
and x:

X1 -1 X1 X1 -1 X1
X |-u=1| -1 X2 |, X2 |- Q2= 1 X2
X3 1 X3 X3 -1 X3

Theorem 2. The functions X+ X2, x?x2, x2 and xXX3 are invariant under the
action of A. The map

AR 3 (Z,1) > (M, Ao, Aa, Aa) = (87 +£2, E262, £2, £16083) € RY,

where&; = X;j/Xo, induces an embedding &3/A into the subdomain of the variety
Aoh3 = Ai (homeomorphic to &-ball with two hole¥ bounded by the four triangular
faces which are the imagegunder H3/T'T(2) 5 x > A € H3/A) of

a: Xg —Xp+X3=Xg, b:Xi+Xo+Xz3=Xg, C:X1—X% =0, d:x;+x,=0.

Proof. SinceA = (I'T(2), 91, g2), we have the first half of this theorem. The def-
inition of the groupA in §3, the fundamental domain of in §5.3, and Theorem 1
lead to the latter half. U

REMARK 2. (1) The two matrices appeared in Proposition 3 generatédgreup
of GLs(Z) isomorphic to the dihedral group of order eight.
(2) By Proposition 3, we have

X2 — X1 _ 1 X2 — X1 Xo — X1 _ 1 Xo — X1

Xo + X1 G = -1 Xo+ X, )’ X2 + X1 %2711 Xo+X1 )
The group generated by these matrices is isomorphic to theddil group of order
eight.

Proposition 4. The functions
0 0,1+i e 1+i,1+i +0 1+i,0 and © 1+i,1+i 0 1+i,0
0,0 |’ 0,0 0,0 |’ 0,0 0,0

are invariant under the action oA.

Proof. Since® 1%:3”]@[1;60] and@[o'o%gi] are non-negative by Fact 2, Fact 3

implies the identities of real valued functions:

01+i7_1
6[ 0,0 }:5\/X3_X5_X§+X§’
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1+i, 1+i 1+i,0 1
6[ 0,0 ]+®[ 0,0 ]:ﬁ<\/X§+Xf—x%—x§+\/x§—xf+x§_x§>,
1+i,1+i 1+i,01 1
6[ 0,0 }6[ 0,0 ]:5\/(X5+Xf—X§—X§)(x§—xf+x§—x§).

They are invariant under the action af by Proposition 3. O

7. Automorphic functions for W

We would like to give an explicit embedding &°/W. Though we already found
an embedding of®/A, sinceW is a subgroupof A, we must find new functions in-
variant under the action oV, which are not invariant undeA. In this section, we
construct such automorphic functionis;, ®, and ®; for W by utilizing theta func-
tions with characteristics ifZ[i]/2. We define these functions and show their funda-
mental properties ir§7.1. We show in§7.2 that the groupsSTo(1 +i), W = (W, W)
and W can be regarded as isotropy subgroups of some of these dnsctAn arith-
metical characterization of the Whitehead-link-complatngroup W is given in §7.3.

7.1. Fundamental properties of®,, ®, and ®3. Set
-6 0,1 -6 1+i,1 =6 0,1 =6 1+i,1
=P 400 27140 2710 BT L1+
We define functionsb,, ®, and ®3 as
D1 =x32122, o= (X — X))Y1 + (K2 + X0)Y2, B3 = (X — X3)y1Ya.

Theorem 3. The functions®q, ®, and ®3 are invariant under the action of W
Only the signs of them change by the action of b +2(P ) € I'(2) as follows

O -g=€¢Re((1+i)p+(1—i)s)]P1, Pr-g=€Ref(1—-i))]P, P3-g=oa.
Under the action of Tthe function®; is invariant and ®; becomes—®,.

REMARK 3. The function®; is transformed intoX; — X1)y1 — (X2 + X1)y» by the
action of T. This function is not invariant under the action ¥ but invariant under
the action ofW={g|geW}=TWT.

By Fact 1, we can easily get the following proposition, whisha key to prove The-
orem 3.

Proposition 5. We have

()o=(o S)(h) (3)e=(o D)(2)
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i\ . -(0 1\( an\ . _(90 1I\(a
Y2 % = 1 0 Y2 ’ V47) 92 = -1 0 Z ’
By the action of g= 1, +2(P3) € I'(2), the functions ¥, y», z; and 2 change as

yi-g=€Ref(1-i)ly;, z-9=€Re()]z,
y2-9=€[Ref (L —i)ly2, z2-g=€Re((L+i)p+r+(1-i)s)]z.

By the action of elements,Ty1 = (39), 12 = (3 9) and y3 = ({9) in I'T(2), the
signs of vy, y», 21, > change as follows

T n 7 »
+

Y1 - -  t
Y| — - - +
z |+ = = +
|+ - + =

Proof of Theorem 3. Proposition 5 implies that the prodma is invariant un-
der the action ofg; and that its sign changes by the actiongf Proposition 3 im-
plies the same foxs. Thus ®; = X3212, is invariant under the action diV.

Remark 2 (2) and Proposition 5 show thap € x;)y: and &, +Xx;)y, are invariant
under the action ofj; and that they are interchanged by the actiongaf Thus their
fundamental symmetric polynomiafs, and &3 are invariant under the action &¥.

Proposition 5 leads to transformation formulas fbr, ®, and ®3 with respect to
I'T(2), sincexy, X0, X3 are invariant under the action &f' (2). O

REMARK 4. Representatives @o(1+i)/W can be given by{l,, y1, v2, ¥3}. The
elements ¥+~ —z+1],[z+— z+1] and g+ —Zz] appeared in54.1 are equivalent to
y1, Y2 and y3 modulo W, respectively. These can be verified by using Theorem 5.

7.2. Isotropy subgroups. Let Iso; be the subgroup of = ST'J (1+i) consisting
of elements which leaved; invariant.

Theorem 4. We have

Slo(L+i)=1so3, W=lIsoNlIsoz, W =IsoNIso,NIsos,
[W:W]=[W:W]=[W:W]=[W:W]=2

where W = (W, W) and W = W 0 W. The Whitehead-link-complement group W is
a normal subgroup of (1 +i); the quotient group By(1 +i)/W is isomorphic to
Zz X Zz.
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REMARK 5. (1) The square of any element 8f'o(1 +i) belongs tow.
(2) The Whitehead-link-complement grofy is not a normal subgroup aoh, since
TWT=W #W.

Proof. We first show thaSI'g(1 +i) = Iso;. Note that the grouBIg(l +1i) is
generated byw and I'(2). Theorem 3 shows thabs is invariant under the action of
W andTI'(2). Thus we haveSI'o(1+i) C Isoz. Theorem 3 also shows thétz- T = —®s3,
which means thall ¢ Isoz. Since [A : ST'o(1 +i)] = 2, we haveSI'g(1 +i) = Is0s.

We next show thaW = Iso;NIso, NIsos. It is clear thatW cC Iso; NIso, N ISs.
By Theorem 3, only the signs ab; and ®, change by the action d8l'g(1+i) = Isos,
we have [Isg : IsoNlIsog] = 2 and [Is@ : Iso; NIsos] = 2. Since the element® ;)
belongs to Isg but not to Isq, we have

[Isoz : Isop NIso, NIsos] =

The fact BI'o(1 +i) : W] = 4 shows thatw is equal to IseNIsc, N1sos.

Since W is a subgroup ofSI'g(1 +i) consisting of elements keeping,; and &,
invariant (only the signs ofdb; and ®, change by the action o8I'g(1 +i)), W is a
normal subgroup ofSI'o(1 +i) with ST'o(1 +i)/W =~ Z3.

We finally show thatW = Iso, NIsoz. SinceW = TWT and &, is invariant under
the actions oW and T by Theorem 3, we havéV C Iso,. And we haveW C SI'o(1+
i) = Iso;. ThusW C Iso, Nlsos. Since

— (1 0\__ (10
Wagzz(l—i 1>=921(2 1>’

we have®; - g; = —®,, which impliesg; ¢ W and W 2 W. Thus we have
STo(1+i) = 1s03 2 Isop Nlsoz D W 2 W.

The fact Bo(1 +i) : W] = 4 shows that

IsoyNIsoz =W, [W:W]=2
Now it is clear thatfW : W] =[W: W] =[W: W] =2. m

Proposition 6. The functiong(x; — x1)y1 and (xz + X1)y- are invariant under the
action of W =W N W. The groupW is a normal subgroup oh of index 16.

Proof. The function®, is the sum of these two functions, which are invariant
under the action oW. The function®, - T is the difference of these functions, which
are invariant under the action &%. Thus ®, + &, - T and ®, — &, - T are invariant
under the action ofV.
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For g € SI'g(1 +i), we have seen thagWg™* = W, which impliesgWg-*. Thus
we havegWg! = W. On the other hand, we havBW T =W and TWT = W, these
imply TWT = W. O

REMARK 6. The functions in Proposition 6 give a representationSbf(1 +i).
The representation matrices are

£1 O 0 £1).

0 £1)° 1 0 )’
this shows that the quotient grou’o(1 +i)/W is isomorphic to the dihedral group
of order eight.

7.3. An arithmetical characterization of the Whitehead-lnk-complement
group. The Whitehead-link-complement grolyy is defined as the group generated
by two elementsy; and g. It is hard to decide whether a givenx2-matrix is in W.

In this subsection, we give a criterion for elementsStib(Z[i]) to belong toW. The
functions ®; play a key role. The main theorem of this subsection is thievdhg.

Theorem 5. An element & (fd) € ST'o(1 +i) satisfyingReE) =1 mod 2 be-
longs toW = (W, W) if and only if

Re(p) + Im(s) — (~1)**0"mO(im(p) + Re®) + ((~1)*0) + 1) Im(q)
2

_ Re@+Im@)Req) +Im)

N 2

The element g W belongs to W if and only if

Ref) — (=1)F@"m@ im(r)

=1 mod?2
2

Re(p+q) +
The element ¢ W belongs toW =W N W if and only if re 2Z[i].
Note that, by multiplyingil,, we can always normalizg so that
1) Re€)=1 mod 2
The rest of this subsection is devoted to a proof of this taeorWe study the action
of g € SI'p(1 +i) on ®; and ®,. For any elementy € So(1 +i), sincer € (1 +i)Z[i]

and det@) = £1, we havep, s ¢ (1 +i)Z[i], i.e.,

Re(p) # Im(p) mod 2 Re@) #Im(s) mod 2
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By Fact 1 (1) and (3) (ir;6.1) we may regard
*\—1 s -r
@ @) as (_q _),

when we compute the action af € SI'o(1 +i) on O(§)'s with characteristicb €
(li1/2y.

In order to prove the first statement of theorem, we give scenarias which can
be proved by Fact 1 and straightforward calculations.

Lemma 3. We have
_ _( P q :
x3-g=¢€Re()]x3s, g= P € STp(1 +i).

Lemma 4. For g € SI'g(1 +i) satisfyingRe) =1 mod 2,the function z- g is
given by

e[Rz(r)}Zl(Z,t) it re2z[il,
_e[w} z(z.1) if 1 ¢ 22]i].

Lemma 5. For g € SIp(1 +i) satisfyingRe) =1 mod 2,the function z- g is
given by

_e[Re(pH +s)—Im(p—75)

5 +Re(q)}zz it re2z[i], qe@+i)Zil

_e[Re(p—S)’f;m(P”+S)+|m(q)}22 if re2z[i], q¢@+i)z[i],
e[Re(p+r)2—lm(p)}Zl if r¢2Z[i], qe @+i)Z[il,
e[Re(|0)+|2m(|0+f)}zl if r¢2z[i], q¢L+i)z[i].

Lemmas 3, 4, 5 yield the following proposition.

Proposition 7. An element g= ST'g(1 +i) satisfyingRe§) =1 mod 2belongs to
(W, W) =Iso, Nlso; if and only if

Re(p+s) —Im(p —s)
2

Re(p+s) —Im(p—5)
2

+Re@) =1 mod 2 it qe(L+i)Z[i], r €2z,

=1 mod?2 if qe@+i)z[i], r ¢ 2Z][i],
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Re(p+r +s)+Im(p+r +5s)
2

Re(p+r +s)+Im(p+r +5)
2

+Im(@)=0 mod2 if q¢@+i)Z[i], r € 2Z[i],

=0 mod 2 if q¢(@+i)Z[i], r ¢ 2Z[i].
This proposition yields the first statement of Theorem 5.

We next give a necessary and sufficient condition dos ST'o(1 +i) to belong to
Iso, Nlsos. Fact 1 and straightforward calculations imply the follogi

Lemma 6. For an element g SIp(1 +i), if g € (1 +i)Z[i] then

X2-g=€e[Re@)]x2, x1-g=¢€Re(p+q+r+9)]xy,
if g ¢ (1L+i)Z][i] then

X2-g=€Re(p+0)]x;, x1-9=€Re(+s)]xo.

Lemma 6 yields the following.

Lemma 7.
X2 — X1 _ X2 — X1 _(P 9 ;
<x2+x1>'g_A<x2+x1>’ g_<r s)ESF°(1+I)’

where2 x 2 matrix A is given by
1
1

(1
1
1

1
B 1

1

1
-1

(1
-1

if ge(@+i)Z]i], ReQ) € 2Z, Re(p+q+r +5s) € 2Z,

if ge(1+i)Z[i], Re@) ¢ 2Z, Re(p+q+r +5s) ¢ 27,

=

g € (1 +i)Z[i], Re@) € 2Z, Re(p+q+r +5) ¢ 2Z,

if ge(1+i)Z[i], Re@) ¢ 2Z, Re(p+q+r +5s) € 27,

if g¢(@+i)Z[i], Re(p+q) ¢ 2Z, Re@ +5s) ¢ 2Z,

=

g ¢ (1+i)Z]i], Re(p+q) € 2Z, Re(@+s) € 27,

if g¢@+i)Z[i], Re(p+q) ¢ 2Z, Re +5s) € 2Z,

[ —
A/~ R
H
RN
P SN
~—

if gé¢(1+i)Z[i], Re(p+q) € 2Z, Re(@+5s) ¢ 27Z.
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Fact 1 and straightforward calculations imply the follogin

Lemma 8. By the action of an element g SI'g(1+i) satisfying Re@) =1
mod 2, y; is transformed into

e[Re(r)+ Im(r)
2

Ref) + Im(r)

:|y1 if re27]i], —e[ 5

]yg if r ¢ 27]i],

and y is transformed into

—e[Re(p)+w} yo if re2z[i], qe@+i)Z[i],
—e|:lm(p)+w}y2 if re2z[i], q¢(L+i)zZ[il,
e|:Re(p)+w:| yi it r¢2z[i], qe(L+i)Zi],
e|:lm(p)+w:| yi if r ¢ 2Z[i], q¢(1+i)Z[i].

Lemma 8 implies the following Lemma.

Lemma 9.

<§;>-g:A<£>, g:(f g>eSFo(1+i), Re€)=1 mod 2
where2 x 2 matrix A is given by

<1 1) it re2(1+)Z[l, P ¢ 27,

_(1 1) it 1 ¢ 2(1+)Z[i], 1 e 22[i], P ¢ 2Z,

<1 1) it r ¢ 27]i], —Re(r);'m(r) ¢ 27, P+—8Re(r)2+'m(r) €27,

—( 1) it r¢o2zpp, RPOFIMO) oy pEREOFIMO) L,
1 2 2

<1 _1) it re2(1+)Z[l, Pe2z,

—(1 _1> it r ¢ 2(1+)Z[i], r e 2Z[i], Pe2z,

<1 _1> if r¢27][], wezz, P+%2+'m(r)ezz,



AUTOMORPHIC FUNCTIONS FOR THEWHITEHEAD LINK 863

_(1 —1) it g 22, Re(r);lm(r)gézz’ P+8Re(r)2+lm(r)¢22,

wheree = (—1)Re@*IM@ and P= Re(p +q) + Im(q).

Proposition 8. An element g SI'y(1+i) satisfyingRe) =1 mod 2belongs to
Iso, if and only if

ef) — (=1)R0"m@Im(r)
2

R
Re(p+q)+ =1 mod?2

Proof. Since only the sign of, changes by the action af € SI'p(1 +1i), if
(%) is transformed intoA (325 ) by the action ofg then (3) is transformed into
+A(3%) by the action ofg, where A = (*'_ ), (., *') in Lemmas 7 and 9. Thus
g € SIo(1 +i) belongs to Isg if and only if the sign of the transformation matrik
for the action ofg on (%2:x) coincides with that or(3}).

(1) the caseA=+(1,).
By Lemma 7,9 € SI'p(1 +i) satisfies

qe(1+i)Z[i], Re@)+Re(p+q+r+s)e2Z,

Re@)+Im(g)=0 mod2 Re(p+r)=1 mod 2
By Lemma 9, we have
r e 2Z[i], P =Re(+q)+Im(q) ¢ 2Z.

The coincident condition for the signs is

Re@) = Re(r)erIm(r) _ Re(r);lm(r) _Rep+r)+1 mod 2

Thus we have

Ref) — Im(r)

=1 d2
> mo

Re(p+q) +

(2) the caseA=+(,1).
By Lemma 7,9 € SI'p(1 +i) satisfies

qe(1+i)Z[i], Re@)+Re(p+q+r+s)¢ 27,

Re@)+Im(g)=0 mod2 Re(p+r)=0 mod 2
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By Lemma 9, we have ¢ 2Z[i] and

Ref) + Im(r) 4P+ eRef)+Im(r)
2 2
(1 + (_1)Re(q)+lm(q)) Re(r)
2
=Re(+r)+Im(r)=Re()=1 mod 2

=Re(p+q)+Im(q+r)+

The coincident condition for the signs is

Re@)zw+lzw—m§@+r)+l mod 2
Thus we have
Re(p+q)+w =1 mod 2

(3) the caseA =4 (1 _,).
By Lemma 7,9 € ST'p(1 +i) satisfies

q¢(1+i)Z[i], Re(p+q)+Re@+s)e2Z,

Re@ +Im(@)=1 mod2 Re()=1 mod 2
By Lemma 9, we have
r e 2Z[i], P =Re(+q)+Im(Qq) € 2Z.

The coincident condition for the signs is

Ref) + Im(r)
2

Re(p+q)+1= mod 2

(4) the caseA =+ (, 1).
By Lemma 7,g € ST'g(1 +i) satisfies

q¢(1+i)Z[i], Re(p+q)+Re@+s)¢ 27,

Re@)+Im(@)=1 mod2 Re()=0 mod2

By Lemma 9, we have ¢ 2Z[i] and

Ref) + Im(r) N
2

P+ eRef)+Im(r)
2

=Re(+qg)+Im(@+r)=Re(p)=0 mod 2
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The coincident condition for the signs is

Re() + Im(r)

d 2 O
> mo

Re(p+q)+1=

This proposition yields the second statement of Theorem & skidw the last state-
ment of Theorem 5. The elemegte W satisfying Re§) =1 mod 2 belongs taV if
and only if the transformation matriXA for the action ofg on (XXZZ;’(?) is

1 1
S(1) e s(t )
Thus we have the condition € 2Z[i], which is kept under the multiplicationl , to g.

8. Embeddings of the quotient spaces

In the previous section, we constructed automorphic fonstid;, ®, and &3 for
W. The map

D, Dy D
H39(z,t)|—>(/\1,...,/\4, L2 3)

R Ry
Xg Xo %o

induces a maf®/W — R’, which is generically injective but not quite. k8.1, we
construct, for eachj =1, 2, 3, automorphic functiond;s, fj», ... for W such that their
common zero isFcUF,, where{j, k, 1} = {1, 2, 3}. Here the curves, F», F3 c H® are
defined as thaN-orbits of the fixed loci of the transformations, y», ys, respectively
(84.2, Remark 4 ing§7.1). These functions give, if§8.2, 8.3 and 8.4, embeddings of
the quotient spacel3/SIo(1 +i), H3/W and H3/W, respectively.

8.1. Automorphic functions for W vanishing along F;. We use W-invariant
functions as follows:

foo = (X5 — X§)yay2 = @3,

for = (X3 — x3)z1202324,

f11 = X312, = Py,

f12 = X1X22125,

f13 = X3(X3 — X2)Zaza,

f1a = X% (X5 — X§) 2324,

f20 = (X2 — X1)2223 + (X2 + X1) 2124,

f21 = 2125{(X%2 — X1)Z123 + (X2 + X1) 2224},

fo2 = (X2 — X2){(X2 — X1)Z12a + (X2 + X1)Z223},
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fa0= (X2 — X1)y1 + (X2 + X1) Y2 = @2,
f31 = (X2 — X1)Z2123 — (X2 + X1)Z2Zs,

f32 = z3Z4{—(X2 — X1)Z124 + (X2 + X1) 2223},

L _olO INETIN
=% 90 #7911+ |

deg(fi
fij = fij/Xoeg( J),

where

Set

where deg() denotes the total degree of the polynomfalwith respect tox;, y;, z.

Proposition 9. The functions f, are invariant under the action of WThese func-
tions change the signs by the actionsjefy, and y; as in the table

| i Y2 V3
foj | + + +
flj + - -
fzj - + -
f3j - - +

This proposition can be obtained by Proposition 5 and thieviahg lemma.
Lemma 10. We have
z (1 0 Z3 Z3 _(0 -1 z3
(2)-o=(o 2)(2) (2)==(2 %))
By the action of Ty, y2, y3 € ' (2), the signs of z z, change as

T n v »
+ o+ o+ o+

-+ -

Z3
Z4

Proposition 2 and Fact 3 yield the following proposition,igthis a key to study
the zero locus offjp,.
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Proposition 10. We have

ro,172
422 = 40 ]

11,0
_2®'O,0 6 0,1+i +20 0, 1+i 6 0,0 26 1+i,1+i 6 1+i,0
77100 1+i,0 0,0 1+i,0 1+i, 1+i 0,1+
= (Xo+X1+X2+X3)(Xo — X1 — X2 +X3),

[1+i,1

2
475 = 40 L 1+i}

P 0,0 o 0, 1+i +20 0,1+i o 0,0 +20 1+i,1+i o 1+i,0
- 0,0 1+i,0 0,0 1+i,0 1+i,1+i 0, 1+i

= (Xo+ X1 — X2 — X3)(Xo — X1 + X2 — X3)

ro,i1?
472 = 40
3 _1,0}

0,0 0,1+i 0,1+i 0,0 1+i,1+i 1+i,0
:2 ’ ’ +2 9 9 +2 9 9
®_0,0]®|:1+i,0} ®[ 0,0 }6[1+i,0} ®|:1+i,1+i]®|:0,1+i}
= (Xo+ X1 — X2 +X3)(Xo — X1 + X2+ X3),

[1+i,i 7%
1,1+i

P 0,0 o 0,1+i 420 0,1+i o 0,0 6 1+i, 1+i o 1+i,0
B 0,0 1+i,0 0,0 1+i,0 1+i, 1+i 0, 1+i

= (Xo+ X1+ X2 — X3)(Xo — X1 — X2 — X3).

4z; = 40

iANe2d 72 5252 S2452 5252 52524 5252 2524 5252
REMARK 7. The functionsz{+75, 2175, 25+2;, 2525, 27Z5+252; and z{z;+2525 are
invariant under the action af. They can be expressed in termsigf ..., A4 and xq:

AR =B+ =208~ ht o)
Z7 = 1—16 (25 — 2(X§ + A1) A3 + BhaXo + X3 — 2x301 + A2 — 4hy),
7575 = 1—1(5(A§ — 2(XZ + A1)Aa — BhaXo + X§ — 2X3h1 + A2 — 4hp),
225+ 2575 = %(A% +2(3%§ — A)Ag+ X§ — 2x5A1 + AT — 4hp),
75+ 7575 = %(A% — 2(X3 + A1)Ag + X3 — 2x3A1 + AT+ 4p).
REMARK 8. Proposition 10 implies

Z — 75 = XoX3 — X1Xa,
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Z5 — 75 = XoX3 + X1X2,

2 2 — ;2 2 —
- 22 =2 72 = 1%,
2 2 — 2 2 —

2 — 22 =22 — 72 = XoXa,

1
22 2.2 _ 22 2.2
573 — 257, = §X0X3(Xo —X{ — X3 *+X3),

1
2,2 252 — 2 2 2 2
—Z{Zy + 2575 = —2x1x2(xO — X — X5 +X3).

These functions are invariant under the actiongpfand their signs change by the ac-
tion g,. The product ofxs (resp.x;xo) and each of these is invariant under the action
A and can be expressed in termsiaf ..., A4 and Xo.

Theorem 6. The analytic sets ¥V, and \4 of the ideals
l1=(f11, f1o, T3, Faa), 12=(f2q, f2o), 3= (fzy, f32)
are (set-theoretically equal to L U F3, F; U F3 and R U F,, respectively

Corollary 2. The analytic set ) of the ideals(l;, Ix) is set-theoretically equal
to | for {j,k,1}={1,2,3}.

Proof of Theorem 6. Since the sef are the fixed loci ofy; modulo W and
fiu are invariant under the action &V, it is clear thatV; > F U R for {j,k 1} =
{1, 2, 3}. We first showV; c F, U F3. Since we have

81828321
2 — 2
£ =x3 1_[ (Xo + £1X1 + £2Xz + £3X3),
81.82,83::|:l
818283:1
2 = x2x3 (Xo + £1X1 + £2%Xp + £3Xa)
12 = X1X5 o+ e1Xy +exXo +€3X3),
81.82.83::l:l
£16263=—1
2 _ y2(y2 2)2
f13 = X3 (X2 — Xl) l_[ (XO +e1Xy +eXo + ‘93X3)7
81,52,53::t1
816283:—1
2 _ y2y2(\2 22
2 =x0x3(x5 —x2)" [ (xo+exa+eaxe +esxa),
81.82.83:il

they are invariant also under the actionIof(2). So we express the common zeros of
them in terms ofx;. The twelve edges of the octahedron

Oct = {X = [Xo, X1. X2, Xs] € P(R) | [xa| +|Xa| + [Xa| < Xo}.
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(recall thatH®/T'"(2) is realized asOct minus the vertices, in Theorem 1) and the
segments
{x € Oct| x; =x3=0}, {x e Oct]x;=x3=0},
{Xx € OCt| Xg+ X1 + Xo + X3 = X; — X2 = O},
{x € Oct| Xg — X1 — X2 + X3 = X3 — Xp = 0},
{x € Oct| Xg+ X1 — X2 — X3 = X3 + X2 = 0},
{x € OCt| Xg — X1 + X2 — X3 = X3 + X = 0}
come into the game. Theorem 1 shows thatis the union of the inverse images of
which coincides withF, U Fs.
We next showVs; C F; U F,. Since we have
fa1- T = (X2 — X1)2123 + (X2 + X1) 2224,
fa2 - T = Z324{(X2 — X1)Z124 + (X2 + X1) 2223},
the products
fa1 = (fa)(far- T) = (%2 — X0)°Z3Z3 — (¥ + X1)?2322,
fao = (fa2)(faz - T) = 325 {(x2 — x1)°ZiZ — (%o + X1)? 2523},
are invariant under the action &' (2). We express the common zero 0%, and 3,
in terms ofx;. By Proposition 10, we have
= 1
far= —Z[xlxzxg + 2x1%(3%8 — X2 — X3)X§ — 2%o(X3 + XI) (X5 — X2 — X3 + X3) X3

+ X1X2(X1 + Xo — X2)(Xo *+ X1 + X2)(X2 — X1 + Xo)(Xo — X1 — X2)],

~ 1
— 2 2 2 2 2 2 2 2
fap= —axlx2(xo +X§ — X5 — X3)(X§ — X§ + X5 — X3)
X l_[ (Xo + €1X1 + £2X2 + £3X3).
818283:—1

Thus Vs is a subset of the union of the common zeroesfef and the factors off 5.
We study the restriction off3; on the algebraic set of each factor 6%,. In the oc-
tahedronOct, the factorsx2 + x? — x2 — x2 and x2 — x2 + x2 — x2 vanish only on
[Xo, X1, X2, X3] = [1,0,0, £1],[1,0,+1,0] and [1 0,0, £1], [1, £1, O, 0], respectively.
The functions f3; vanishes on these points. G =0, f31 reduces to

1
Exoxfxg,(xg —xZ+x3),
Where{j, k} ={1,2}. On Xg+e1Xy + &% +e3Xx3 =0 (818283 = —1), f31 reduces to

83X0(X1 — 83X2)2(X0 + 81X1)(X0 + 82X2)(X0 +e1X1 + 82X2).
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Thus the common zero ofgl and fgz in the fundamental domaifD of H3/W in
Fig. 2 is the union ofF,UF, and the geodesic joining(t) = (0, 0), (—1+i, 0) through
O = ((—-1+i)/+/2, 1/2) which is the inverse image af of {[Xo, X, X2, X] € OcCt| X; =
X3 = 0}). We have only to show thafz; does not vanish o ~1{[xo, X1, X2, X3] € Oct]|
X1 = X3 = 0}.

Since

(21222324)" = l_[ (Xo +e1X1 + 2% + £3X3),
£1,62,63=+1
the functionz;z,z324 never vanish in the interior offD. Thus we havez;z,73z4 > 0
or 12,7374 < 0 in the interior ofFD. Since f3; reduces to—x1(z3z3 + 2,24) on the set
[ Xo, X1, X2, Xa] € Oct| X, = x3 = 0} included inF, and f3; vanishes on this set, the
sign of z;z; is different from that ofz,z4, which impliesz 7,732, < 0 in the interior
of FD. On the other handfs; reduces toxx(z;23 — 2,24) on the set{[Xo, X1, X2, X3] €
Oct | x; = X3 = 0}. Since the sign of;z; is different from that ofz,z4 in the interior
of FD, z1z3 — 2,24 never vanish in the interior dfFD. Hence f3; never vanishes in the
interior of ﬁil{[Xo, X1, X2, X3] e Oct| x1 =x3=0, % 7 0}.
We finally showV, c F; U F3. Since we have

f21- T = 2125{(X2 — X1)Z123 — (X2 + X1) 2224},
foo T = (XS - Xf){—(xz — X1)Z124 + (X2 + X1)Z223},

the products
far=(fa)(for- T) = ZZ5{(xe — x1)°ZZ5 — (%o + X1)° 2575}
f22= (f22)(f22- T) = (x5 — Xf)z{—(xz — X1)°ZZ5 + (%o + X1)° 2575},

are invariant under the action of' (2). We express the common zero of them in terms
of x;. By Proposition 10, we have

8162£3=l
o 1 ~
for = 75fa [T (o+exa+eaxe+esxs)
£1,62,63=%1
~ 1 2
_Lio o2 2002 02 U2\ (W2 u2 a2 2
f22= Z(Xz — Xp) XaXa(X5 + XT — X5 — X5) (%G — X{ + X5 — X3).

Thus V, is a subset of the union of the common zeroesfef and the factors of
f,5. We study the restriction of ,; on the algebraic set of each factor 6§,. Since
we have studied the restriction df;; on the algebraic set of each factor b, we
have only to consider the restriction of

8182£3=l
1

AT 1—[ (Xo + £1X1 + £2X + £3X3)

£1,82,63=+1



AUTOMORPHIC FUNCTIONS FOR THEWHITEHEAD LINK 871

on the algebraic set of each factor 65, and that of f; on the setsq; & x, = 0. We
can see that the common zero 65; and f,, in FD is the union of F; U Fs; and the
geodesic joining 4, t) = (—1,0), (i, 0) throughO = ((—1 +i)/+/2, 1/2) which is the
inverse image of of {[xo, X1, X2, X3g] € Oct | X2 = X3 = 0}. In order to show thatf,;
does not vanish o ~1{[Xo, X1, X2, X3] € Oct | X, = x3 = 0}, follow the proof of the
non-vanishing offz; on 9 ~{[Xg, X1, X2, X3] € Oct| X; = X3 = 0}. J

8.2. An embedding of H3/STo(1 +i).
Theorem 7. The map
(B H3/8F0(1 +i1)3(z,t) = (A1, ..., A4, T01) € R®

is injective where fp; = fm/xg. Its image Imagefo) is determined by the image
Image¢.) underx: H® 5 (z,t) — (r1,..., A4) and the relation

256f021 = (X22 — X]2_)2 l_[ (Xo +e1X1 T e2Xo + 83X3)
61.82,£3=:|:l
= (A = 4n2) [T (15— 2(x5 + 1a)hs + e3BXora + X3 — 2xG21 + A% — 4h2),
83::tl

as a double cover ofmagef.) branching along its boundary

If we replace fo; by fgo, the map is injective as well, but the expression of the image
becomes a bit more complicated fdg.
Proof. Proposition 10 and Remark 7 give the expressi§rin terms ofiy, ..., A4
and Xg. Since the functionfy; is invariant under the action d8'g(1 +i) and changes
its sign by the action ofl, the mapgg induces a double cover

Imagefyo) > (A1, -- -, Aa, fo1) = (A1, ..., Ag) € Imageq),
which ramifies along the zero locus af;f

H3/STo(1 +i) —2— Imagefy)

! |

H3/A —* 5 Image¢)

The natural map (studied i§5.2 and§5.3) H®/SIg(1 +i) — H3/A is a double cover
of a 3-ball (minus two points) by a 3-sphere (minus two pJQiriisanching along the
boundary of the 3-ball. Thus we have only to show that the tiancfy; vanishes only
along the boundaraUb U cuUd of the 3-ballH3/A (see Theorem 2).
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By Remark 2 (2), we havex§+x1)-(g1T) = —(Xo+X1). ThusX,+x; vanishes on the
mirror {(z,t) € H® | Im(2) = 1/2} of the reflectiong; T. By Theorem 1x,+x; vanishes
only ond in the fundamental domain in Fig. 10 (left). Similarlyy — x; vanishes only
on the mirrorc in the fundamental domain in Fig. 10 (left).

By Theorem 1 and Proposition 1@;z,z3z, vanishes only ora U b in the funda-
mental domain in Fig. 10 (left). O

We briefly observe the image Imagg). The two cuspsc and 0, and the points
O and O (defined in§4.1) are mapped to

_ _ - - /11
56:=(0,0,1,0,0), 0:=(10,0,0,0), O :=(0,0,0,0,0), D::(E,l—G,o,o,o)

The imagesF_l, F, and F; of the axesFy, F, and F3 (see84.2) are union of curves
joining these points:

Fi: 0——o0o——0, Fo: O—0—0),

Fs3: O ) 00 O.

Four of these curves come to each cusp. We parameterize theges (0<t < 1)
and present them as follows:

00— (0,0, (1—1t)20,0) ast — 0,
Fiy_ t2 t4 t2(1 —t)
_ (e, -1
O - <2’16’(1 t)%, 2 ,0> as t —> 0,
050 (t2,0,(1—1)%0,0) as t— 0,
Faj t2 4 t2(1-t)
(-t
O —> o0 <2’16’(1 t)“, 7 ,O) as t — 0,
and
O->0 ((1—1)20,0,0,(1—1t)%22—1)? as t— 0,

Ol

F2 _ [t2 t\2 t2 t\2
-0 [—+(1==).=(1==) .000) as t—o.
4 2) 4 2

(1-1)%0,0,0, —(1 —t)?t?(2—-t)®>) as t— 0,
((1_02’ Oatzv 07 O) as t— O

- [O->0

o — 0
These curves can be illustrated as in Fig. 12. Each of the tpszo and0 is shown
as a hole. These holes can be deformed into sausages as ibh3Fiyote that this is

just the orbifold H3/SI'o(1 +i) shown in Fig. 8 (right), if we replace the curves,
and_o by their tubular neighborhoods.
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e T
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F3
5
F

F,

~

Fig. 12. Orbifold singularities in Image§) and the cuspsx

and 0
0
Cm
_\ L()
F
P / Fy </

Fig. 13. The cusp-holes are deformed into two sausages

Recall that four of the orbifold-singular-loci stick intcaeh cusp-hole, of which
boundary is a 2-sphere, and that the double cover of a 2sphemching at four
points is a torus.

8.3. An embedding of H®/W.

Theorem 8. The map

018 Ha/\i\/ > (z,t) = (9o, f11,...,f14) eR®

is injective wheref;; = f;; /xgeg(f”). The products i, fiq (1 < p <q < 4) can be ex-
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pressed as polynomials ofy,xA1, ..., A4 and f;. The imagelmagef) together with
these relations determines the imalgeage(:) under the mapp;.

Proof. Eachfy, is invariant under the action olv and its sign changes under
the action ofSFo(1+i)/\7V. By Proposition 10 and Remark 77, ..., f2 and fi; fip,
fi1af14 can be expressed in terms bf and xo; they are invariant under the action of
A. The productfip fiq (p =1,2, g = 3,4) is invariant under the action dl'o(1 +i)
by Proposition 9 and they can be expressed in termgof;, and fo;. Thus if one of
the values offqy, ..., f14 is not zero at a pointz(t) € H®, then this non-zero value
together with the imageo(z, t) determines the vectorf{y(z, t), ..., f14(z, t)).

Thus we have the commutative diagram

H3/W  —2— Imagef:)
| |

! !

H3/SIo(1+i) —2— Imagefo)

of ¢o, 1 and the two (vertical) double covers. Singgis an isomorphism and the left
vertical map ramifies exactly along, U F3 (§5.1, §5.2), the mapp; is injective thanks
to Theorem 6. [

Though the embedding dimension is too high to see the shapkeoimage di-
rectly unfortunately, the theorem above and the argumenbimsserts the following:
The boundary of a small neighborhood of the cygf0) is a torus, which is the dou-
ble cover of that of the cuspy(0); note that twoF,-curves and twoFs-curves stick
into ¢o(0). The boundary of a small neighborhood of the cysgfoo) remains to be a
2-sphere; note that twé;-curves and twoFs-curves stick intopg(oo), and that four
F1-curves stick intogp;(0c0).

Topologically, the sausade in Fig. 13 (and Fig. 8 (right)) is covered by a doughnut,
a tubular neighborhood of the cuntg in Fig. 7 (right).

8.4. An embedding of H3/W.
Theorem 9. The map

@ H3/W 3 (z,1) = (@1, f21, f22, fa1, fap) € R
is injective wheref;; = fij/Xgeg(f”). The products & fx faqfzx and fipfafa (p =
1,...,4,q9,r =1, 2) can be expressed as polynomials @f Xi,...,14 and 1. The
image Imagef) together with these relations determines the imamage() under
the mapeg.
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Proof. By Proposition 10, the producfsy for, f3q far and fip foq far (p=1,...,4,
g,r =1,2) are invariant under the action & o(1 +i) by Proposition 9. They can be
expressed in terms ofy, A1, ..., A4 and fp;. For example,

= (0 - ) [0+ 0) (B2 + B2) — Do — 20) + 2T
= (¢ +0) (2 + 22d) - Dewld— 22) 21

fatar= B2l — 2) — (4 DG+ ) + (B +2) o

fo1fa1 =212, T3y,

foofa1 = (Xf + XE) (o f13— f1a) — 2 f14(Z§ + Z%) + (X§ — Xf)z(xo fi1+ f12),

1
foatan = = o (8 X8 = X2 = B) 0 = XE 436 = 8) fa

(Remark 7 and 8 help us to find these expressions.) So thesvefug?, f2, f2 and
faz2 at any point inH® are determined by those &, A1, ..., A4 and fo1. Moreover, if
one of the values offy;, fx, fa; and fsy is not zero at a pointz(t) € H3, then this
non-zero value together with the image(z, t) determines the vector

(f21(z, 1), f22(z, 1), fa1(z, 1), f32(z, 1)).

Thus we have the commutative diagram

H3/W —Y— Imagef)

! |

H3 /W —— Imagef:)

of ¢, 1 and the two (vertical) double covers. Singe is an isomorphism and the left
vertical map ramifies exactly along; (§5.1), the mapy is injective thanks to Corol-
lary 2. ]

Though the embedding dimension is too high to see the shapbkeofmage di-
rectly unfortunately, the theorem above and the argumenbimasserts the following:
The boundary of a small neighborhood of the cygpo) is a torus, which is the dou-
ble cover of that of the cuspi(oc0); recall that fourF;-curves stick intop;(co0). The
boundary of a small neighborhood of the cugf®) is a torus, which is the unbranched
double cover of that of the cusp (0), a torus.

Eventually, the two sausages in Fig. 13 (and Fig. 8 (right® eovered by two
linked doughnuts, tubular neighborhoods of the curkgsand L, in Fig. 1. Note that,
in the (high dimensional) ambient space, the two tori lookifathey are not linked,
however they are linked in the Imagg(
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