THE GENERIC FINITENESS OF THE *m*-CANONICAL MAP FOR 3-FOLDS OF GENERAL TYPE

Lei ZHU

(Received June 4, 2004)

Abstract

Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. We study the generic finiteness of the *m*-canonial map for such 3-folds. Suppose $P_g(X) \ge 2$ and $q(X) \ge 3$. We prove that the *m*-canonical map is generically finite for $m \ge 3$, which is a supplement to Kollár's result. Suppose $P_g(X) \ge 5$. We prove that the 3-canonical map is generically finite, which improves Meng Chen's result.

0. Introduction

Throughout the ground field is always supposed to be algebraically closed of characteristic zero. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. For all integer m > 0, one may define the so-called *m*-canonical map ϕ_m , which is nothing but the rational map corresponding to the complete linear system $|mK_X|$. Many authors have studied the generic finiteness of ϕ_m in quite different ways.

In 1986, J. Kollár presented the following theorem in his paper.

Theorem 0.1 (Theorem (6.2) of [6]). Let X be a smooth projective 3-fold of general type with $q(X) \ge 4$. Then ϕ_k is generically finite for $k \ge 3$.

Meanwhile, he pointed out that the bound is the best possible. During our study of generic finiteness of *m*-canonical map for threefolds, we find we get a better bound if we suppose $P_g(X) \ge 2$. We also improve a result of Meng Chen.

Theorem 0.2 (Theorem 3.9 of [1]). Let X be a projective minimal Gorenstein threefold of general type. Then ϕ_3 is generically finite whenever $P_g(X) \ge 39$.

The following is our main theorem.

Main Theorem. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. If ϕ_m is not generically finite whenever $m \geq 3$, then

L. Zhu

- (1) $P_g(X) \leq 1$ whenever $m \geq 6$;
- (2) either $P_g(X) \le 1$ or $q(X) \le 2$ if m = 3 or 4;
- (3) either $P_g(X) \le 1$ or $q(X) \le 1$ if m = 5.

As a direct corollary, the following is a supplement to Kollár's result.

Corollary 1. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. If $P_g(X) \ge 2$ and $q(X) \ge 3$, then ϕ_m is generically finite whenever $m \ge 3$.

Corollary 2 improves Theorem 0.2.

Corollary 2. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. ϕ_3 is generically finite whenever $P_g(X) \ge 5$ or $P_g(X) = 4$ and $q(X) \ge 2$.

As an application of our method, we will present more detailed results of the m-canonical map for 3-folds of general type.

1. Preliminaries

(1.1) Kawamata-Ramanujam-Viehweg vanishing theorem. We always use the vanishing theorem in the following form.

Vanishing Theorem ([7] or [9]). Let X be a smooth complete variety, $D \in Div(X) \otimes \mathbb{Q}$. Assume the following two conditions:

(i) D is nef and big;

(ii) the fractional part of D has supports with only normal crossings. Then $H^i(X, \mathcal{O}_X(K_X + \lceil D \rceil)) = 0$ for all i > 0.

Most of our notations are standard within algebraic geometry except the following which we are in favor of: \sim_{lin} means *linear equivalence* while \sim_{num} means *numerical equivalence* and $=_{\mathbb{Q}}$ means \mathbb{Q} -numerical equivalence.

(1.2) Set up for canonical maps. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. Suppose $P_g(X) \ge 2$, we study the canonical map ϕ_1 which is usually a rational map. Take the birational modification $\pi: X' \to X$, according to Hironaka [5], such that

(1) X' is smooth;

(2) $|K_{X'}|$ defines a morphism;

(3) the fractional part of $\pi^*(K_X)$ has supports with only normal crossings. Denote by g the composition of $\phi_1 \circ \pi$. So $g: X' \to B \subseteq \mathbb{P}^{P_g(X)-1}$ is a morphism. Let $g: X' \xrightarrow{f} B' \xrightarrow{s} B$ be the Stein factorization of g. We can write $K_{X'} \sim_{\text{lin}} \pi^*(K_X) + E$

and $K_{X'} \sim_{\text{lin}} M_1 + Z_1$, where M_1 is the movable part of $|K_{X'}|$. *E* is an effective \mathbb{Q} -divisor which is a \mathbb{Q} -linear combination of distinct exceptional divisors. We can also write $\pi^*(K_X) \sim_{\text{lin}} M_1 + E'$, where $E' = Z_1 - E$ is actually an effective \mathbb{Q} -divisor.

If dim $\phi_1(X) = 2$, we see that a general fiber of f is a smooth projective curve of genus $g \ge 2$. We say X is canonically fibered by curves of genus g.

If dim $\phi_1(X) = 1$, we see that a general fiber *S* of *f* is a smooth projective surface of general type. We say that *X* is canonically fibered by surfaces with invariants $(c_1^2, P_g) = (K_{S_0}^2, P_g(S))$. Denote by $\sigma: S \to S_0$ to be the contraction onto the minimal model.

2. Proof of Main Theorem

Let the notation be as in (1.2) throughout this section. We study ϕ_m according to the value $d := \dim \phi_1(X)$ and b := g(B). Obviously $1 \le d \le 3$.

Theorem 2.1. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. If ϕ_m is not generically finite whenever $m \ge 6$, then $P_g(X) \le 1$.

Proof. We suppose $P_g(X) \ge 2$ and try to prove ϕ_m is generically finite for all integers $m \ge 6$.

The case d = 2. Denote by S_1 the general member of $|M_1|$. So S_1 is a smooth projective surface of general type. We have

$$\left|K_{X'} + \lceil (m-2)\pi^*(K_X)\rceil + S_1\right| \subseteq \left|mK_{X'}\right|.$$

Using (1.1), we have

$$\left|K_{X'} + \lceil (m-2)\pi^*(K_X)\rceil + S_1\right| \Big|_{S_1} \supseteq \left|K_{S_1} + \lceil (m-2)L\rceil\right|$$

where $L := \pi^*(K_X)|_{S_1}$. According to [10], we can reduce to the problem on surface S_1 since

$$K_{X'} + \lceil (m-2)\pi^*(K_X) \rceil$$

is effective. Since d = 2, we have $h^0((m-2)L) \ge 3$. We know $|K_{S_1} + \lceil (m-2)L \rceil|$ gives a generically finite map by [2]. So does ϕ_m .

The case d = 1 and b > 0. Because b > 0, the movable part of $|K_X|$ is already base point free on X and $M_1 \sim_{\text{num}} aS$ with $a \ge 2$. So one always have $\pi^*(K_X)|_S = \sigma^*(K_{S_0})$. Obviously we have

$$\left|K_{X'} + \lceil (m-2)\pi^*(K_X)\rceil + M_1\right| \subseteq |mK_{X'}|$$

and

$$\left|K_{X'} + \lceil (m-2)\pi^*(K_X)\rceil + M_1\right| \Big|_S = \left|K_S + \lceil (m-2)L'\rceil \right|_S$$

where $L' = \pi^*(K_X)$ by (1.1). According [8], we can reduce to the system $|K_S + \lceil (m-2)L' \rceil_S|$ on S since

$$K_{X'} + \lceil (m-2)\pi^*(K_X) \rceil$$

is effective and $a \ge 2$. While

$$\left|K_{S} + \lceil (m-2)L' \rceil \right|_{S} \ge \left|K_{S} + \lceil (m-2)L' |_{S} \rceil\right|$$

by Lemma 2.2 in [3], we see

$$\left|K_{S}+\lceil (m-2)L'|_{S}\rceil\right|=\left|K_{S}+(m-2)\sigma^{*}(K_{S_{0}})\right|.$$

The right system defines a generically finite map on S by [12]. So does ϕ_m .

The case d = 1 and b = 0. According to [6], we have

$$\mathcal{O}(1) \hookrightarrow f_* \omega_{X'}^2$$

and denote by

$$\varepsilon := f_* \omega_{X'/\mathbb{P}^1}^2 \hookrightarrow f_* \omega_{X'}^6.$$

The local sections of $f_*\omega_{X'/\mathbb{P}^1}^2$ give the bicanonical map of the fiber *S* and they extend to global sections of ε because ε is generated by global sections. On the other hand, $H^0(\mathbb{P}^1, \varepsilon)$ can distinguish different fibers of *f* because deg(ε) > 0. So $H^0(\mathbb{P}^1, \varepsilon)$ gives a generically finite map on X' and so does ϕ_6 , which means ϕ_m is generically finite whenever $m \ge 6$.

Theorem 2.2. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. If ϕ_m is not generically finite where m = 3 or 4, then either $P_g(X) \leq 1$ or $q(X) \leq 2$.

Proof. We assume $P_g(X) \ge 2$. Since $|3K_{X'}| \le |4K_{X'}|$, we study ϕ_3 according to d and b.

The case d = 2. Choose a 1-dimensional subsystem $\Lambda \subseteq |K_{X'}|$ while taking a birational modification $\pi_1 \colon X' \to X$ such that the pencil Λ defines a morphism $g_1 \colon X' \to \mathbb{P}^1$. We can even take further modification to π_1 so that $\pi_1^*(K_X)$ has supports with only normal crossings. Taking the stein factorization $p \colon X' \to W'$. We note that this fibration is different from the one which was defined in (1.2). Denote $b_1 \coloneqq g(W')$. Let M be the movable part of the pencil. We obviously have $M \leq K_{X'}$. We can write $M \sim_{\lim} \sum_{i=1}^{a} F_i$ where $a \geq 1$ and F_i is a fiber of p for all i.

Suppose $b_1 > 0$. We consider the system

$$|2K_{X'}+M| \subseteq |3K_{X'}|.$$

Now M contains at least 2 components F_1 and F_2 . By (1.1), we have a surjective map

$$H^{0}(X', K_{X'} + M) \to H^{0}(F_{1}, 2K_{F_{1}}) \oplus H^{0}(F_{2}, 2K_{F_{2}}).$$

This means $\phi_{|2K_{X'}+M|}$ can distinguish F_1 and F_2 and the restriction to F_i is at least a bicanonical map. Then ϕ_3 is generically finite.

Suppose $b_1 = 0$. Now $M \sim_{\text{lin}} F$. Still by (1.1) and since $b_1 = 0$, we consider the following system

$$|K_F + \lceil \pi^*(K_X) \rceil|_F|$$
.

Assume $P_g(F) \ge 2$ and $|K_F|$ is composed of pencils otherwise $q(F) \le 1$ or ϕ_3 is generically finite. If $q(F) \le 1$, then $q(X) \le 1$ by virtue of Corollary 2.3 in [4]. If $|K_F|$ is composed of pencils, then $q(F) \le 2$ according to [11]. So $q(X) \le 2$.

The case d = 1 and b > 0. Now we have

$$|K_{X'} + \lceil \pi^*(K_X) \rceil + M_1| \subseteq |3K_{X'}|.$$

One can replace *m* with 3 in the corresponding proof of Theorem 2.1 and derive that ϕ_3 is generically finite.

The case d = 1 and b = 0. In this case we have

$$\pi^*(K_X) =_{\mathbb{Q}} aS + E'$$

where $a = P_g(X) - 1 \ge 1$ and

$$\left|K_{X'} + \left[2\pi^*(K_X) - \frac{E'}{a}\right]\right|_{S} = \left|K_S + \left[\left(2 - \frac{1}{a}\right)\pi^*(K_X)\right]\right|_{S}\right|.$$

If ϕ_3 is not generically finite, nor is the map defined by the right system above. We suppose $P_g(S) \ge 2$. Then $|K_S|$ is compose of pencils and $q(S) \le 2$ according to [11]. Thus $q(X) \le 2$ by [4].

Theorem 2.3. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. If ϕ_5 is not generically finite, then either $P_g(X) \leq 1$ or $q(X) \leq 1$.

Proof. We suppose $P_g(X) \ge 2$.

The case d = 2. One can replace *m* with 5 in the corresponding proof of Theorem 2.1 and derive that ϕ_5 is generically finite.

The case d = 1 and b > 0. The proof of Theorem 2.2 implies that ϕ_5 is generically finite since $|3K_{X'}| \subseteq |5K_{X'}|$.

The case d = 1 and b = 0. We can write $\pi^*(K_X) =_Q aS + E'$ where $a = P_g(X) - 1$ and

$$\left|K_{X'}+\left[4\pi^{*}(K_{X})-\frac{E'}{a}\right]\right| \leq |5K_{X'}|.$$

For the same reason, we consider the system

$$\left|K_{S} + \left\lceil \left(4 - \frac{1}{a}\right)\pi^{*}(K_{X})\right\rceil \right|_{S} \right| = \left|K_{X'} + \left\lceil 4\pi^{*}(K_{X}) - \frac{E'}{a}\right\rceil \right|_{S}$$

on surface S. If $P_g(X) \ge 3$, then we have

$$\mathcal{O}(2) \hookrightarrow f_* \omega_{X'}$$

and

$$f_*\omega_{X'/\mathbb{P}^1}^2 \hookrightarrow f_*\omega_{X'}^4.$$

Thus ϕ_4 is generically finite for the same reason given in the proof of Theorem 2.1. So is ϕ_5 .

Next we suppose $P_g(X) = 2$ and then a = 1. By [6],

$$\mathcal{O}(1) \hookrightarrow f_* \omega_{X'}$$

and

$$f_*\omega_{X'/\mathbb{P}^1}^2 \hookrightarrow f_*\omega_{X'}^6.$$

We assume $P_g(S) \ge 2$ and then denote by G the movable part of $|\sigma^*(K_{S_0})|$, we have $6\pi^*(K_X)|_S \ge 2G$ since $|2\sigma^*(K_{S_0})|$ is base-point-free for $P_g(S) > 0$. Furthermore, we suppose $|K_S|$ is composed of pencils otherwise ϕ_5 is generically finite. Then we can write

$$\sigma^*(K_{S_0}) \sim_{\text{num}} bC + Z$$

where *C* is a general fiber of the canonical map of *S* and $b \ge P_g(S) - 1 \ge 1$. If $|K_S|$ is composed of irrational pencils, then $b \ge P_g(S) \ge 2$. Denote by *M'* the movable part of

$$|7K_{X'} + S| \supseteq |K_{X'} + \lceil 6\pi^*(K_X) \rceil + S|.$$

Thus we have $M'|_S \ge 3G$ by Lemma 2.7 in [3]. Now we consider the subsystem

$$|K_{X'} + (7K_{X'} + S) + S| \subseteq |10K_X|.$$

From Theorem 2.1, we know ϕ_7 is generically finite. Then M' is nef and big. By (1.1), we have surjective map

$$H^{0}(X', K_{X'} + M' + S) \rightarrow H^{0}(S, K_{S} + M'|_{S}).$$

Then we see that $M_{10}|_S \ge 4G$ and thus $10\pi^*(K_X)|_S \ge 4G$. Pick up a general member C of |G|. Then we can write

$$3\pi^*(K_X)|_S - C - H \sim_{\text{num}} \frac{1}{2}\pi^*(K_X)|_S$$

where H is an effective divisor or zero. Since

$$|K_S + \lceil 3\pi^*(K_X) \rceil|_S| \supseteq |K_S + \lceil 3\pi^*(K_X) \rceil|_S - H|,$$

by (1.1) we have a surjective map

$$H^0(S, K_S + \lceil 3\pi^*(K_X) \rceil |_S - H) \to H^0(K_C + D)$$

where

$$D := (\lceil 3\pi^*(K_X) \rceil |_S - H - C)|_C.$$

Whether $|K_S|$ is composed of rational pencils or irrational pencils, we can reduce to the curve *C*. Since *C* is nef on *S*, deg D > 0. Thus $|K_C + D|$ gives a finite map and ϕ_5 is generically finite. Then we can derive that if ϕ_5 is not generically finite then $P_g(S) \leq 1$ and thus $q(S) \leq 1$. By virtue of Corollary 2.3 in [4], we have $q(X) \leq 1$. So we are done.

3. Generic finiteness of ϕ_m

In this section we will keep the same notation as in (1.2) and denote $d := \dim \phi_1(X)$ and b := g(B).

Corollary 3.1. Let X a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. If $P_g(X) \ge 2$, then ϕ_m is generically finite for all integers $m \ge 6$.

Proof. This is a direct result from Theorem 2.1.

Corollary 3.2. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. Assume $P_g(X) \geq 3$. Then ϕ_m is generically finite when m = 4 or 5.

Proof. The proof of Theorem 2.3 implies the case m = 5. As for m = 4.

The case d = 2. One can still derive it from the proof of Theorem 2.1;

The case d = 1 and b > 0. The proof of Theorem 2.1 also implies ϕ_4 is generically finite as long as replacing *m* with 4 there.

The case d = 1 and b = 0. From proof of Theorem 2.3, we know this corollary is true.

In the following, we will study ϕ_3 and then present several probabilities.

Corollary 3.3. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. Assume $P_g(X) \ge 5$. Then ϕ_3 is generically finite.

Proof. The case d = 2. Denote by S_1 the general member of $|M_1|$ where M_1 is the movable part of $|K_{X'}|$. We have

$$|K_{X'} + \lceil \pi^*(K_X) \rceil + S_1| \subseteq |3K_{X'}|$$

and

$$|K_{X'} + \lceil \pi^*(K_X) \rceil + S_1||_{S_1} = |K_{S_1} + L|$$

where $L := \lceil \pi^*(K_X) \rceil|_{S_1}$. Since $K_{X'} + \lceil \pi^*(K_X) \rceil$ is effective, we can reduce to the problem on the surface S_1 by [10]. Obviously $h^0(L) \ge P_g(X) - 1 \ge 4$. Then $|K_S + L|$ gives a generically finite map by [2], so does ϕ_3 .

The case d = 1 and b > 0. The proof of Theorem 2.2 implies this is true.

The case d = 1 and b = 0. Then

$$\mathcal{O}(4) \hookrightarrow f_* \omega_{X'}$$

and

$$f_*\omega_{X'/\mathbb{P}^1}^2 \hookrightarrow f_*\omega_{X'}^3.$$

Thus ϕ_3 is generically finite for the same reason given in the proof of Theorem 2.1.

Corollary 3.4. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. Assume $P_g(X) = 4$ and d = 2. Then ϕ_3 is generically finite.

Proof. One can easily derive it from above since $h^0(L) \ge 3$ in this case.

Corollary 3.5. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. Assume $P_g(X) \ge 2$ and d = 1 and b > 0. Then ϕ_3 is generically finite.

Proof. This is just one part of the proof of Theorem 2.2.

Corollary 3.6. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. Assume $P_g(X) = 3$ and d = 2. Then ϕ_3 is generically finite except $q(S_1) = 1$ or 2 and |L| is composed of a rational pencil of genus $g = q(S_1) + 1$ where S_1 is the general member of $|M_1|$ and $L := \lceil \pi^*(K_X) \rceil \mid_{S_1}$.

Proof. We only need to consider the system $|K_{S_1} + L|$. One can easily derive this result from Proposition 2.1 and 2.2 in [2].

Proposition 3.7. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. Assume $P_g(X) = 4$ and d = 1 and b = 0. Then ϕ_3 is generically finite if $P_g(S) \ge 2$.

Proof. One can easily see that we only need to study the system

$$\left|K_{S} + \left\lceil \frac{5}{3}\pi^{*}(K_{X})\right\rceil \right|_{S} \right| = \left|K_{X'} + \left\lceil 2\pi^{*}(K_{X}) - \frac{E'}{3}\right\rceil \right|_{S}$$

since

$$\pi^*(K_X) =_{\mathbb{Q}} 3S + E'.$$

Because

$$\mathcal{O}(3) \hookrightarrow f_* \omega_{X'},$$

we have

$$f_*\omega^3_{X'/\mathbb{P}^1} \hookrightarrow f_*\omega^5_{X'}.$$

Suppose $P_g(S) \ge 2$ and denote by G the movable part of $|\sigma^*(K_{S_0})|$. Then we have $5\pi^*(K_X)|_S \ge 3G$ since $|3\sigma^*(K_{S_0})|$ is base point free. Denote by \overline{M} the movable part of

$$|6K_{X'}+S| \supseteq |K_{X'}+\lceil 5\pi^*(K_X)\rceil+S|.$$

We know $\overline{M}|_{S} \ge 4G$ from Lemma 2.7 in [3]. Denote by $\overline{\overline{M}}$ the movable part of $|2(6K_{X'} + S)|$. Now we consider the subsystem

$$|K_{X'} + 2(6K_{X'} + S) + S| \subseteq |14K_{X'}|.$$

Since ϕ_{12} is generically finite, $\overline{\overline{M}}$ is nef and big. By (1.1), we have a surjective map

$$H^0\left(X', K_{X'} + \overline{\overline{M}} + S\right) \to H^0\left(S, K_S + \overline{\overline{M}}\Big|_S\right).$$

Obviously we have $\overline{M}|_S \ge 2\overline{M}|_S$. So $M_{14}|_S \ge 9G$ by Lemma 2.7 in [3]. Thus $14\pi^*(K_X)|_S \ge 9G$. Then we can write

$$\frac{5}{3}\pi^*(K_X)\Big|_S - G - H \sim_{\text{num}} \frac{1}{9}\pi^*(K_X)\Big|_S$$

where H is an effective divisor or zero. Pick up a general member C of |G|. Then we have a surjective map

$$H^0\left(S, K_S + \left\lceil \frac{5}{3}\pi^*(K_X) \right\rceil \right|_S - H\right) \to H^0(C, K_C + D)$$

by (1.1) where $D := (\lceil (5/3)\pi^*(K_X)\rceil|_S - C - H)|_C$. Since C is nef on S, $|K_C + D|$ gives a finite map. Thus ϕ_3 is generically finite.

Proposition 3.8. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. Assume $P_g(X) = 3$ and d = 1 and b = 0. Then ϕ_3 is generically finite when $P_g(S) \ge 3$.

Proof. In this case, we have

$$\pi^*(K_X) =_Q 2S + E'.$$

Then one can reduce to the system $|K_S + \lceil (3/2)\pi^*(K_X)\rceil|_S|$ since

$$\left|K_{S} + \left\lceil \frac{3}{2}\pi^{*}(K_{X})\right\rceil \right|_{S}\right| = \left|K_{X'} + \left\lceil 2\pi^{*}(K_{X}) - \frac{E'}{2}\right\rceil \right|_{S}$$

by (1.1).

If $|K_S|$ is not composed of pencils, then ϕ_3 is generically finite.

If $|K_S|$ is composed of pencils, then we can write $K_S \sim_{\text{num}} bC + Z''$ where $b \ge P_g(S) - 1 \ge 2$. Since

$$\mathcal{O}(2) \hookrightarrow f_* \omega_{X'}$$

and

$$f_*\omega^3_{X'/\mathbb{P}^1} \hookrightarrow f_*\omega^6_{X'},$$

we have $6\pi^*(K_X)|_S \ge 3G$ where G is the movable part of $|\sigma^*(K_{S_0})|$. By Lemma 2.7 in [3] and (1.1) considering the system $|K_{X'} + \lceil 6\pi^*(K_X) \rceil + S|$, we have $M'|_S \ge 4G$ where M' is the movable part of $|7K_{X'} + S|$. Then considering the subsystem

$$|K_{X'} + (7K_{X'} + S) + S| \subseteq |9K_{X'}|,$$

by (1.1), we have a surjective map

$$H^0(X', K_{X'} + M' + S) \to H^0(S, K_S + M'|_S).$$

Denote by M'' the movable part of $|K_{X'} + (7K_{X'} + S) + S|$. Then $M''|_S \ge 5G$. So $9\pi^*(K_X)|_S \ge 5G$. Then we can write

$$\frac{3}{2}\pi^*(K_X)\Big|_S - C - H \sim_{\text{num}} \frac{3}{5}\pi^*(K_X)\Big|_S$$

where *H* is an effective divisor or zero. Thus we can reduce to the problem on the smooth curve *C* of $g \ge 2$. Then we are done.

Proposition 3.9. Let X be a projective minimal threefold of general type with only \mathbb{Q} -factorial terminal singularities. Assume $P_g(X) = 2$ and d = 1 and b = 0. Then ϕ_3 is generically finite when $P_g(S) \ge 4$.

Proof. We can write $\pi^*(K_X) =_{\mathbb{Q}} S + E'$ and reduce to the problem on the system $|K_S + \lceil \pi^*(K_X) \rceil|_S|$ on surface *S*.

If $|K_S|$ is not composed of pencils, then we are done.

If $|K_S|$ is composed of pencils, we can write $\sigma^*(K_{S_0}) \sim_{\text{num}} bC + Z''$ where $b \ge P_g(S) - 1 \ge 3$. Now

$$\mathcal{O}(1) \hookrightarrow f_*\omega_X$$

and

$$f_*\omega_{X'/\mathbb{P}^1}^2 \hookrightarrow f_*\omega_{X'}^6.$$

Then we see that $M'|_S \ge 3G$ where M' is the movable part of $|7K_{X'} + S|$ and G the movable part of $\sigma^*(K_{S_0})$. Then consider the subsystem

$$|K_{X'} + (7K_{X'} + S) + S| \subseteq |10K_{X'}|.$$

Denote by M'' the movable part of the left system above. By (1.1) we have a surjective map

$$H^{0}(X', K_{X'} + M' + S) \rightarrow H^{0}(S, K_{S} + M'|_{S})$$

and then $M''|_S \ge 4G$. Thus $10\pi^*(K_X)|_S \ge 4G$. We can write

$$\pi^*(K_X)|_S - C - H \sim_{\text{num}} \left. \frac{1}{6} \pi^*(K_X) \right|_S$$

where *H* is an effective divisor or zero. Then we can consider the system $|K_C + D|$ on curve *C* where $D \sim_{\text{num}} (\lceil (1/6)\pi^*(K_X) \rceil_S) |_C$. So we are done.

ACKNOWLEDGMENT. I am in debted to Meng Chen who gives me a lot of encouragement and guidance.

References

- [1] M. Chen: On Pluricanonical Maps for Threefolds of General Type II, Osaka J. Math. 38 (2001), 451–468.
- [2] M. Chen and E. Viehweg: *Bicanonical and adjoint linear system on surfaces of general type*, Pacific J. Math. (to appear).
- [3] M. Chen: *Canonically Stability in terms of singularities index for algebraic* 3-*folds*, Math. Proc. Cambridge. Phil. Soc. **131** (2001), 241–264.
- [4] M. Chen: On Canonical derived families of surfaces of general type over curves, Comm. in Algebras. 29 (2001), 4597–4618.
- [5] H. Hironaka: Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math. **79** (1964), 109–203, 205–326.
- [6] J. Kollár: Higher direct images of dualizing sheaves I, Ann. of Math. 123 (1986), 11–42.
- [7] Y. Kawamata: A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982), 43–46.
- [8] K. Matsuki: On pluricanonical maps for threefolds of general type, J. Math. Soc. Japan, 38 (1986), 339–359.
- [9] E. Viehweg: Vanishing theorems, J. Reine Angew. Math. 335 (1982), 1-8.
- [10] S.G. Tankeev: On n-dimensional canonically polarized varieties and varieties of fundamental type, Izv. Akad. Nauk SSSR. Ser. Math. 35 (1971), 31–44.
- [11] G. Xiao: L'irrégularité des surfaces de type général dont le système canonique est composé d'un pinceau, Compositio Math. 56 (1985), 251–257.
- [12] G. Xiao: Finitude de l'application bicanonique des surfaces de type général, Bull. Soc. Math. France, 113 (1985), 23–51.

Department of Applied Mathematics Tongji University Shanghai 200092, P.R. China e-mail: lzhued@hotmail.com

Current address: Doctor 05 Grade One Institute of Mathematics Fudan University Shanghai 200433, P.R. China e-mail: 051018003@fudan.edu.cn