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Abstract
From Homma’s PL Gauss-Bonnet theorem applied on a PL-complex in a plane,

many generalizations of Pick’s theorem on a lattice PL-figure are obtained in a uni-
fied geometric way.

1. Introduction

The purpose of this paper is to provide a new viewpoint for theteaching of math-
ematics. In about 1976, a teacher at Nakafuji elementary school of Fukui City gave
lessons on the area of figures on a plane. Under the influence ofthe tiling scheme
method of T̄oyama, she had used a tiled floor of the classroom as the educational tool
to demonstrate that there exists no functional relation between the area of a region and
the length of the boundary. Last of all, she gave the following homework:Let’s draw

various figures of boundary length16 by putting together the square tilesS of area
1 by the edges as follows, and calculate the areas of the drawn figures:

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S
S

r

r

r

r

r

r

r

r

r

(a)

S
S
S
S

S
S
S
S

S
S
S
S

S
S
S

r

r

r

r

r

r

r

r

(b)

S
S
S
S

S
S
S
S

S
S
S

S
S
S

r r r

r r r

r

(c)

S
S
S
S

S
S
S

S
S
S

S
S
S

r r r

r r r

(d)

S
S
S
S

S S S

(e)

Fig. 1.

Surprisingly, a pupil was aware of the following equation for such figures with the
area and the number of the intersecting pointsr in the interior:

= 7

which was reported to the teacher on the next day. In the Fig. 1, that is, a: 16 9 = 7,
b: 15 8 = 7, c: 14 7 = 7, d: 13 6 = 7, e: 7 0 = 7.
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Question. In a meeting held at Fukui University in the last half of 1980’s, this
teacher asked Kurogi several questions on the above report [15, §2]:
(Q1) Is it true for such all figures? What happens if the boundary length of a figure is
changed?
(Q2) It is hard to realize the relation between the area and the number of the inter-
secting points. How can one consider the relation?
(Q3) Why does the number 7 appear in the right hand side?
(Q4) How can one develop the discovery of this pupil?

Answer. Note that the area of the above each figure are equal to the number of
the square tiles. Then one has Corollary 2.2 as well as Pick’stheorem (Theorem 2.1).
On the other hand, the process from (a) to (e) appears in an elementary method
for computing the Euler number of a simple polygonal region [12, §44]. And Pick’s
formula was proved from Euler’s formula of a simple polygonal region [2, 6, 17].
Recently, it was observed that Pick’s formula is a corollaryof Riemann-Roch theo-
rem for a toric variety [7] or Green’s theorem [4]. However, they treated only sim-
ple polygonal regions. This paper shows that many generalizations of Pick’s theorem
[5, 11, 20, 21, 22, 25, 27] are nothing but Homma’s PL Gauss-Bonnet theorem on a
plane.

Contents. In §2, to state the problem precisely, the notion of a lattice PL-figure
in a coordinate planeR2 is introduced, by which the above formula is related to
Pick’s formula for the lattice polygonal region. In§3, the area of primitive triangle
is proved to be 1 2 after Gaskell-Klamkin-Watson [9] (cf. [3]), by means of Reeve’s
anglular-sum formula at vertexes [22] (cf. [27]).

In §4, Homma’s alternating angular-sum formula at simplexes ona plane (Theo-
rem 4.1) is proved from Thalēs theorem (cf. [14,§1.3], [23]). It is then obtained that
Pick’s formula and its generalizations on lattice PL-figures (Theorem 2.5) follow from
Homma’s PL Gauss-Bonnet formula on a plane (Theorems 4.2, 4.3). In §5, it is ob-
served that Pick’s theorem is a consequence of Homma’s PL Gauss-Bonnet theorem
and Shoenflies theorem for a simple region.

2. Pick’s formula and its generalizations

Such figures like the examples in Fig. 1 are calledpolyominoes(cf. [19, §1.9]).
However, there are wilder figures of boundary length 16 made by combining square
tiles, isolated points or line segments on a plane as follows, where = 7 for
all figures in Fig. 2 except the example (g). In this article, the combination such
as the example (f) is not considered, that is, the square tiles should be combined
such that each pair of two overlaped edges of the gathered square tiles are glued as
one line segment of unit length. In this case, each vertex of the square tiles can be
considered asa lattice point in the coordinate plane(that is, the point with integer
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Fig. 2.

-coordinates). On the other hand, the figure such as the example (i) is considered
in this article, although this is not only a combination of square tiles but also isolated
points and line segments (cf. [11]).

In general, a figure such as the examples in Fig. 1 or 2 except the example
(f) is called a lattice PL-figure, that is precisely defined as follows: By definition,
a PL-figure is a compact subset of a coordinate planeR2 such that the boundary

is a 1-dimensional PL-complex. LetZ2 be the set of all points inR2 with inte-
ger coordinates, whose each element is calleda lattice point. By definition, a lattice
line segmentis a line segment joining two lattice points inR2, and a primitive line
segmentis a lattice line segment such that there exists no lattice point except the two
vertexes. Thena 1-dimensional primitive PL-complexis defined to be a union of a fi-
nite set of primitive line segments or lattice points whose intersections are only ver-
tices (those are then lattice points). Note that a 1-dimensional primitive PL-complex is
a 1-dimensional PL-complex consisting of their primitive line segments and their ver-
texes or several lattice points as simplexes, which is not assumed to be connected and
may have 0-dimensional connected components. By definition, a lattice PL-figure
is a compact subset ofR2 such that the boundary is a 1-dimensional primitive
PL-complex. Note that a lattice PL-figure is not assumed to beconnected and may
have locally 0-dimensional or 1-dimensional parts.

For a lattice PL-figure , let ( ) denote the area of . Put

( ) := ( ) + ( ) = #( Z2)

where ( ) := #( Z2) is the number of the lattice points on , and ( ) :=
#(int Z2) is the number of the lattice points in the interior int . In Theorem 3.2,
it is stated that a lattice PL-figure admits a structure of 2-dimensional PL-complex
consisting of primitive triangles ( = 1 ( )), primitive line seqments ( =
1 ( )) and lattice points ( = 1 ( )), calleda primitive PL-complex.
Put ( ) := # and

( ) := # (cl (int ))

as bounded numbers at most ( ) = # . By definition, a 2-dimensional compact
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subset of a coordinate plane is said to besimple if the boundary is homeomorphic to
a circle, a Jordan curve, whose examples are given in Fig. 1 and 2 (f). And a simple
lattice PL-figure is calleda lattice polygonal region. For example, the polyominoes can
be considered as lattice polygonal regions (see Fig. 1), as well as more complicated
ones (see [25, Chapter 5, Figure 27]). Then the following formula is well-known after
Pick [20], Steinhaus [24, Figure (77), References], Coxeter [1] and Niven-Zuckerman
[18] (cf. [10]):

Theorem 2.1 (Pick). Let be a lattice polygonal region inR2. Then

(1) ( ) =
( )

2
+ ( ) 1

Corollary 2.2. Let be a polyomino made by combining the square tilesS of
area 1 by the edges such that the boundary is a Jordan curve. Then the following
linear equation holds among the area of, the length of and the number
of the intersecting pointsr in the interior int :

=
2

1

Proof. Note that ( ) = , because the vertexes of the unit squares are consid-
ered as lattice points. Since the boundary is homeomorphic to a circle, ( ) = .
Combined with the Pick’s formula, one has then that = ( ) ( ) = ( )2
1 = 2 1, as required.

In particular, when = 16, the right hand side is equal to 7, that is the discovery
by the pupil in Nakafuji elementary school. However, for theexample (h) in Fig. 2
(cf. [25, Figure 34]), one has that

( ) ( ) = 8 0 = 7 =
( )

2
1

For such figures, the following formula will be obtained (cf.[20, §4], [5]).

Theorem 2.3. Let be a lattice PL-figure such that is equal to the closure
cl (int ) of the interior int in the coordinate plane. If the boundary is homeo-
morphic to a disjoint union of several circles, then

(2) ( ) =
( )

2
+ ( ) ( )

with respect to the Euler number( ) of the figure .
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The formula (2) also holds for a disconnected figure such as the example (j) in
Fig. 2. However, the formula (2) does not hold for the examples (g), (k) in Fig. 2.
Note that g: = 7 0 = 7, and that k: = 6 0 = 6 = 7. For such figures,
the following formula holds (cf. ( ) = ( ) ( )).

Theorem 2.4 (Reeve, Rosenholtz, Varberg).Let be a lattice PL-figure such
that = cl (int ) in R2. Then

(3) ( ) =
( )

2
+ ( ) +

( )

2
( )

This paper shows that it is a consequence of Homma’s PL Gauss-Bonnet theorem,
in contrast to a purely combinatorial proof [21, 27]. However, the formula (3) does not
hold for the example (i) in Fig. 2 (cf. [11, Ex. 2, Ex. 3]), and that = 5 = 7. For
all lattice PL-figure containing all examples in Fig. 1 and 2 except the example (f),
the following formula is also obtained from Homma’s PL Gauss-Bonnet theorem.

Theorem 2.5. Let be a lattice PL-figure inR2. Then

(4) ( ) = ( ) ( ) +
( )

2
( )

3. Angular-sum at vertexes

By definition, a lattice triangle is a simple lattice PL-figure that is also a triangle
with a positive area. Anda primitive triangle is a lattice triangle such that ( ) =
3. For 0, put ( ) := R2 dist ( ) with respect to the Euclidean
distance dist ( ) between the two points and inR2. Then one has the following
primitive PL-complex decomposition:

Definition-Proposition 3.1. Let be a lattice PL-figure, ext the set of all ex-
terior points of , and int the set of all interior points of . Then:
(i) The boundary (int ) of int is a subcomplex of ;
(ii) For any (int ) Z2, there exist two distinct primitive line segments

1 2 (int );
(iii) There exist a positive integer and primitive line segments

= := + (1 ) 0 1 ( = 1 )

such that = or for = , and that (int ) = 1 ;
(iv) For each = := + (1 ) 0 1 , there exists 0 such that

( ) consists of the following two connected components:

( ) ext and ( ) int
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Theorem 3.2. Any lattice PL-figure admits a decomposition as a primitive
PL-complex consisting of primitive triangles, primitive line segments, and lattice points
as 2-dimensional, 1-dimensional, and 0-dimensional simplexes such that the boundary

is a subcomplex.

By means of the distance between two compact subsets in a Euclidean plane,
Definition-Proposition 3.1 and Theorem 3.2 can be proved (cf. [16]).

For a subset and a point in a coordinate plane, put

(5) ∠( ) := lim
+0

( ( ) )

( ( ))
∠ :=

Z2

∠( )

Note that 0 ∠( ) 1. Moreover, one has the following result.

Theorem 3.3. For a lattice PL-figure , let ( ) be the number of primitive
triangles in a primitive PL-complex decomposition of primitive triangles, primitive line
segments, and lattice points. Then

(6) ∠ =
( )

2

In particular, the number ( ) is uniquely determined by for any PL-complex de-
composition of primitive triangles, primitive line segments, and lattice points.

Proof. For two lattice PL-figures 1 2 such as 1 2 1 2,

(7) ∠( 1 2) = ∠ 1 +∠ 2

By Theorem 3.2, = =1 0 for a certain 1-dimensional primitive PL-complex

0 and primitive triangles such that ( = 0 1 ).
By Thal̄es theorem,∠ = 1 2 ( = 1 ). And∠ 0 = 0 by 0 =∠( ) ∠ 0 0.
Then∠ = =1∠ +∠ 0 = 2 by (7).

REMARK 3.4. The statements of Definition-Proposition 3.1, Theorems 3.2 and 3.3
also hold when the definition of “lattice points”Z2 is replaced by a subset inR2

such that is a finite set for any bounded subsets inR2.

Theorem 3.5. The area of any primitive triangle is equal to1 2.

Proof. (cf. [9], [3]). (i) If is a lattice triangle, then the area ( ) is a half
integer, which is non less than1 2: Let ( ) be the three vertexes of the lattice
triangle ( = 0 1 2). For = 1 2, put := 0 and := 0, which are
integers. Then the area1 2 2 1 2 is a half integer.
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(ii) Let be a primitive triangle. Take a square containing inint of
boundary length 4 such that the four vertexes are all latticepoints. In general, con-
sists of 2-unit squares, and that each unit square consists of two primitive triangles,
so that has a standard structure of PL-complex of such 22-primitive triangles. Put

:= cl ( ). Then = is a 1-dimensional primitive PL-complex. Hence,
is a lattice PL-figure. By Theorem 3.2, is a PL-complex of primitive triangles,

primitive line segments, and lattice points. Hence, has another PL-complex structure
given by the PL-complex structure of and the primitive triangle , in which the
number of the primitive triangles is the same number 22 with the standard one by the
last statement of Theorem 3.3. Hence, the number of the triangle in the PL-complex
of is 2 2 1. By (i) and the additivity of the area function ( ), one has that

2 = ( ) = ( ) + ( )
2 2 1

2
+

1

2
= 2

so that ( ) = 1 2.

Corollary 3.6 (Reeve). Let be a lattice PL-figure. Then

( ) = ∠

Proof. It follows from Theorems 3.2, 3.3, 3.5 and the additivity of the area func-
tion ( ).

REMARK 3.7. Note that Theorem 3.5 was also proved from the area of a lattice
parallelograms (cf. [12,§5], [1, 18, 2]) or more concrete computations on the area
of lattice rectangles (cf. [24, 26, 17, 27, 25]). The above proof was given in [9] and
[3] except for the proof of the possibility of primitive triangular decomposition. Since

2(R) preserves the area of figures, the statements of Theorem 3.5and Corollary 3.6
hold also whenZ2 is replaced by := Z2 with 2(R).

4. Homma’s PL Gauss-Bonnet theorem

In general, for a line segment = and a 2-dimensionl simplex contained in
a PL-complex in a coordinate plane, as simplexes of , taking some points

and int , put

∠( ) := ∠( ) ∠( ) := ∠( );

∠ ( ) := 1 ∠( ) ∠ ( ) := 1 ∠( )

∠ ( ) := 1 ∠( ) = 1 1 = 0
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As well as the equation (7), for PL-complexes1 2 in a coordinate plane such that

1 2 1 2, one has that

∠( 1 2) = ∠( 1) +∠( 2);(8)

∠( 1 2) = ∠( 1) +∠( 2)(9)

As a generalization of Thalēs theorem, one has the following formula (cf. [13, p.113,
Cor. 1], [14, pp.20–24], [23, pp.164–165]).

Theorem 4.1 (Homma). Let be a PL-complex in a coordinate plane with the
vertexes ( = 1 ), the edges ( = 1 ), and the triangles ( =
1 ). Then

(10)
=1

∠( )
=1

∠( ) +
=1

∠( ) = 0

Proof. If is a triangle 1 2 3, then for 1 = 2 3 2 = 3 1 3 = 1 2,

3

=1

∠( )
3

=1

∠( ) +∠( 1 2 3 ) =
1

2

3

2
+ 1 = 0

If int = , then = 0, and∠( ) = ∠( ) = 0 for any ( = 1 ;
= 1 ). By the additivity equations (7), (8) and (9), one has then the required

equation for any PL-complex in a coordinate plane.

Then Homma’s PL Gauss-Bonnet theorem on a plane is obtained as follows (cf.
[13, p.113, Thm. 1], [14, p.24, Thm. 1.6], [23, pp.170–172]):

Theorem 4.2 (Homma). Let be a PL-complex in a coordinate plane with the
vertexes ( = 1 ), the edges ( = 1 ), and the triangles ( =
1 ). Then

(11)
=1

∠ ( )
=1

∠ ( ) +
=1

∠ ( ) = ( )

where the right hand side ( ) := + is the Euler number of .

Proof. In the equation (10), substitute∠( ) = 1 ∠ ( ) for =
. Then + (the left hand side) = 0, as required.

Theorem 4.3. Let be a primitive PL-complex consisting of lattice points
( = 1 ( )), primitive line segments ( = 1 ( )) and primitive triangles
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( = 1 ( )). Then

(12) ∠ = ( ) ( ) +
( )

2
( )

Proof. In the equation (11) of Theorem 4.2, one has that

(13)
=1

∠ ( ) +
( )

2
( ) = ( )

In fact, ( )
=1 ∠ ( ) = 0, at first. At second, if , then = ,

because is a subcomplex of . In this case, the midpoint of is contained in
int , so that∠ ( ) = 0. At third, for ( ( ) ( ))-primitive line segments

such as (int ), (int ) = because (int ) is a subcomplex
of . In this case, the midpoint of is not contained in (int ) butcontained
in , so that∠ ( ) = 1 ∠( ) = 1. At last, for ( )-primitive line seg-
ments (int ), is an edge of just one triangle in the PL-complex, so that
∠ ( ) = 1 2. Hence,

=1

∠ ( ) = ( ( ) ( )) +
( )

2
= ( )

( )

2

Summing up the above arguments, (13) is obtained. By virtue of the equations (13),
= ( ), = ( ) and

( )

=1

∠ ( ) = ( )
( )

=1

∠( ) = ( ) ∠

one has then that ( ) ∠ + ( ) 2 ( ) = ( ), as required.

REMARK 4.4. The statement of Theorem 4.3 holds also when the definition of
“lattice points” Z2 is replaced by a subset inR2 such as Remark 3.4.

Proof of Theorem 2.5. By Corollary 3.6 and Theorem 4.3, the claim of Theo-
rem 2.5 is proved.

Proof of Theorem 2.4 and Theorem 2.3. By = cl (int ), one has ( ) =
( ), so that ( ) + ( ) 2 = ( ) 2. Combined with ( ) = ( ) + ( )

and ( ) = ( ) ( ), one has Theorem 2.4 by Theorem 2.5. Assume that
is a disjoint union of several circles. Then ( ) = 0. Hence, Theorem 2.3 is obtained
by Theorem 2.4.
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REMARK 4.5. The statements of Theorems 2.5, 2.4 and 2.3 hold also when Z2 is
replaced by := Z2 with 2(R), as well as Remarks 3.7 and 4.4.

5. Pick’s theorem revised

Let be a subset ofR2 homeomorphic to a circle. By Jordan curve theorem (cf.
[8, p.68, Thm. 5.10]),R2 is a disjoint union of the bounded connected component

1 and the unbounded connected component2 of R2 such that = 1 = 2:

R2 = 1 2

Lemma 5.1. (i) If is a non-empty bounded open subset ofR2 such as
, then = 1.

(ii) If is a compact subset ofR2 such that is homeomorphic to a circle, then
= cl (int ).

Proof. (i-1) If = , then : Assume that . Take
and . Then there exists a continuous curve : [0 1] such that (0)=

and (1) = . Put 1 := sup [0 1] ( ) . Then (1) cl . If ( 1) ,
then there exists 0 such that ( ) if +1 1 + , so that 1 = 1, hence

( 1) = (1) = , a contradiction. Hence, (1) , so that (1) . Because
of , ( 1) = , that is a contradiction.

(i-2) Because is bounded, 2. By (i-1), 2 = . Note that 1 2

= , so that 1 = . By (i-1), 1. Then = 1, as required.
(ii) Take := and := int in (i). Then int = 1, so that cl (int ) =

cl 1 = . Then = int = cl (int ).

Proof of Theorem 2.1. By Shoenflies theorem (cf. [8, p.75]), is homeo-
morphic to a disk, so that ( ) = 1. Combined with Theorem 2.3 andLemma 5.1
(ii), one has the result.

The essential points of the traditional arguments on Pick’sformula (cf. [20, 24, 1,
18]) are its additivity and the calculation of the area of primitive triangles, which are
related with a nature of Euler number (cf. [11]), so that the difficulty for proving tradi-
tional Pick’s theorem is essentially in the difficulty of thedirect computationof Euler
number. In this article, it is decomposed into the additivity of anglular-sum at vertexes,
the possibility of primitive PL-complex decomposition, Homma’s PL Gauss-Bonnet
theorem and Shoenflies theorem. On the other hand, the following fact was used in
the literature [2, 27, 3]:the external anglular-sum at the boundary vertexes of a poly-
gonal region is2 radian. In general, the following result is also obtained from the
equation (13):
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Proposition 5.2. Let be a PL-figure in a plane such that = cl (int ) and
( ) = 0. Then “ the external anglular-sum at the boundary vertexes” of is equal

to 2 ( ) radian.

Proof. By Remark 3.4 and Theorem 3.2, a primitive PL-complexdecomposition
of is given by considering the -vertexes in as all “lattice points.” Note that

( ) = ( ) = 0, and that ( ) = ( ) by = cl (int ). By Remark 4.4,
the equation (13) gives =1∠ ( ) 2 = ( ), so that =1(1 ∠( )) =

( ) + 2, i.e.

(14)
=1

1

2
∠( ) = ( )

where the left hand side means the external angular-sum at the boundary vertexes in
usual terminology, where the straight angle is measured to be 1 2.

REMARK 5.3. A geometric proof of Pick’s formula (Theorem 2.1) and its general-
ization (Theorem 2.3) given in DeTemple-Robertson [2, Theorem 4], Varberg [27] and
DeTemple [3] can be considered as a proof based on angular-sum formula at vertexes,
Proposition 5.2, Lemma 5.1 (ii) and Schoenflies theorem.

Although Theorems 2.5 and 4.3 are firstly observed by Homma’sPL Gauss-Bonnet
theorem, another purely combinatorial proof is also obtained as well as a proof of
Theorem 2.4 in the literature [21, 27]:

Purely combinatorial proof of Theorem 4.3. By Theorem 3.3 and Corollary 3.6,
it is enough to prove the following formula:

(15)
( )

2
= ( ) ( ) +

( )

2
( )

Note that each primitive triangle has three edges; each primitive line segment not con-
tained in is the common edge of just two primitive triangles;each primitive line
segment of (int ) is an edge of just one primitive triangle; and that each primitive
line segment of cl ( (int )) is not an edge of any primitive triangle. As well as
the literature [2, 6, 9, 17, 21, 27], the total number ( ) of primitive line segments of
the primitive PL-complex then satisfies the following equation:

(16) 2 ( ) = 3 ( ) + ( ) + 2( ( ) ( ))

Hence, ( ) = (3 ( ) ( ) + 2 ( )) 2. Then

( ) = ( ) ( ) + ( )
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= ( )
3 ( ) ( ) + 2 ( )

2
+ ( )

as required.
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