THE GENERIC FINITENESS OF THE ^m-CANONICAL MAP FOR 3-FOLDS OF GENERAL TYPE

LEI ZHU

(Received June 4, 2004)

Abstract

Let X be a projective minimal threefold of general type with only $\mathbb Q$ -factorial terminal singularities. We study the generic finiteness of the m -canonial map for such 3-folds. Suppose $P_g(X) \ge 2$ and $q(X) \ge 3$. We prove that the *m*-canonical map is generically finite for $m \geq 3$, which is a supplement to Kollar's result. Suppose $P_g(X) \geq 5$. We prove that the 3-canonical map is generically finite, which improves Meng Chen's result.

0. Introduction

Throughout the ground field is always supposed to be algebraically closed of characteristic zero. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. For all integer $m > 0$, one may define the so-called *m*-canonical map ϕ_m , which is nothing but the rational map corresponding to the complete linear system $|mK_X|$. Many authors have studied the generic finiteness of ϕ_m in quite different ways.

In 1986, J. Kollár presented the following theorem in his paper.

Theorem 0.1 (Theorem (6.2) of [6]). *Let X be a smooth projective* 3-fold of *general type with* $q(X) \geq 4$. *Then* ϕ_k *is generically finite for* $k \geq 3$.

Meanwhile, he pointed out that the bound is the best possible. During our study of generic finiteness of m -canonical map for threefolds, we find we get a better bound if we suppose $P_g(X) \ge 2$. We also improve a result of Meng Chen.

Theorem 0.2 (Theorem 3.9 of [1]). *Let X be a projective minimal Gorenstein threefold of general type. Then* ϕ_3 *is generically finite whenever* $P_g(X) \geq 39$ *.*

The following is our main theorem.

Main Theorem. Let X be a projective minimal threefold of general type with *only* Q-factorial terminal singularities. If ϕ_m is not generically finite whenever $m \geq 3$, *then*

874 L. ZHU

- (1) $P_g(X) \leq 1$ *whenever* $m \geq 6$;
- (2) *either* $P_g(X) \le 1$ *or* $q(X) \le 2$ *if* $m = 3$ *or* 4;
- (3) *either* $P_g(X) \le 1$ *or* $q(X) \le 1$ *if* $m = 5$.

As a direct corollary, the following is a supplement to Kollár's result.

Corollary 1. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. If $P_g(X) \ge 2$ and $q(X) \ge 3$, then ϕ_m is generically finite whenever $m \geq 3$.

Corollary 2 improves Theorem 0.2.

Corollary 2. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. ϕ_3 is generically finite whenever $P_g(X) \geq 5$ or $P_{\varrho}(X) = 4$ and $q(X) \geq 2$.

As an application of our method, we will present more detailed results of the m-canonical map for 3-folds of general type.

1. Preliminaries

(1.1) Kawamata-Ramanujam-Viehweg vanishing theorem. We always use the vanishing theorem in the following form.

Vanishing Theorem ([7] or [9]). Let X be a smooth complete variety, $D \in$ $Div(X) \otimes \mathbb{Q}$. Assume the following two conditions:

(i) *is nef and big*;

(ii) *the fractional part of has supports with only normal crossings*. *Then* $H^{i}(X, \mathcal{O}_{X}(K_{X}+\ulcorner D\urcorner))=0$ *for all* $i>0$.

Most of our notations are standard within algebraic geometry except the following which we are in favor of: \sim _{lin} means *linear equivalence* while \sim _{num} means *numerical equivalence* and \equiv_0 means Q-numerical equivalence.

 (1.2) Set up for canonical maps. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. Suppose $P_e(X) \ge 2$, we study the canonical map ϕ_1 which is usually a rational map. Take the birational modification $\pi: X' \to X$, according to Hironaka [5], such that

(1) X' is smooth;

(2) $|K_{X'}|$ defines a morphism;

(3) the fractional part of $\pi^*(K_X)$ has supports with only normal crossings. Denote by g the composition of $\phi_1 \circ \pi$. So $g: X' \to B \subseteq \mathbb{P}^{P_g(X)-1}$ is a morphism. Let $g: X' \xrightarrow{f} B' \xrightarrow{s} B$ be the Stein factorization of g. We can write $K_{X'} \sim_{\text{lin}} \pi^*(K_X) + E$

and $K_{X'} \sim_{\text{lin}} M_1 + Z_1$, where M_1 is the movable part of $|K_{X'}|$. E is an effective Q-divisor which is a Q-linear combination of distinct exceptional divisors. We can also write $\pi^*(K_X) \sim_{\text{lin}} M_1 + E'$, where $E' = Z_1 - E$ is actually an effective Q-divisor.

If dim $\phi_1(X) = 2$, we see that a general fiber of f is a smooth projective curve of genus $g \ge 2$. We say X is canonically fibered by curves of genus g.

If dim $\phi_1(X) = 1$, we see that a general fiber S of f is a smooth projective surface of general type. We say that X is canonically fibered by surfaces with invariants $(2^2, P_g) = (K_{S_0}^2, P_g(S))$. Denote by $\sigma: S \to S_0$ to be the contraction onto the minimal model.

2. Proof of Main Theorem

Let the notation be as in (1.2) throughout this section. We study ϕ_m according to the value $d := \dim \phi_1(X)$ and $b := g(B)$. Obviously $1 \le d \le 3$.

Theorem 2.1. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. If ϕ_m is not generically finite whenever $m \geq 6$, then $P_{\rm g}(X) \leq 1.$

Proof. We suppose $P_g(X) \ge 2$ and try to prove ϕ_m is generically finite for all integers $m > 6$.

The case $d = 2$. Denote by S_1 the general member of $|M_1|$. So S_1 is a smooth projective surface of general type. We have

$$
\left|K_{X'}\right|^{T}(m-2)\pi^*(K_X)^{-1}+S_1\right|\subseteq |mK_{X'}|.
$$

Using (1.1) , we have

$$
|K_{X'}|^{r} \cdot \lceil (m-2)\pi^*(K_X)^{-1} + S_1 | \big|_{S_1} \supseteq |K_{S_1}|^{r} \cdot \lceil (m-2)L^{-1} \rceil
$$

where $L := \pi^*(K_X)|_{S_1}$. According to [10], we can reduce to the problem on surface S_1 since

$$
K_{X'} + \ulcorner (m-2)\pi^*(K_X)\urcorner
$$

is effective. Since $d = 2$, we have $h^0((m-2)L) \geq 3$. We know $|K_{S_1} + (m-2)L|$ gives a generically finite map by [2]. So does ϕ_m .

The case $d = 1$ and $b > 0$. Because $b > 0$, the movable part of $|K_X|$ is already base point free on X and $M_1 \sim_{num} aS$ with $a \geq 2$. So one always have $\pi^*(K_X)|_S =$ (K_{S_0}) . Obviously we have

$$
|K_{X'}|^{-(m-2)\pi^*(K_X)^+} + M_1| \subseteq |mK_{X'}|
$$

and

$$
\left| K_{X'} + \Gamma(m-2)\pi^*(K_X) \right| + M_1 \left| \left|_S = \left| K_S + \Gamma(m-2)L' \right| \right|_S \right|
$$

where $L' = \pi^*(K_X)$ by (1.1). According [8], we can reduce to the system $|K_S +$ $\lceil (m-2)L'^{-1} \rceil_S$ on S since

$$
K_{X'} + \ulcorner (m-2)\pi^*(K_X)\urcorner
$$

is effective and $a \geq 2$. While

$$
|K_S + \lceil (m-2)L'^{\dagger}|_S| \supseteq |K_S + \lceil (m-2)L'|_S^{\dagger}|
$$

by Lemma 2.2 in [3], we see

$$
|K_S + \lceil (m-2)L'|_S \rceil = |K_S + (m-2)\sigma^*(K_{S_0})|.
$$

The right system defines a generically finite map on S by [12]. So does ϕ_m .

The case $d = 1$ and $b = 0$. According to [6], we have

$$
\mathcal{O}(1) \hookrightarrow f_* \omega^2_{X'}
$$

and denote by

$$
\varepsilon := f_* \omega^2_{X' / \mathbb{P}^1} \hookrightarrow f_* \omega^6_{X'}.
$$

The local sections of $f_*\omega^2_{X/\mathbb{P}^1}$ give the bicanonical map of the fiber S and they extend to global sections of ε because ε is generated by global sections. On the other hand, $\mathcal{O}(\mathbb{P}^1,\varepsilon)$ can distinguish different fibers of f because deg(ε) > 0. So $H^0(\mathbb{P}^1,\varepsilon)$ gives a generically finite map on X' and so does ϕ_6 , which means ϕ_m is generically finite whenever $m \geq 6$. □

Theorem 2.2. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. If ϕ_m is not generically finite where $m = 3$ or 4, *then either* $P_g(X) \leq 1$ *or* $q(X) \leq 2$.

Proof. We assume $P_g(X) \ge 2$. Since $|3K_{X'}| \subseteq |4K_{X'}|$, we study ϕ_3 according to d and b .

The case $d = 2$. Choose a 1-dimensional subsystem $\Lambda \subseteq |K_{X'}|$ while taking a birational modification $\pi_1 : X' \to X$ such that the pencil Λ defines a morphism $\pi_1: X' \to \mathbb{P}^1$. We can even take further modification to π_1 so that $\pi_1^*(K_X)$ has supports with only normal crossings. Taking the stein factorization $p: X' \rightarrow W'$. We note that this fibration is different from the one which was defined in (1.2). Denote $b_1 := g(W')$. Let M be the movable part of the pencil. We obviously have $M \leq K_{X'}$. We can write $M \sim_{\text{lin}} \sum_{i=1}^a F_i$ where $a \ge 1$ and F_i is a fiber of p for all i.

Suppose $b_1 > 0$. We consider the system

$$
|2K_{X'}+M|\subseteq |3K_{X'}|.
$$

Now M contains at least 2 components F_1 and F_2 . By (1.1), we have a surjective map

$$
H^0(X', K_{X'} + M) \to H^0(F_1, 2K_{F_1}) \oplus H^0(F_2, 2K_{F_2}).
$$

This means $\phi_{|2K_{x'}+M|}$ can distinguish F_1 and F_2 and the restriction to F_i is at least a bicanonical map. Then ϕ_3 is generically finite.

Suppose $b_1 = 0$. Now $M \sim_{lin} F$. Still by (1.1) and since $b_1 = 0$, we consider the following system

$$
|K_F + \ulcorner \pi^*(K_X) \urcorner|_F|.
$$

Assume $P_g(F) \ge 2$ and $|K_F|$ is composed of pencils otherwise $q(F) \le 1$ or ϕ_3 is generically finite. If $q(F) \le 1$, then $q(X) \le 1$ by virtue of Corollary 2.3 in [4]. If $|K_F|$ is composed of pencils, then $q(F) \le 2$ according to [11]. So $q(X) \le 2$.

The case $d = 1$ and $b > 0$. Now we have

$$
|K_{X'}| + \lceil \pi^*(K_X) \rceil + M_1| \subseteq |3K_{X'}|.
$$

One can replace m with 3 in the corresponding proof of Theorem 2.1 and derive that ϕ_3 is generically finite.

The case $d = 1$ and $b = 0$. In this case we have

$$
\pi^*(K_X) =_{\mathbb{Q}} aS + E
$$

where $a = P_g(X) - 1 \ge 1$ and

$$
\left|K_{X'}+\left[2\pi^*(K_X)-\frac{E'}{a}\right]\right|_S=\left|K_S+\left[2-\frac{1}{a}\right)\pi^*(K_X)\right|_S.
$$

If ϕ_3 is not generically finite, nor is the map defined by the right system above. We suppose $P_g(S) \ge 2$. Then $|K_S|$ is compose of pencils and $q(S) \le 2$ according to [11]. Thus $q(X) \leq 2$ by [4]. \Box

Theorem 2.3. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. If ϕ_5 is not generically finite, then either $P_g(X) \leq 1$ *or* $q(X) \leq 1$.

Proof. We suppose $P_g(X) \ge 2$.

The case $d = 2$. One can replace m with 5 in the corresponding proof of Theorem 2.1 and derive that ϕ_5 is generically finite.

The case $d = 1$ and $b > 0$. The proof of Theorem 2.2 implies that ϕ_5 is generically finite since $|3K_{X'}| \subseteq |5K_{X'}|$.

The case $d = 1$ and $b = 0$. We can write $\pi^*(K_X) =_Q aS + E'$ where $a = P_g(X) - 1$ and

$$
\left|K_{X'} + \left|4\pi^*(K_X) - \frac{E'}{a}\right|\right| \subseteq |5K_{X'}|.
$$

For the same reason, we consider the system

$$
\left|K_S+\left\lceil\left(4-\frac{1}{a}\right)\pi^*(K_X)\right\rceil_S\right|=\left|K_{X'}+\left\lceil 4\pi^*(K_X)-\frac{E'}{a}\right\rceil\right|_S
$$

on surface S. If $P_g(X) \geq 3$, then we have

$$
\mathcal{O}(2) \hookrightarrow f_* \omega_{X'}
$$

and

$$
f_*\omega^2_{X'/{\mathbb P}^1} \hookrightarrow f_*\omega^4_{X'}.
$$

Thus ϕ_4 is generically finite for the same reason given in the proof of Theorem 2.1. So is ϕ_5 .

Next we suppose $P_g(X) = 2$ and then $a = 1$. By [6],

$$
\mathcal{O}(1) \hookrightarrow f_* \omega_{X'}
$$

and

$$
f_*\omega^2_{X'/{\mathbb P}^1} \hookrightarrow f_*\omega^6_{X'}.
$$

We assume $P_g(S) \ge 2$ and then denote by G the movable part of $|\sigma^*(K_{S_0})|$, we have $6\pi^*(K_X)|_S \ge 2G$ since $|2\sigma^*(K_{S_0})|$ is base-point-free for $P_g(S) > 0$. Furthermore, we suppose $|K_S|$ is composed of pencils otherwise ϕ_5 is generically finite. Then we can write

$$
\sigma^*(K_{S_0}) \sim_{\text{num}} bC + Z
$$

where C is a general fiber of the canonical map of S and $b \ge P_g(S) - 1 \ge 1$. If $|K_S|$ is composed of irrational pencils, then $b \ge P_g(S) \ge 2$. Denote by M' the movable part of

$$
|7K_{X'}+S| \supseteq |K_{X'}+{}^{\sqcap}6\pi^*(K_X)^{\sqcap}+S|.
$$

Thus we have $M'|_{S} \geq 3G$ by Lemma 2.7 in [3]. Now we consider the subsystem

$$
|K_{X'}+(7K_{X'}+S)+S| \subseteq |10K_X|.
$$

From Theorem 2.1, we know ϕ_7 is generically finite. Then M' is nef and big. By (1.1) , we have surjective map

$$
H^{0}(X', K_{X'} + M' + S) \to H^{0}(S, K_{S} + M'|_{S}).
$$

Then we see that $M_{10}|_S \geq 4G$ and thus $10\pi^*(K_X)|_S \geq 4G$. Pick up a general member C of $|G|$. Then we can write

$$
3\pi^*(K_X)|_S - C - H \sim_{\text{num}} \frac{1}{2}\pi^*(K_X)\Big|_S
$$

where H is an effective divisor or zero. Since

$$
|K_S+\ulcorner 3\pi^*(K_X)\urcorner |_S|\supseteq |K_S+\ulcorner 3\pi^*(K_X)\urcorner |_S-H|,
$$

by (1.1) we have a surjective map

$$
H^0(S, K_S + \ulcorner 3\pi^*(K_X) \urcorner |_S - H) \to H^0(K_C + D)
$$

where

$$
D := (\ulcorner 3\pi^*(K_X) \urcorner |_{S} - H - C)|_{C}.
$$

Whether $|K_S|$ is composed of rational pencils or irrational pencils, we can reduce to the curve C. Since C is nef on S, deg $D > 0$. Thus $|K_C + D|$ gives a finite map and ϕ_5 is generically finite. Then we can derive that if ϕ_5 is not generically finite then $P_g(S) \le 1$ and thus $q(S) \le 1$. By virtue of Corollary 2.3 in [4], we have $q(X) \le 1$. So we are done. \Box

3. Generic finiteness of ϕ_m

In this section we will keep the same notation as in (1.2) and denote $d :=$ $\dim \phi_1(X)$ and $b := g(B)$.

Corollary 3.1. Let X a projective minimal threefold of general type with only Q-factorial terminal singularities. If $P_g(X) \geq 2$, then ϕ_m is generically finite for all *integers* $m \geq 6$.

Proof. This is a direct result from Theorem 2.1.

Corollary 3.2. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. Assume $P_g(X) \geq 3$. *Then* ϕ_m is generically finite *when* $m = 4$ *or* 5.

 \Box

Proof. The proof of Theorem 2.3 implies the case $m = 5$. As for $m = 4$.

The case $d = 2$. One can still derive it from the proof of Theorem 2.1;

The case $d = 1$ and $b > 0$. The proof of Theorem 2.1 also implies ϕ_4 is generically finite as long as replacing m with 4 there.

The case $d = 1$ and $b = 0$. From proof of Theorem 2.3, we know this corollary is □ true.

In the following, we will study ϕ_3 and then present several probabilities.

Corollary 3.3. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. Assume $P_g(X) \geq 5$. Then ϕ_3 is generically finite.

Proof. The case $d = 2$. Denote by S_1 the general member of $|M_1|$ where M_1 is the movable part of $|K_{X'}|$. We have

$$
|K_{X'}| + \lceil \pi^*(K_X) \rceil + S_1| \subseteq |3K_{X'}|
$$

and

$$
|K_{X'} + \ulcorner \pi^*(K_X) \urcorner + S_1| \, |_{S_1} = |K_{S_1} + L|
$$

where $L := \lceil \pi^* (K_X) \rceil |_{S_1}$. Since $K_{X'} + \lceil \pi^* (K_X) \rceil$ is effective, we can reduce to the problem on the surface S_1 by [10]. Obviously $h^0(L) \ge P_g(X) - 1 \ge 4$. Then $|K_S +$ gives a generically finite map by [2], so does ϕ_3 .

The case $d = 1$ and $b > 0$. The proof of Theorem 2.2 implies this is true.

The case $d = 1$ and $b = 0$. Then

$$
\mathcal{O}(4)\hookrightarrow f_*\omega_{X'}
$$

and

$$
f_*\omega^2_{X'/{\mathbb P}^1} \hookrightarrow f_*\omega^3_{X'}.
$$

Thus ϕ_3 is generically finite for the same reason given in the proof of Theorem 2.1. \Box

Corollary 3.4. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. Assume $P_g(X) = 4$ and $d = 2$. Then ϕ_3 is generically *finite*.

Proof. One can easily derive it from above since $h^0(L) \geq 3$ in this case. \Box

Corollary 3.5. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. Assume $P_g(X) \geq 2$ and $d = 1$ and $b > 0$. Then ϕ_3 *is generically finite*.

Proof. This is just one part of the proof of Theorem 2.2.

Corollary 3.6. Let X be a projective minimal threefold of general type with only Q-factorial terminal singularities. Assume $P_g(X) = 3$ and $d = 2$. Then ϕ_3 is generically *finite except* $q(S_1) = 1$ *or* 2 *and* |L| *is composed of a rational pencil of genus* $g =$ $(S_1) + 1$ *where* S_1 *is the general member of* $|M_1|$ *and* $L := \lceil \pi^*(K_X) \rceil |_{S_1}$.

Proof. We only need to consider the system $|K_{S_1}+L|$. One can easily derive this result from Proposition 2.1 and 2.2 in [2]. □

Proposition 3.7. Let X be a projective minimal threefold of general type with *only* Q-factorial terminal singularities. Assume $P_g(X) = 4$ and $d = 1$ and $b = 0$. Then ϕ_3 *is generically finite if* $P_g(S) \geq 2$.

Proof. One can easily see that we only need to study the system

$$
\left|K_S+\left\lceil\frac{5}{3}\pi^*(K_X)\right\rceil_S\right|=\left|K_{X'}+\left\lceil 2\pi^*(K_X)-\frac{E'}{3}\right\rceil\right|_S
$$

since

$$
\pi^*(K_X) =_{\mathbb{Q}} 3S + E'.
$$

Because

$$
\mathcal{O}(3) \hookrightarrow f_* \omega_{X'},
$$

we have

$$
f_*\omega^3_{X'/{\mathbb P}^1}\hookrightarrow f_*\omega^5_{X'}.
$$

Suppose $P_g(S) \ge 2$ and denote by G the movable part of $|\sigma^*(K_{S_0})|$. Then we have $5\pi^*(K_X)|_S \geq 3G$ since $|3\sigma^*(K_{S_0})|$ is base point free. Denote by M the movable part of

$$
|6K_{X'}+S| \supseteq |K_{X'}+5\pi^*(K_X)^+ + S|.
$$

We know $\overline{M}|_S \geq 4G$ from Lemma 2.7 in [3]. Denote by $\overline{\overline{M}}$ the movable part of $|2(6K_{X'} + S)|$. Now we consider the subsystem

$$
|K_{X'}+2(6K_{X'}+S)+S|\subseteq |14K_{X'}|.
$$

Since ϕ_{12} is generically finite, $\overline{\overline{M}}$ is nef and big. By (1.1), we have a surjective map

$$
H^{0}\left(X', K_{X'}+\overline{\overline{M}}+S\right) \to H^{0}\left(S, K_{S}+\overline{\overline{M}}\Big|_{S}\right).
$$

П

Obviously we have $\overline{M}|_S \geq 2\overline{M}|_S$. So $M_{14}|_S \geq 9G$ by Lemma 2.7 in [3]. Thus $14\pi^*(K_X)|_S \geq 9G$. Then we can write

$$
\left.\frac{5}{3}\pi^*(K_X)\right|_S - G - H \sim_{\text{num}} \left.\frac{1}{9}\pi^*(K_X)\right|_S
$$

where H is an effective divisor or zero. Pick up a general member C of $|G|$. Then we have a surjective map

$$
H^{0}\left(S, K_{S}+\left[\frac{5}{3}\pi^{*}(K_{X})\right]_{S}-H\right) \to H^{0}(C, K_{C}+D)
$$

by (1.1) where $D := (\lceil (5/3)\pi^* (K_X) \rceil |_{S} - C - H)|_{C}$. Since C is nef on S, $|K_C + D|$ gives a finite map. Thus ϕ_3 is generically finite. П

Proposition 3.8. Let X be a projective minimal threefold of general type with *only* Q-factorial terminal singularities. Assume $P_e(X) = 3$ and $d = 1$ and $b = 0$. Then ϕ_3 *is generically finite when* $P_g(S) \geq 3$.

Proof. In this case, we have

$$
\pi^*(K_X) = O(2S + E').
$$

Then one can reduce to the system $|K_S + (3/2)\pi^*(K_X)$ ⁻ $|S|$ since

$$
\left| K_S + \left\lceil \frac{3}{2} \pi^* (K_X) \right\rceil_S \right| = \left| K_{X'} + \left\lceil 2 \pi^* (K_X) - \frac{E'}{2} \right\rceil \right|_S
$$

by (1.1).

If $|K_S|$ is not composed of pencils, then ϕ_3 is generically finite.

If $|K_S|$ is composed of pencils, then we can write $K_S \sim_{num} bC + Z''$ where $b \geq$ $P_g(S) - 1 \geq 2$. Since

$$
\mathcal{O}(2) \hookrightarrow f_* \omega_{X'}
$$

and

$$
f_*\omega_{X'/{\mathbb P}^1}^3 \hookrightarrow f_*\omega_{X'}^6
$$

we have $6\pi^*(K_X)|_S \geq 3G$ where G is the movable part of $|\sigma^*(K_{S_0})|$. By Lemma 2.7 in [3] and (1.1) considering the system $|K_{X'}| + 6\pi^* (K_X)^+ + S$, we have $M' |_{S} \geq 4G$ where M' is the movable part of $|7K_{X'} + S|$. Then considering the subsystem

$$
|K_{X'}+(7K_{X'}+S)+S| \subseteq |9K_{X'}|,
$$

by (1.1) , we have a surjective map

$$
H^{0}(X', K_{X'} + M' + S) \to H^{0}(S, K_{S} + M'|_{S}).
$$

Denote by M'' the movable part of $|K_{X'} + (7K_{X'} + S) + S|$. Then $M''|_S \geq 5G$. So $9\pi^*(K_X)|_S \geq 5G$. Then we can write

$$
\left.\frac{3}{2}\pi^*(K_X)\right|_S - C - H \sim_{\text{num}} \left.\frac{3}{5}\pi^*(K_X)\right|_S
$$

where H is an effective divisor or zero. Thus we can reduce to the problem on the smooth curve C of $g \ge 2$. Then we are done. \Box

Proposition 3.9. Let X be a projective minimal threefold of general type with *only* Q-factorial terminal singularities. Assume $P_g(X) = 2$ and $d = 1$ and $b = 0$. Then ϕ_3 *is generically finite when* $P_g(S) \geq 4$.

Proof. We can write $\pi^*(K_X) =_{\mathbb{Q}} S + E'$ and reduce to the problem on the system $|K_S + \lceil \pi^* (K_X) \rceil |_S|$ on surface S.

If $|K_S|$ is not composed of pencils, then we are done.

If $|K_S|$ is composed of pencils, we can write $\sigma^*(K_{S_0}) \sim_{\text{num}} bC + Z''$ where $P_g(S) - 1 \ge 3$. Now

$$
\mathcal{O}(1) \hookrightarrow f_* \omega_X
$$

and

$$
f_*\omega^2_{X'/{\mathbb P}^1}\hookrightarrow f_*\omega^6_{X'}.
$$

Then we see that $M' \mid_S \geq 3G$ where M' is the movable part of $|7K_{X'} + S|$ and G the movable part of $\sigma^*(K_{S_0})$. Then consider the subsystem

$$
|K_{X'}+(7K_{X'}+S)+S| \subseteq |10K_{X'}|.
$$

Denote by M'' the movable part of the left system above. By (1.1) we have a surjective map

$$
H^0(X', K_{X'} + M' + S) \to H^0(S, K_S + M'|_S)
$$

and then $M''|_S \geq 4G$. Thus $10\pi^*(K_X)|_S \geq 4G$. We can write

$$
\pi^*(K_X)|_S - C - H \sim_{\text{num}} \frac{1}{6} \pi^*(K_X)\Big|_S
$$

where H is an effective divisor or zero. Then we can consider the system $|K_C + D|$ on curve C where $D \sim_{num} (\lceil (1/6)\pi^*(K_X) \rceil_S)|_C$. So we are done. П

884 L. ZHU

ACKNOWLEDGMENT. I am in debted to Meng Chen who gives me a lot of encouragement and guidance.

References

- [1] M. Chen: *On Pluricanonical Maps for Threefolds of General Type* II, Osaka J. Math. **38** (2001), 451–468.
- [2] M. Chen and E. Viehweg: *Bicanonical and adjoint linear system on surfaces of general type*, Pacific J. Math. (to appear).
- [3] M. Chen: *Canonically Stability in terms of singularities index for algebraic* 3*-folds*, Math. Proc. Cambridge. Phil. Soc. **131** (2001), 241–264.
- [4] M. Chen: *On Canonical derived families of surfaces of general type over curves*, Comm. in Algebras. **29** (2001), 4597–4618.
- [5] H. Hironaka: *Resolution of singularities of an algebraic variety over a field of characteristic zero* I, II, Ann. of Math. **79** (1964), 109–203, 205–326.
- [6] J. Kollar: ´ *Higher direct images of dualizing sheaves* I, Ann. of Math. **123** (1986), 11–42.
- [7] Y. Kawamata: *A generalization of Kodaira-Ramanujam's vanishing theorem*, Math. Ann. **261** (1982), 43–46.
- [8] K. Matsuki: *On pluricanonical maps for threefolds of general type*, J. Math. Soc. Japan, **38** (1986), 339–359.
- [9] E. Viehweg: *Vanishing theorems*, J. Reine Angew. Math. **335** (1982), 1–8.
- [10] S.G. Tankeev: *On n-dimensional canonically polarized varieties and varieties of fundamental type*, Izv. Akad. Nauk SSSR. Ser. Math. **35** (1971), 31–44.
- [11] G. Xiao: *L'irregularit ´ e des surfaces de type g ´ en´ eral dont le syst ´ eme canonique est compos ` e´ d'un pinceau*, Compositio Math. **56** (1985), 251–257.
- [12] G. Xiao: *Finitude de l'application bicanonique des surfaces de type gen´ eral ´* , Bull. Soc. Math. France, **113** (1985), 23–51.

Department of Applied Mathematics Tongji University Shanghai 200092, P.R. China e-mail: lzhued@hotmail.com

Current address: Doctor 05 Grade One Institute of Mathematics Fudan University Shanghai 200433, P.R. China e-mail: 051018003@fudan.edu.cn