ASYMPTOTIC BEHAVIOR OF LEAST ENERGY SOLUTIONS TO A FOUR-DIMENSIONAL BIHARMONIC SEMILINEAR PROBLEM

Futoshi TAKAHASHI

(Received March 10, 2004)

Abstract

In this paper, we study the following fourth order elliptic problem $\left(E_{p}\right)$: $$
\left(E_{p}\right)\left\{\begin{array}{l} \Delta^{2} u=u^{p} \quad \text { in } \Omega \\ u>0 \text { in } \Omega \\ \left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=0 \end{array}\right.
$$ where Ω is a smooth bounded domain in $\mathbf{R}^{4}, \Delta^{2}=\Delta \Delta$ is a biharmonic operator and $p>1$ is any positive number.

We investigate the asymptotic behavior as $p \rightarrow \infty$ of the least energy solutions to $\left(E_{p}\right)$. Combining the arguments of Ren-Wei [8] and Wei [10], we show that the least energy solutions remain bounded uniformly in p, and on convex bounded domains, they have one or two "peaks" away form the boundary. If it happens that the only one peak point appears, we further prove that the peak point must be a critical point of the Robin function of Δ^{2} under the Navier boundary condition.

1. Introduction.

In this paper, we study the following fourth order elliptic problem $\left(E_{p}\right)$:

$$
\left(E_{p}\right)\left\{\begin{array}{l}
\Delta^{2} u=u^{p} \quad \text { in } \Omega, \\
u>0 \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where Ω is a smooth bounded domain in $\mathbf{R}^{4}, \Delta^{2}=\Delta \Delta$ is a biharmonic operator and $p>1$ is any positive number. Boundary condition imposed in $\left(E_{p}\right)$ is sometimes called the Navier boundary condition.

One of motivation to study such a problem involving biharmonic operator in \mathbf{R}^{4} comes from the recent development in conformal geometry on four-manifold. See [3].

On the other hand, problem $\left(E_{p}\right)$ may be regarded as a natural extension to a higher dimensional case, of the two-dimensional problem treated by Ren and Wei [8], [9].

Ren and Wei considered the least energy soluton u_{p} of the following semilinear

[^0]problem
\[

\left\{$$
\begin{array}{l}
-\Delta u=u^{p} \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \\
\left.u\right|_{\partial \Omega}=0
\end{array}
$$\right.
\]

where Ω is a bounded smooth domain $\subset \mathbf{R}^{2}$. They studied the asymptotic behavior of u_{p} as the nonlinear exponent $p \rightarrow \infty$, and they proved that the least energy solutions remain bounded in L^{∞}-norm regardless of p. On the shape of solutions, they showed that the least energy solutions must develop one "peak" in the interior of Ω, that is the graph of u_{p} is becoming like a single spike as $p \rightarrow \infty$. Moreover they showed that this peak point must be a critical point of the Robin function of the domain.

Now, in this paper we investigate that whether the analogues of the results of Ren and Wei would hold to the higher dimensional fourth order problem $\left(E_{p}\right)$.

Since the complete structure of solution set of the simple-looking problem $\left(E_{p}\right)$ is widely open, so we restrict our attention, as Ren and Wei did, to the least energy solution constructed as follows.

Let us consider the constrained minimization problem:

$$
\begin{equation*}
C_{p}^{2}:=\inf \left\{\int_{\Omega}|\Delta u|^{2} d x: u \in H^{2} \cap H_{0}^{1}(\Omega),\|u\|_{p+1}=1\right\} \tag{1.1}
\end{equation*}
$$

Since the Sobolev imbedding $H^{2} \cap H_{0}^{1}(\Omega) \hookrightarrow L^{p+1}(\Omega)$ is compact for any $p>1$, we have at least one minimizer \underline{u}_{p} for the problem (1.1), where $\underline{u}_{p} \in H^{2} \cap H_{0}^{1}(\Omega)$, $\left\|\underline{u}_{p}\right\|_{p+1}=1$.

Without losing generality, we may assume $\underline{u}_{p}>0$. Indeed, let v solves

$$
\left\{\begin{array}{l}
-\Delta v=\left|\Delta \underline{u}_{p}\right| \quad \text { in } \Omega \\
\left.v\right|_{\partial \Omega}=0
\end{array}\right.
$$

Then the maximum principle implies $v \geq\left|\underline{u}_{p}\right|$, so we have

$$
C_{p}^{2}=\frac{\int_{\Omega}\left|\Delta \underline{u}_{p}\right|^{2} d x}{\left(\int_{\Omega}\left|\underline{u}_{p}\right|^{p+1} d x\right)^{2 /(p+1)}} \geq \frac{\int_{\Omega}|\Delta v|^{2} d x}{\left(\int_{\Omega} v^{p+1} d x\right)^{2 /(p+1)}}
$$

that is, the positive function v also minimizes C_{p}^{2}.
Set

$$
\begin{equation*}
u_{p}:=C_{p}^{2 /(p-1)} \underline{u}_{p} \tag{1.2}
\end{equation*}
$$

then u_{p} solves $\left(E_{p}\right)$ and $C_{p}=\left\|\Delta u_{p}\right\|_{L^{2}} /\left\|u_{p}\right\|_{L^{p+1}}$. Standard regularity argument implies that any weak solution $u \in H^{2} \cap H_{0}^{1}(\Omega)$ satisfies $\Delta u \in W^{2, \sigma} \cap W_{0}^{1, \sigma}(\Omega)(\forall \sigma>1)$ (for example, see [4]). Therefore u_{p} is smooth and $u_{p}=\Delta u_{p}=0$ on $\partial \Omega$.

We call u_{p} the least energy solution to (E_{p}).
Our first result is the same as the one in Ren and Wei.
Theorem 1.1. Let u_{p} be a least energy solution to $\left(E_{p}\right)$. Then there exist C_{1}, C_{2} (independent of p), such that

$$
0<C_{1}<\left\|u_{p}\right\|_{L^{\infty}}<C_{2}<\infty
$$

for p large enough.
To state further results, we need some definitions. Set

$$
\begin{equation*}
w_{p}:=\frac{u_{p}}{\int_{\Omega} u_{p}^{p} d x} . \tag{1.3}
\end{equation*}
$$

For a sequence $w_{p_{n}}$ of w_{p}, we define the blow up set S of $\left\{w_{p_{n}}\right\}$ as usual:

$$
\begin{gathered}
S:=\left\{x \in \bar{\Omega}: \exists \text { a subsequence } w_{p_{n}^{\prime}}, \exists\left\{x_{n}\right\} \subset \Omega\right. \text { such that } \\
\left.x_{n} \rightarrow x \text { and } w_{p_{n}^{\prime}}\left(x_{n}\right) \rightarrow \infty\right\} .
\end{gathered}
$$

We also define a peak point P for u_{p} to be a point in $\bar{\Omega}$ such that u_{p} does not vanish in the L^{∞} norm in any small neighborhood of P as $p \rightarrow \infty$. It turns out later that the set of peak points of $\left\{u_{p}\right\}$ is contained in the blow up set of $\left\{w_{p}\right\}$.

Theorem 1.2. Let $\Omega \subset \mathbf{R}^{4}$ be a smooth convex bounded domain. Then for any sequence $w_{p_{n}}$ of w_{p} with $p_{n} \rightarrow \infty$, there exists a subsequence (still denoted by $w_{p_{n}}$) such that the blow up set S of this subsequence is contained in Ω and has the property $1 \leq \operatorname{card}(S) \leq 2$.

If $\operatorname{card}(S)=1$ and $S=\left\{x_{0}\right\}$ (one point blow up), then:

$$
\begin{equation*}
f_{n}:=\frac{u_{p_{n}}^{p_{n}}}{\int_{\Omega} u_{p_{n}}^{p_{n}} d x}=\left(\int_{\Omega} u_{p_{n}}^{p_{n}} d x\right)^{p_{n}-1} w_{p_{n}}^{p_{n}} \stackrel{*}{\rightharpoonup} \delta_{x_{0}} \tag{1}
\end{equation*}
$$

in the sense of Radon measures of Ω.
(2) $w_{p_{n}} \rightarrow G_{4}\left(\cdot, x_{0}\right)$ in $C_{l o c}^{4}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)$ where $G_{4}(x, y)$ denotes the Green function of Δ^{2} under the Navier boundary condition:

$$
\left\{\begin{array}{l}
\Delta_{x}^{2} G_{4}(x, y)=\delta_{y}(x), \quad x \in \Omega \\
\left.G_{4}(x, y)\right|_{x \in \partial \Omega}=\left.\Delta G_{4}(x, y)\right|_{x \in \partial \Omega}=0
\end{array}\right.
$$

(3) x_{0} is a critical point of the Robin function $R_{4}(x)=H_{4}(x, x)$, where

$$
H_{4}(x, y):=G_{4}(x, y)+\frac{1}{4 \sigma_{4}} \log |x-y|
$$

denotes the regular part of G_{4} and $\sigma_{4}=2 \pi^{2}$ is the volume of the unit sphere S^{3} in \mathbf{R}^{4}.

Remark 1.3. (1) In Theorem 1.2, the convexity assumption of Ω is needed to derive a uniform boundary estimate of solutions to $\left(E_{p}\right)$ by the use of Method of Moving Planes (MMP).

In Δ case, MMP still works well for non-convex domains through the application of Kelvin transformations, and leads to a uniform boundary estimate. However in our Δ^{2} case, Kelvin transformation does not work well simply because Laplacian of a Kelvin transformed function is not 0 on the boundary. It is unclear that actually the boundary blow-up can occur if Ω is not convex.
(2) We conjecture that $\operatorname{card}(S)=1$ at least for any convex domain. If the following upper bound

$$
M:=\underset{p \rightarrow \infty}{\lim \sup }\left\|u_{p}\right\|_{L^{\infty}(\Omega)}<e,
$$

holds true, then we can prove the conjecture affirmatively.
Further we believe that in this case the blow up point x_{0} is not only a critical point, but the maximum point of Robin function. In 2-dimensional Δ case, this is already proved by Flucher and Wei [5].

2. Estimates for $\boldsymbol{C}_{\boldsymbol{p}}$

First we recall D. Adams' version of higher order Trudinger-Moser inequality [1]. This is a key ingredient in our analysis.

Theorem ([1]). Let $\Omega \subset \mathbf{R}^{2 n}$ be a bounded domain and define $X:=H^{n}(\Omega) \cap$ $\left\{u:(-\Delta)^{j} u \in H_{0}^{1}(\Omega), j=0,1, \ldots,[(n-1) / 2]\right\}$. Then there exists $C_{0}=C_{0}(n)$ such that

$$
\int_{\Omega} \exp \left(\alpha_{2 n} \frac{u^{2}(x)}{\left\|(-\Delta)^{n / 2} u\right\|_{L^{2}(\Omega)}^{2}}\right) d x \leq C_{0}|\Omega|, \quad \forall u \in X
$$

Here, $\alpha_{2 n}=2^{2 n-1} n!(n-1)!\sigma_{2 n}, \sigma_{2 n}$ is the volume of $S^{2 n-1}$ and $|\Omega|$ is the Lebesgue measure of Ω.

In $\mathbf{R}^{4}(n=2)$, we have

$$
\int_{\Omega} \exp \left(\alpha_{4} \frac{u^{2}(x)}{\|\Delta u\|_{L^{2}(\Omega)}^{2}}\right) d x \leq C_{0}|\Omega|, \quad \forall u \in H^{2} \cap H_{0}^{1}(\Omega)
$$

where $\alpha_{4}=16 \sigma_{4}=32 \pi^{2}$.

Using this, we derive the following refined Sobolev imbedding. Though the proof is the same as in [8], we state here for reader's convenience.

Lemma 2.1 (refinement of the Sobolev imbedding). For any $t \geq 2$, there exists $D_{t}>0$ such that for any $u \in H^{2} \cap H_{0}^{1}(\Omega)$,

$$
\|u\|_{L^{t}(\Omega)} \leq D_{t} t^{1 / 2}\|\Delta u\|_{L^{2}(\Omega)}
$$

holds true. Furthermore, we have

$$
\lim _{t \rightarrow \infty} D_{t}=\left(32 \sigma_{4} e\right)^{-1 / 2}
$$

Proof. Let $u \in H^{2} \cap H_{0}^{1}(\Omega)$. Elementary inequality says that $x^{s} / \Gamma(s+1) \leq e^{x}$ for $\forall x \geq 0, \forall s \geq 0$, where $\Gamma(s)$ is the Γ function.

By Adams' version Trudinger-Moser inequality, we have

$$
\begin{aligned}
& \frac{1}{\Gamma((t / 2)+1)} \int_{\Omega}|u|^{t} d x \\
= & \frac{1}{\Gamma((t / 2)+1)} \int_{\Omega}\left(\alpha_{4} \frac{u^{2}}{\|\Delta u\|_{L^{2}(\Omega)}^{2}}\right)^{t / 2} d x \times \alpha_{4}^{-t / 2}\|\Delta u\|_{L^{2}(\Omega)}^{t} \\
\leq & \int_{\Omega} \exp \left(\alpha_{4} \frac{u^{2}(x)}{\|\Delta u\|_{L^{2}(\Omega)}^{2}}\right) d x \times \alpha_{4}^{-t / 2}\|\Delta u\|_{L^{2}(\Omega)}^{t} \\
\leq & C_{0}|\Omega| \alpha_{4}^{-t / 2}\|\Delta u\|_{L^{2}(\Omega)}^{t}
\end{aligned}
$$

Set

$$
D_{t}:=\left(\Gamma\left(\frac{t}{2}+1\right)\right)^{1 / t} C_{0}^{1 / t}|\Omega|^{1 / t} \alpha_{4}^{-1 / 2} t^{-1 / 2}
$$

Then we have

$$
\|u\|_{L^{t}(\Omega)} \leq D_{t} t^{1 / 2}\|\Delta u\|_{L^{2}(\Omega)} .
$$

Stirling's formula says that $(\Gamma((t / 2)+1))^{1 / t} \sim(t /(2 e))^{1 / 2}$ as $t \rightarrow \infty$. So we have

$$
\lim _{t \rightarrow \infty} D_{t}=\left(\frac{1}{2 \alpha_{4} e}\right)^{1 / 2}
$$

which is a desired result.
Recall C_{p} defined in (1.1). Using the above Lemma and energy comparison, we get the following.

Lemma 2.2 (asymptotics for C_{p}). We have

$$
\lim _{p \rightarrow \infty} p^{1 / 2} C_{p}=\left(32 \sigma_{4} e\right)^{1 / 2}
$$

Proof. Lower bound $\left(32 \sigma_{4} e\right)^{1 / 2} \leq \liminf _{p \rightarrow \infty} p^{1 / 2} C_{p}$ is a direct consequence of Lemma 2.1 and the fact $C_{p}=\left\|\Delta u_{p}\right\|_{L^{2}} /\left\|u_{p}\right\|_{L p+1}$ for least energy solutions u_{p}.

Therefore we must prove only the upper bound: $\lim \sup _{p \rightarrow \infty} p^{1 / 2} C_{p} \leq\left(32 \sigma_{4} e\right)^{1 / 2}$. We will do this by constructing a suitable test function for the value C_{p}.

We may assume $0 \in \Omega$ and $B_{L}(0) \subset \Omega$. For $0<l<L$, consider Moser function

$$
m_{l}(|x|):= \begin{cases}\frac{A}{\sigma}, & 0 \leq|x| \leq l \\ \left(\frac{1}{\sigma A}\right) \log \frac{L}{|x|}, & l \leq|x| \leq L \\ 0 & \Omega \cap\{L \leq|x|\}\end{cases}
$$

where $A^{2}=\log (L / l)$ and $\sigma=\sqrt{4 \sigma_{4}}=2 \sqrt{2} \pi$.
Note that the Moser function $m_{l} \in H_{0}^{1}(\Omega)$ but not in $H^{2}(\Omega)$. So we cannot test the value C_{p} by m_{l} directly.

Define

$$
g_{l}(|x|):= \begin{cases}0, & 0 \leq|x| \leq l \\ \left(\frac{1}{\sigma A}\right) \frac{-2}{|x|^{2}}, & l \leq|x| \leq L \\ 0, & \Omega \cap\{L \leq|x|\}\end{cases}
$$

Then $g_{l} \in L^{2}(\Omega)$ and $\left\|g_{l}\right\|_{L^{2}(\Omega)}=1$ by our choice of σ.
Take the unique solution $a \in H_{0}^{1}(\Omega), \tilde{a} \in H_{0}^{1}\left(B_{L}\right)$ to the problem

$$
\left\{\begin{array}{l}
-\Delta a=\left|g_{g}\right| \quad \text { in } \Omega, \\
\left.a\right|_{\partial \Omega}=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
-\Delta \tilde{a}=\left|g_{l}\right| \quad \text { in } B_{L}, \\
\left.\tilde{a}\right|_{\partial B_{L}}=0
\end{array}\right.
$$

respectively.
By elliptic regularity, we have $a \in H^{2} \cap H_{0}^{1}(\Omega)$. On the other hand, if extended by $0, \tilde{a}$ can be regarded as in $H_{0}^{1}(\Omega)$, but not in $H^{2} \cap H_{0}^{1}(\Omega)$. Also note that \tilde{a} is a radial function which is explicitly calculate by the formula

$$
\tilde{a}(r)=\tilde{a}(0)+\int_{t=0}^{t=r} t^{-3}\left(\int_{s=0}^{s=t}-s^{3}\left|g_{l}(s)\right| d s\right) d t
$$

for $0 \leq r=|x| \leq L$. Indeed, by definition of g_{l}, we calculate

$$
\tilde{a}(r)=\tilde{a}(0), \quad(0 \leq r \leq l)
$$

$$
\begin{equation*}
\tilde{a}(r)=\tilde{a}(0)+\left(\frac{1}{\sigma A}\right)\left(\frac{1}{2}-\frac{1}{2}\left(\frac{l^{2}}{r^{2}}\right)+\log \left(\frac{l}{r}\right)\right) . \quad(l \leq r \leq L) \tag{2.1}
\end{equation*}
$$

Here, $\tilde{a}(0)$ is determined by the boundary condition $\tilde{a}(L)=0$:

$$
\begin{equation*}
\tilde{a}(0)=\left(\frac{1}{\sigma A}\right)\left(\frac{1}{2}\left(\frac{l^{2}}{L^{2}}\right)-\frac{1}{2}+\log \left(\frac{L}{l}\right)\right) . \tag{2.2}
\end{equation*}
$$

Maximum principle implies that $a \in H^{2} \cap H_{0}^{1}(\Omega)$ satisfies $a>\tilde{a}$ in Ω. Therefore $\|a\|_{L^{p+1}(\Omega)} \geq\|\tilde{a}\|_{L^{p+1}(\Omega)} \geq\|\tilde{a}\|_{L^{p+1}\left(B_{l}(0)\right)}$. Also $\|\Delta a\|_{L^{2}(\Omega)}=\left\|g_{l}\right\|_{L^{2}(\Omega)}=1$.

Now, we test the value C_{p} with $a \in H^{2} \cap H_{0}^{1}(\Omega)$. Then

$$
C_{p} \leq \frac{\|\Delta a\|_{L^{2}(\Omega)}}{\|a\|_{L^{p+1}(\Omega)}} \leq \frac{1}{\|\tilde{a}\|_{L^{p+1}\left(B_{l}(0)\right)}}=|\tilde{a}(0)|^{-1}\left|B_{l}(0)\right|^{-1 /(p+1)} .
$$

Setting $l=L \exp (-(p+1) / 8)$, multiplying $p^{1 / 2}$ and letting $p \rightarrow \infty$ in the above inequality, we have, by using (2.2), lim $\sup _{p \rightarrow \infty} p^{1 / 2} C_{p} \leq\left(32 \sigma_{4} e\right)^{1 / 2}$. This proves Lemma.

Since

$$
C_{p}=\frac{\left\|\Delta u_{p}\right\|_{L^{2}}}{\left\|u_{p}\right\|_{L^{p+1}}}
$$

and

$$
\int_{\Omega}\left|\Delta u_{p}\right|^{2} d x=\int_{\Omega} u_{p}^{p+1} d x
$$

we have

$$
C_{p}^{2}=\left\|u_{p}\right\|_{p+1}^{p-1}, \quad p\left\|u_{p}\right\|_{p+1}^{p+1}=p C_{p}^{2} C_{p}^{4 /(p-1)}
$$

Therefore Lemma 2.2 implies

Corollary 2.3.

$$
\lim _{p \rightarrow \infty} p \int_{\Omega} u_{p}^{p+1} d x=32 \sigma_{4} e, \quad \lim _{p \rightarrow \infty} p \int_{\Omega}\left|\Delta u_{p}\right|^{2} d x=32 \sigma_{4} e
$$

3. Proof of Theorem 1.1

First, we show that a uniform lower bound of L^{∞} norm exists for any solution u to $\left(E_{p}\right)$.

Indeed, let $\lambda_{1}>0$ be the first eigenvalue of $-\Delta$ acting on $H_{0}^{1}(\Omega)$ and $\phi_{1}>0$ be a first eigenfunction corresponding to λ_{1}.

Then, Green's formula implies

$$
0=\int_{\Omega}\left(u \Delta^{2} \phi_{1}-\phi_{1} \Delta^{2} u\right) d x=\int_{\Omega}\left(u \lambda_{1}^{2} \phi_{1}-\phi_{1} u^{p}\right) d x
$$

that is,

$$
\int_{\Omega} u \phi_{1}\left(\lambda_{1}^{2}-u^{p-1}\right) d x=0
$$

Hence $\lambda_{1}^{2}-u^{p-1}$ must change the sign on Ω, which leads to

$$
\|u\|_{L^{\infty}(\Omega)}^{p-1} \geq \lambda_{1}^{2}
$$

To obtain a uniform upper bound of $\left\|u_{p}\right\|_{L^{\infty}(\Omega)}$, we use an argument with the coarea formula and the isoperimetric inequality in \mathbf{R}^{4}.

Set

$$
\gamma_{p}:=\max _{x \in \bar{\Omega}} u_{p}(x), \Omega_{t}:=\left\{x \in \Omega: t<u_{p}(x)\right\}, \mathcal{A}:=\left\{x \in \Omega: \frac{\gamma_{p}}{2}<u_{p}(x)\right\}
$$

By Lemma 2.1 and Corollary 2.3, we have

$$
\left(\int_{\Omega} u_{p}^{4 p} d x\right)^{1 /(4 p)} \leq D_{4 p}(4 p)^{1 / 2}\left\|\Delta u_{p}\right\|_{L^{2}(\Omega)} \leq M
$$

where M is independent of p if p large. From this and the Chevyshev inequality we have

$$
\begin{equation*}
\left(\frac{\gamma_{p}}{2}\right)^{4 p}|\mathcal{A}| \leq M^{4 p} \tag{3.1}
\end{equation*}
$$

On the other hand, denote $v_{p}=-\Delta u_{p}$. Integration by parts leads to

$$
\int_{\partial \Omega_{t}}\left|\nabla u_{p}\right| d \sigma=\int_{\Omega_{t}} v_{p} d x
$$

Coarea formula says

$$
-\frac{d}{d t}\left|\Omega_{t}\right|=\int_{\partial \Omega_{t}} \frac{d \sigma}{\left|\nabla u_{p}\right|}
$$

Then Schwartz inequality implies

$$
-\frac{d}{d t}\left|\Omega_{t}\right| \int_{\Omega_{t}} v_{p} d x=\int_{\partial \Omega_{t}}\left|\nabla u_{p}\right| d \sigma \int_{\partial \Omega_{t}} \frac{d \sigma}{\left|\nabla u_{p}\right|} \geq\left|\partial \Omega_{t}\right|^{2}
$$

Note that the isoperimetric inequality in \mathbf{R}^{4}

$$
|\partial E| \geq 4 \omega_{4}^{1 / 4}|E|^{3 / 4}
$$

where $E \subset \mathbf{R}^{4}$ is a Caccioppoli set and $\omega_{4}=\left|B^{4}\right|=\left|S^{3}\right| / 4=\pi^{2} / 2$ is four dimensional volume of the unit ball. Applying $E=\Omega_{t}$, we have

$$
-\frac{d}{d t}\left|\Omega_{t}\right| \int_{\Omega_{t}} v_{p} d x \geq 16 \omega_{4}^{1 / 2}\left|\Omega_{t}\right|^{3 / 2}
$$

Define $r(t)$ such that $\left|\Omega_{t}\right|=\omega_{4} r^{4}(t)$. Then

$$
\frac{d}{d t}\left|\Omega_{t}\right|=4 \omega_{4} r^{3}(t) r^{\prime}(t)
$$

Note that $r^{\prime}(t)<0$. Hence we have:

$$
\begin{gathered}
\frac{1}{4 \omega_{4} r^{3}(t)} \int_{\Omega_{t}} v_{p} d x \geq-\frac{1}{r^{\prime}(t)} \\
-\frac{d t}{d r} \leq \frac{1}{4 \omega_{4} r^{3}(t)} \int_{\Omega_{t}} v_{p} d x \leq \frac{1}{4 \omega_{4} r^{3}(t)}\left(\sup _{\Omega} v_{p}\right)\left|\Omega_{t}\right|=\left(\sup _{\Omega} v_{p}\right) \frac{r}{4}
\end{gathered}
$$

Integrating the last inequality from $r=0$ to $r=r_{0}$, we have

$$
t(0)-t\left(r_{0}\right) \leq \frac{1}{8}\left(\sup _{\Omega} v_{p}\right) r_{0}^{2} .
$$

Choose r_{0} such that $t\left(r_{0}\right)=\gamma_{p} / 2$, that is, $|\mathcal{A}|=\left|\Omega_{\gamma_{p} / 2}\right|=\omega_{4} r_{0}^{4}$. Then the above inequality implies

$$
\gamma_{p} \leq \frac{1}{4}\left(\sup _{\Omega} v_{p}\right) r_{0}^{2} .
$$

As $v_{p}=-\Delta u_{p}$ satisfies

$$
\left\{\begin{array}{l}
-\Delta v_{p}=u_{p}^{p} \quad \text { in } \Omega \\
\left.v_{p}\right|_{\partial \Omega}=0
\end{array}\right.
$$

we know, by elliptic estimate

$$
\sup _{\Omega} v_{p} \leq C \sup _{\Omega} u_{p}^{p} \leq C \gamma_{p}^{p}
$$

where $C=C(\Omega)$ (see [6] Theorem 3.7). Thus we have

$$
\begin{equation*}
\gamma_{p} \leq \frac{C}{4} \gamma_{p}^{p} r_{0}^{2}=\frac{C}{4} \gamma_{p}^{p}\left(\frac{1}{\omega_{4}}|\mathcal{A}|\right)^{1 / 2} . \tag{3.2}
\end{equation*}
$$

By (3.1) and (3.2), we have

$$
\gamma_{p}^{2} \leq\left(\frac{C}{4}\right)^{2}\left(\frac{1}{\omega_{4}}\right) \gamma_{p}^{2 p}\left(\frac{2 M}{\gamma_{p}}\right)^{4 p}
$$

which implies

$$
\gamma_{p} \leq\left(\frac{C^{2}}{16 \omega_{4}}\right)^{1 /(2 p+2)}(2 M)^{2 p /(p+1)}
$$

Therefore we conclude that there exists $C>0$ (independent of p) such that $\gamma_{p} \leq C$ for p large.

From Theorem 1.1, we have the following consequence.
Corollary 3.1. There exist $C_{1}, C_{2}>0$ independent of p large such that

$$
\frac{C_{1}}{p} \leq \int_{\Omega} u_{p}^{p} d x \leq \frac{C_{2}}{p}
$$

holds true.
Proof. By Corollary 2.3 and Theorem 1.1, we have

$$
C \leq p \int_{\Omega} u_{p}^{p+1} d x \leq\left\|u_{p}\right\|_{L^{\infty}(\Omega)} \times p \int_{\Omega} u_{p}^{p} d x \leq C^{\prime} p \int_{\Omega} u_{p}^{p} d x
$$

where C, C^{\prime} is a positive constant independent of p.
On the other hand, Hölder inequality implies

$$
p \int_{\Omega} u_{p}^{p} d x \leq\left(p \int_{\Omega} u_{p}^{p+1} d x\right)^{p /(p+1)} \times p^{1 /(p+1)}|\Omega|^{1 /(p+1)} .
$$

Note that as $p \rightarrow \infty$, RHS of the above inequality is bounded from Corollary 2.3. This proves the conclusion.

4. Proof of Theorem 1.2

Set

$$
w_{p}:=\frac{u_{p}}{\int_{\Omega} u_{p}^{p} d x}=\frac{u_{p}}{\lambda_{p}}, \quad \lambda_{p}:=\int_{\Omega} u_{p}^{p} d x,
$$

and

$$
f_{p}(x):=\frac{u_{p}^{p}(x)}{\int_{\Omega} u_{p}^{p} d x} .
$$

By our assumption of the convexity of Ω and the Method of Moving Plane, it is standard by now to derive the uniform boundary estimate of $\left\{w_{p}\right\}$ which leads to the fact that the blow up set of $\left\{w_{p}\right\}$ is contained in the interior of Ω; so we omit the proof of this fact.

At this stage, we recall a useful lemma proved by Wei ([10] Lemma 2.3).
Lemma 4.1 (Brezis-Merle type L^{1} estimate for Δ^{2}). Let u be a C^{4} solution of

$$
\left\{\begin{array}{l}
\Delta^{2} u=f(x) \quad \text { in } \Omega \subset \mathbf{R}^{4} \\
\left.u\right|_{\partial \Omega}=\left.\Delta u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where $f \in L^{1}(\Omega), f \geq 0$. Then for any $\varepsilon \in\left(0,16 \sigma_{4}\right)$, there holds

$$
\int_{\Omega} \exp \left(\frac{\left(16 \sigma_{4}-\varepsilon\right)|u(x)|}{\|f\|_{L^{1}}}\right) d x \leq \frac{16 \sigma_{4}^{2}}{\varepsilon}|\Omega|
$$

Later we need a variant of ([10] Corollary 2.4) with no boundary condition.
Corollary 4.2. Let u_{n} be a sequence of C^{4} solutions of $\Delta^{2} u=V_{n} e^{u}$ in $\Omega \subset \mathbf{R}^{4}$ with no boundary condition. Assume for some $p \in(1, \infty)$,
(1) $\left\|V_{n}\right\|_{L^{p}(\Omega)} \leq C_{1}$,
(2) $\left\|u_{n}^{+}\right\|_{L^{1}(\Omega)} \leq C_{2}$ where $u_{n}^{+}=\max \{u, 0\}$,
(3) $\int_{\Omega}\left|V_{n}\right| e^{u_{n}} d x \leq \exists \varepsilon_{0}<16 \sigma_{4} / p^{\prime}$
where p^{\prime} is a Hölder conjugate exponent of p. Then, $\left\{u_{n}^{+}\right\}$is uniformly bounded in $L_{l o c}^{\infty}(\Omega)$.

The proof of Corollary 4.2 is done along the line of the proof of Corollary 4 in [2], so we omit it here.

From now on, let $u_{n}, w_{n}, \lambda_{n}, f_{n}$ denote $u_{p_{n}}, w_{p_{n}}, \lambda_{p_{n}}, f_{p_{n}}$ respectively. First, we remark that the blow up set S of the sequence $\left\{w_{n}\right\}$ satisfies $S \neq \phi$. Indeed,

$$
\sup _{x \in \bar{\Omega}} w_{n}(x) \geq \frac{C}{\lambda_{n}} \rightarrow \infty
$$

by Theorem 1.1 and the fact that $\lambda_{n}=O\left(1 / p_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ by Corollary 3.1.
This also shows that the set of peak points of $\left\{u_{n}\right\}$ is contained in the blow up set of $\left\{w_{n}\right\}$.

Note that

$$
f_{n}(x)=\frac{u_{n}^{p_{n}}(x)}{\int_{\Omega} u_{n}^{p_{n}} d x} \in L^{1}(\Omega), \quad f_{n} \geq 0, \quad \int_{\Omega} f_{n} d x=1
$$

Then there exists a subsequence (still denoted by u_{n}) such that

$$
f_{n} \stackrel{*}{\rightharpoonup} \mu, \quad \mu(\Omega) \leq 1
$$

in the sense of Radon measures of Ω.

Now we define an important quantity

$$
\begin{equation*}
L_{0}:=\frac{\limsup _{p \rightarrow \infty}\left(p \int_{\Omega} u_{p}^{p} d x\right)}{e} \tag{4.1}
\end{equation*}
$$

From a little bit more precise estimate in the proof of Theorem 1.1 and Hölder inequality, we know that L_{0} satisfies $1<L_{0} \leq 32 \sigma_{4}$.

For any $\delta>0$, we call a point $x_{0} \in \Omega$ a δ-regular point of $\left\{u_{n}\right\}$ if there exists $\varphi \in C_{0}(\Omega), 0 \leq \varphi \leq 1$ with $\varphi \equiv 1$ near x_{0} such that

$$
\int_{\Omega} \varphi d \mu<\frac{16 \sigma_{4}}{L_{0}+2 \delta}
$$

Further we define for $\delta>0, \delta$-irregular set of a sequence $\left\{u_{n}\right\}$ as

$$
\Sigma(\delta):=\left\{x_{0} \in \Omega: x_{0} \text { is not a } \delta \text {-regular point }\right\}
$$

Note that

$$
x_{0} \in \Sigma(\delta) \Rightarrow \mu\left(x_{0}\right) \geq \frac{16 \sigma_{4}}{L_{0}+2 \delta}
$$

The next result is a key lemma in the proof of Theorem 1.2.

Lemma 4.3 (smallness of μ implies boundedness). Let x_{0} be a δ-regular point of a sequence $\left\{u_{n}\right\}$, then $\left\{w_{n}\right\}$ is bounded in $L^{\infty}\left(B_{R_{0}}\left(x_{0}\right)\right)$ for some $R_{0}>0$.

Proof. Let x_{0} be a δ-regular point. Then there exists $R>0$ such that

$$
\int_{B_{R}\left(x_{0}\right)} f_{n} d x<\frac{16 \sigma_{4}}{L_{0}+\delta}
$$

for n sufficiently large.
Split $w_{n}=w_{1 n}+w_{2 n}$, where $w_{1 n}$ is a solution of

$$
\left\{\begin{array}{l}
\Delta^{2} w_{1 n}=f_{n} \quad \text { in } B_{R}\left(x_{0}\right) \\
\left.w_{1 n}\right|_{\partial B_{R}\left(x_{0}\right)}=\left.\Delta w_{1 n}\right|_{\partial B_{R}\left(x_{0}\right)}=0
\end{array}\right.
$$

and $w_{2 n}$ is a solution of

$$
\left\{\begin{array}{l}
\Delta^{2} w_{2 n}=0 \quad \text { in } B_{R}\left(x_{0}\right) \\
\left.w_{2 n}\right|_{\partial B_{R}\left(x_{0}\right)}=\left.w_{n}\right|_{\partial B_{R}\left(x_{0}\right)} \\
\left.\Delta w_{2 n}\right|_{\partial B_{R}\left(x_{0}\right)}=\left.\Delta w_{n}\right|_{\partial B_{R}\left(x_{0}\right)}
\end{array}\right.
$$

Note that $w_{1 n}>0, w_{2 n}>0$ in $B_{R}\left(x_{0}\right)$ by the maximum principle.

First, we will show that $w_{2 n}$ is uniformly bounded near x_{0}. Indeed, by the mean value theorem for biharmonic function, we know

$$
\left\|w_{2 n}\right\|_{L^{\infty}\left(B_{R / 2}\left(x_{0}\right)\right)} \leq C\left\|w_{n}\right\|_{L^{1}\left(B_{R}\left(x_{0}\right)\right)} \leq C\left\|w_{n}\right\|_{L^{1}(\Omega)} \leq C
$$

holds true. Here the last inequality follows by Lemma 4.1.
So we need only to derive the boundedness of $w_{2 n}$.
For this purpose, choose $t>1$ such as $t^{\prime}=t /(t-1)=L_{0}+(\delta / 2)$. Note that the fact $L_{0}>1$ permits the existence of such $t>1$. Then we have

$$
\int_{B_{R}\left(x_{0}\right)} f_{n} d x<\frac{16 \sigma_{4}}{L_{0}+\delta}<\frac{16 \sigma_{4}}{t^{\prime}}
$$

Brezis-Merle type L^{1}-estimate (Lemma 4.1) implies

$$
\begin{equation*}
\int_{B_{R}\left(x_{0}\right)} \exp \left(t^{\prime} w_{1 n}(x)\right) d x<C \tag{4.2}
\end{equation*}
$$

where $C=C(\delta) \rightarrow \infty$ as $\delta \rightarrow 0$.
By an elementary inequality $\log x \leq x / e$ for $x>0$, we have

$$
\begin{aligned}
& \log f_{n}=\log \frac{u_{n}^{p_{n}}}{\lambda_{n}}=p_{n} \log \frac{u_{n}}{\lambda_{n}^{1 / p_{n}}} \leq p_{n} \frac{u_{n}}{e \lambda_{n}^{1 / p_{n}}} \\
& \leq \frac{L_{0}+(\delta / 3)}{\lambda_{n}} \frac{u_{n}}{\lambda_{n}^{1 / p_{n}}}=\frac{t^{\prime}-(\delta / 6)}{\lambda_{n}^{1 / p_{n}}} \frac{u_{n}}{\lambda_{n}} \leq t^{\prime} w_{n}(x),
\end{aligned}
$$

here, the second inequality follows by definition of L_{0} :

$$
\frac{p_{n} \lambda_{n}}{e}<L_{0}+\frac{\delta}{3}
$$

for n large, and the third inequality follows from the fact

$$
\lim _{n \rightarrow \infty} \lambda_{n}^{1 / p_{n}}=1
$$

which in turn follows from $\lambda_{n}=O\left(1 / p_{n}\right)$ (Corollary 3.1).
Thus, we get a pointwise estimate

$$
f_{n}(x)<\exp \left(t^{\prime} w_{n}(x)\right)
$$

which implies

$$
\begin{equation*}
\left(f_{n} e^{-w_{1 n}}\right)^{t}<C e^{t^{\prime} w_{1 n}} \tag{4.3}
\end{equation*}
$$

on $B_{R / 2}\left(x_{0}\right)$, because $w_{2 n}$ is bounded uniformly on $B_{R / 2}\left(x_{0}\right)$.

Rewrite the equation satisfied by $w_{1 n}$ as

$$
\left\{\begin{array}{l}
\Delta^{2} w_{1 n}=\underbrace{f_{n} e^{-w_{1 n}(x)}}_{V_{n}(x)} e^{w_{1 n}} \quad \text { in } B_{R}\left(x_{0}\right) \\
\left.w_{1 n}\right|_{\partial B_{R}\left(x_{0}\right)}=\left.\Delta w_{1 n}\right|_{\partial B_{R}\left(x_{0}\right)}=0
\end{array}\right.
$$

Now, we check the assumptions of Corollary 4.2.
(1) $V_{n}=f_{n} e^{-w_{1 n}}$ is uniformly bounded in $L^{t}\left(B_{R / 2}\left(x_{0}\right)\right)$ by (4.2) and (4.3).
(2) $\left\|w_{1 n}\right\|_{L^{1}\left(B_{R / 2}\left(x_{0}\right)\right)} \leq C$ by Lemma 4.1.
(3) $\int_{B_{R / 2}} V_{n} e^{w_{1 n}} d x=\int_{B_{R / 2}} f_{n} d x \leq \exists \varepsilon_{0}<16 \sigma_{4} / t^{\prime}$ by the definition of t.

Therefore by applying Corollary 4.2 to $w_{1 n}$ on $B_{R / 2}\left(x_{0}\right)$, we conclude that $\left\{w_{1 n}\right\}$ is uniformly bounded in $L^{\infty}\left(B_{R / 4}\left(x_{0}\right)\right)$.

Lemma 4.4. $\quad S=\Sigma(\delta)$ for any $\delta>0$.

Proof. $\quad S \subset \Sigma(\delta)$ is clear from Lemma 4.3.
On the other hand, suppose $x_{0} \in \Sigma(\delta)$ and $\left\|w_{n}\right\|_{L^{\infty}\left(B_{R_{0}}\left(x_{0}\right)\right)}<C$ for some C independent of n. Then $f_{n}=\lambda_{n}^{p_{n}-1} w_{n}^{p_{n}} \rightarrow 0$ uniformly on $B_{R_{0}}\left(x_{0}\right)$, which implies x_{0} is a δ-regular point; $x_{0} \notin \Sigma(\delta)$.

This contradiction shows that for every $R>0$,

$$
\lim _{n \rightarrow \infty}\left\|w_{n}\right\|_{L^{\infty}\left(B_{R}\left(x_{0}\right)\right)}=\infty
$$

holds at least for a subsequence. So $x_{0} \in S$.

By this Lemma, we obtain

$$
1 \geq \mu(\Omega) \geq \frac{16 \sigma_{4}}{L_{0}+2 \delta} \operatorname{card}(\Sigma(\delta))=\frac{16 \sigma_{4}}{L_{0}+2 \delta} \operatorname{card}(S)
$$

Combining with the estimate $L_{0} \leq 32 \sigma_{4}$, we have

$$
\operatorname{card}(S) \leq \frac{L_{0}+2 \delta}{16 \sigma_{4}} \leq \frac{32 \sigma_{4}+2 \delta}{16 \sigma_{4}}
$$

hence

$$
1 \leq \operatorname{card}(S) \leq 2
$$

From now on, we prove the latter half of Theorem 1.2 , so assume $\operatorname{card}(S)=1$ and $S=\left\{x_{0}\right\}, x_{0} \in \Omega$.

Then $w_{n}(x) \leq C$ on any compact set $K \subset \bar{\Omega} \backslash\left\{x_{0}\right\}$, which implies $f_{n} \rightarrow 0$ compact uniformly on $\bar{\Omega} \backslash\left\{x_{0}\right\}$.

Take $\varphi \in C_{0}(\Omega)$. For given $\varepsilon>0$, first we choose $r>0$ so small and then $n \rightarrow \infty$, we have

$$
\begin{aligned}
\left|\int_{\Omega} f_{n} \varphi d x-\varphi\left(x_{0}\right)\right| \leq \int_{\Omega} f_{n}\left|\varphi(x)-\varphi\left(x_{0}\right)\right| d x \\
\leq \int_{B_{r}\left(x_{0}\right)} f_{n}\left|\varphi(x)-\varphi\left(x_{0}\right)\right| d x+\int_{\Omega \backslash B_{r}\left(x_{0}\right)} f_{n}\left|\varphi(x)-\varphi\left(x_{0}\right)\right| d x \leq \varepsilon
\end{aligned}
$$

Therefore

$$
\begin{equation*}
f_{n} \stackrel{*}{\rightharpoonup} \delta_{x_{0}} \tag{4.4}
\end{equation*}
$$

in the sense of Radon measures of Ω. Thus Theorem 1.2 (1) is proved.
Set $\tilde{w}_{n}:=-\Delta w_{n}$. Then

$$
\left\{\begin{array}{l}
-\Delta \tilde{w}_{n}=f_{n} \quad \text { in } \Omega, \\
\left.\tilde{w}_{n}\right|_{\partial \Omega}=0,
\end{array}\right.
$$

and $f_{n} \rightarrow 0$ uniformly on any compact $K \subset \bar{\Omega} \backslash\left\{x_{0}\right\}$.
By elliptic regularity, there is a subsequence $\left\{w_{n}\right\},\left\{\tilde{w}_{n}\right\}$ (still denoted by the same symbols) and a function G such that

$$
\begin{aligned}
w_{n} \rightarrow G \text { in } C^{4, \alpha}(K), & \tilde{w}_{n} \rightarrow-\Delta G \text { in } C^{2, \alpha}(K), \\
w_{n} \rightarrow G \text { in } L^{1}(\Omega), & \tilde{w}_{n} \rightarrow-\Delta G \text { in } L^{1}(\Omega)
\end{aligned}
$$

since $W^{1, q}(\Omega)$ boundedness of $w_{n}, \tilde{w}_{n}(1<q<4 / 3)$ and the compactness of the imbedding $W^{1, q}(\Omega) \hookrightarrow L^{1}(\Omega)$.

By integration by parts and (4.4), we see $G=G_{4}\left(\cdot, x_{0}\right)$. So Theorem 1.2 (2) is proved.

Finally, to prove the characterization of blow up point, we need the famous
Lemma 4.5 (Pohozaev identity). Let u be a C^{4}-solution of $\Delta^{2} u=f(u)$ in Ω. Then we have for any $y \in \mathbf{R}^{4}$,

$$
\begin{aligned}
4 \int_{\Omega} F(u) d x= & \int_{\partial \Omega}(x+y, v) F(u) d \sigma+\frac{1}{2} \int_{\partial \Omega} v^{2}(x+y, v) d \sigma+2 \int_{\partial \Omega} \frac{\partial u}{\partial v} v d \sigma \\
& +\int_{\partial \Omega} \frac{\partial v}{\partial v}(x+y, \nabla u)+\frac{\partial u}{\partial v}(x+y, \nabla v) d \sigma \\
& -\int_{\partial \Omega}(\nabla u, \nabla v)(x+y, v) d \sigma
\end{aligned}
$$

In particular, we have

$$
\int_{\partial \Omega} \nu F(u) d \sigma+\frac{1}{2} \int_{\partial \Omega} v^{2} v d \sigma+\int_{\partial \Omega}\left\{\frac{\partial v}{\partial v} \nabla u+\frac{\partial u}{\partial v} \nabla v-(\nabla u, \nabla v) v\right\} d \sigma=\overrightarrow{0} .
$$

Here, $F(u)=\int_{0}^{u} f(s) d s, v=-\Delta u$ and $v(x)$ is the unit outer normal vector at $x \in$ $\partial \Omega$.

More genaral version of this formula can be seen, for example, in [7]. In our case, integrating the identity on Ω

$$
\begin{aligned}
& \operatorname{div}((x+y, \nabla v) \nabla u+(x+y, \nabla u) \nabla v-(\nabla u, \nabla v)(x+y)) \\
& \quad=(x+y, \nabla v) \Delta u+(x+y, \nabla u) \Delta v-2(\nabla u, \nabla v)
\end{aligned}
$$

for $u, v \in C^{2}(\bar{\Omega}), \nabla=\nabla_{x}$, and noting that

$$
\operatorname{div}((x+y) F(u))=f(u)(x+y, \nabla u)+4 F(u)
$$

and

$$
\operatorname{div}\left(\frac{1}{2} v^{2}(x+y)+2 v \nabla u\right)=v(\nabla v, x+y)+2(\nabla u, \nabla v)
$$

if $v=-\Delta u$, we get the desired formula.
Take $r>0$ so small that $B_{r}\left(x_{0}\right) \subset \Omega$. First, apply the Pohozaev identity to w_{n} on Ω. Note that w_{n} solves $\Delta^{2} w_{n}=f_{n}=\lambda_{n}^{p_{n}-1} w_{n}^{p_{n}}$ in Ω. So $F\left(w_{n}\right)=$ $\left(\lambda_{n}^{p_{n}-1} /\left(p_{n}+1\right)\right) w_{n}^{p_{n}+1}$ in the following identity.

$$
\begin{aligned}
& \int_{\partial \Omega} v F\left(w_{n}\right) d \sigma+\frac{1}{2} \int_{\partial \Omega}\left(\Delta w_{n}\right)^{2} v d \sigma+\int_{\partial \Omega}\left\{\frac{\partial\left(-\Delta w_{n}\right)}{\partial v} \nabla w_{n}+\frac{\partial w_{n}}{\partial v} \nabla\left(-\Delta w_{n}\right)\right\} d \sigma \\
& -\int_{\partial \Omega}\left\{\left(\nabla w_{n}, \nabla\left(-\Delta w_{n}\right)\right) v\right\} d \sigma \\
& =\overrightarrow{0}
\end{aligned}
$$

Since $w_{n}=\Delta w_{n}=0$ on $\partial \Omega$, we have

$$
\int_{\partial \Omega}\left\{\frac{\partial\left(-\Delta w_{n}\right)}{\partial v} \nabla w_{n}+\frac{\partial w_{n}}{\partial v} \nabla\left(-\Delta w_{n}\right)-\left(\nabla w_{n}, \nabla\left(-\Delta w_{n}\right)\right) v\right\} d \sigma=\overrightarrow{0}
$$

Now we know that

$$
w_{n} \rightarrow G_{4}\left(\cdot, x_{0}\right) \quad \text { in } C_{l o c}^{4}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right), \quad-\Delta w_{n} \rightarrow G_{2}\left(\cdot, x_{0}\right) \quad \text { in } C_{l o c}^{2}\left(\bar{\Omega} \backslash\left\{x_{0}\right\}\right)
$$

as $n \rightarrow \infty$. Therefore letting $n \rightarrow \infty$, we have:

$$
\begin{equation*}
\int_{\partial \Omega}\left\{\frac{\partial G_{2}}{\partial v} \nabla G_{4}+\frac{\partial G_{4}}{\partial v} \nabla G_{2}-\left(\nabla G_{4}, \nabla G_{2}\right) v\right\} d \sigma=\overrightarrow{0} \tag{4.5}
\end{equation*}
$$

On the other hand, apply the Pohozaev identity to $G_{4}\left(\cdot, x_{0}\right)$ on $\Omega \backslash B_{r}\left(x_{0}\right)$. Note that $G_{4}\left(\cdot, x_{0}\right)$ solves $\Delta^{2} G_{4}=0$ in $\Omega \backslash B_{r}\left(x_{0}\right)$ and $G_{4}=G_{2}=0$ on $\partial \Omega$. Therefore we
have

$$
\frac{1}{2} \int_{\partial\left(\Omega \backslash B_{r}\left(x_{0}\right)\right)} G_{2}^{2} \nu d \sigma+\int_{\partial\left(\Omega \backslash B_{r}\left(x_{0}\right)\right)}\left\{\frac{\partial G_{2}}{\partial \nu} \nabla G_{4}+\frac{\partial G_{4}}{\partial \nu} \nabla G_{2}-\left(\nabla G_{4}, \nabla G_{2}\right) \nu\right\} d \sigma=\overrightarrow{0},
$$

that is,

$$
\begin{gather*}
\frac{1}{2} \int_{\partial B_{r}\left(x_{0}\right)} G_{2}^{2} \nu d \sigma+\int_{\partial B_{r}\left(x_{0}\right)}\left\{\frac{\partial G_{2}}{\partial \nu} \nabla G_{4}+\frac{\partial G_{4}}{\partial v} \nabla G_{2}-\left(\nabla G_{4}, \nabla G_{2}\right) \nu\right\} d \sigma \\
=\int_{\partial \Omega}\left\{\frac{\partial G_{2}}{\partial \nu} \nabla G_{4}+\frac{\partial G_{4}}{\partial \nu} \nabla G_{2}-\left(\nabla G_{4}, \nabla G_{2}\right) \nu\right\} d \sigma \tag{4.6}
\end{gather*}
$$

From (4.5) and (4.6), we have:

$$
\begin{align*}
\overrightarrow{0}= & \frac{1}{2} \underbrace{\int_{\partial B_{r}\left(x_{0}\right)} G_{2}^{2} v d \sigma}_{[A]}+\underbrace{\int_{\partial B_{r}\left(x_{0}\right)} \frac{\partial G_{2}}{\partial v} \nabla G_{4} d \sigma}_{[B]} \\
& +\underbrace{\int_{\partial B_{r}\left(x_{0}\right)} \frac{\partial G_{4}}{\partial v} \nabla G_{2} d \sigma}_{[C]}-\underbrace{\int_{\partial B_{r}\left(x_{0}\right)}\left(\nabla G_{4}, \nabla G_{2}\right) v d \sigma}_{[D]} \tag{4.7}
\end{align*}
$$

Substituting

$$
\begin{aligned}
& G_{4}\left(x, x_{0}\right)=H_{4}\left(x, x_{0}\right)-\frac{1}{4 \sigma_{4}} \log \left|x-x_{0}\right| \\
& G_{2}\left(x, x_{0}\right)=-\Delta G_{4}\left(x, x_{0}\right)=H_{2}\left(x, x_{0}\right)+\frac{1}{2 \sigma_{4}} \frac{1}{\left|x-x_{0}\right|^{2}}
\end{aligned}
$$

in the above identity (4.7), we compute:

- Estimate of $[A]$

$$
\int_{\partial B_{r}\left(x_{0}\right)} G_{2}^{2} v d \sigma=\int_{\partial B_{r}\left(x_{0}\right)}\left(\frac{1}{2 \sigma_{4}\left|x-x_{0}\right|^{2}}+O(1)\right)^{2} v d \sigma=O(r)
$$

Note that $v=\left(x-x_{0}\right) /\left|x-x_{0}\right|$ on $\partial B_{r}\left(x_{0}\right)$ and

$$
\int_{\partial B_{r}\left(x_{0}\right)} h(r) v d \sigma=\overrightarrow{0}
$$

for any function $h(r), r=\left|x-x_{0}\right|$.

- Estimate of $[B]$

$$
\int_{\partial B_{r}\left(x_{0}\right)} \frac{\partial G_{2}}{\partial \nu} \nabla G_{4} d \sigma
$$

$$
\begin{aligned}
& =\int_{\partial B_{r}\left(x_{0}\right)}\left(\nabla H_{2} \cdot v-\frac{1}{\sigma_{4}\left|x-x_{0}\right|^{3}}\right)\left(\nabla H_{4}-\frac{1}{4 \sigma_{4}} \frac{x-x_{0}}{\left|x-x_{0}\right|^{2}}\right) d \sigma \\
& =-\frac{1}{\sigma_{4} r^{3}} \int_{\partial B_{r}\left(x_{0}\right)} \nabla H_{4}\left(x, x_{0}\right) d \sigma+O\left(r^{2}\right) \\
& =-\nabla H_{4}\left(x^{*}, x_{0}\right)+O\left(r^{2}\right)
\end{aligned}
$$

where $\exists x^{*} \in \partial B_{r}\left(x_{0}\right)$. The last equality comes from the mean value theorem of integral.

- Estimate of [C]

$$
\begin{aligned}
& \int_{\partial B_{r}\left(x_{0}\right)} \frac{\partial G_{4}}{\partial v} \nabla G_{2} d \sigma \\
& =\int_{\partial B_{r}\left(x_{0}\right)}\left(\nabla H_{4} \cdot v-\frac{1}{4 \sigma_{4}\left|x-x_{0}\right|}\right)\left(\nabla H_{2}-\frac{1}{\sigma_{4}} \frac{x-x_{0}}{\left|x-x_{0}\right|^{4}}\right) d \sigma \\
& =-\frac{1}{\sigma_{4} r^{3}} \int_{\partial B_{r}\left(x_{0}\right)} v\left(\nabla H_{4} \cdot v\right) d \sigma+O\left(r^{2}\right) .
\end{aligned}
$$

- Estimate of $[D]$

$$
\begin{aligned}
& \int_{\partial B_{r}\left(x_{0}\right)}\left(\nabla G_{4}, \nabla G_{2}\right) v d \sigma \\
& =\int_{\partial B_{r}\left(x_{0}\right)}\left(\nabla H_{4}-\frac{1}{4 \sigma_{4}} \frac{x-x_{0}}{r^{2}}, \nabla H_{2}-\frac{1}{\sigma_{4}} \frac{x-x_{0}}{r^{4}}\right) v d \sigma \\
& =-\frac{1}{\sigma_{4} r^{3}} \int_{\partial B_{r}\left(x_{0}\right)} v\left(\nabla H_{4} \cdot v\right) d \sigma+O\left(r^{2}\right)
\end{aligned}
$$

Letting $r \rightarrow 0$ and noting that $x^{*} \rightarrow x_{0}$, we have

$$
\overrightarrow{0}=-\nabla H_{4}\left(x_{0}, x_{0}\right) .
$$

This proves Theorem 1.2 (3)
Acknowledgements. I would like to thank the referee for carefully reading the manuscript and giving me helpful comments and suggestions which improve the presentation of this paper.

Note added in the proof. Recently, we have succeeded to confirm the conjecture in Remark 1.3 (2) affirmatively. Please refer to "Single-point condensation phenomena for a four-dimensional biharmonic Ren-Wei problem" (preprint).

References

[1] D.R. Adams: A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385-398.
[2] H. Brezis and F. Merle: Uniform estimates and blow-up behavior for solutions of $-\Delta u=$ $V(x) e^{u}$ in two dimensions, Comm. P.D.E. 16 (1991), 1223-1253.
[3] S.Y.A. Chang and P. Yang: The inequality of Moser and Trudinger and applications to conformal geometry, Comm. Pure. Apll. Math. 56 (2003), 1135-1150.
[4] Ph. Crement and D. de Figueiredo and E. Mitidieri: Positive solutions of semilinear elliptic systems, Comm. P.D.E. 17 (1992), 923-940.
[5] M. Flucher and J. Wei: Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math. 94 (1997), 337-346.
[6] D. Gilbarg and N.S. Trudinger: Elliptic Partial Differential Equations of Second Order, second edition. Springer-Verlag, Berlin-New York, 1983.
[7] E. Mitidieri: A Rellich type identity and applications, Comm. P.D.E. 18 (1993), 125-151.
[8] X. Ren and J. Wei: On a two-dimensional elliptic problem with large exponent in nonlinearlity, Trans. A.M.S. 343 (1994), 749-763.
[9] X. Ren and J. Wei: Single-point condensation and least-energy solutions, Proc. A.M.S. 124 (1996), 111-120.
[10] J. Wei: Asymptotic behavior of a nonlinear fourth order eigenvalue problem, Comm. P.D.E. 21 (1996), 1451-1467.

Mathematical Institute Tohoku university Sendai, 980-8578, Japan.
e-mail: tfutoshi@math.tohoku.ac.jp

[^0]: 2000 Mathematics Subject Classification : 35B40, 35J35, 35J60.

