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Abstract
Small Cover is an -dimensional manifold endowed with aZ2 action whose or-

bit space is a simple convex polytope . It is known that a smallcover over is
characterized by a coloring of which satisfies a certain condition. In this paper
we shall investigate the topology of small covers by the coloring theory in com-
binatorics. We shall first give an orientability condition for a small cover. In case

= 3, an orientable small cover corresponds to a four colored polytope. The four
color theorem implies the existence of orientable small cover over every simple con-
vex 3-polytope. Moreover we shall show the existence of non-orientable small cover
over every simple convex3-polytope, except the3-simplex.

0. Introduction

“Small Cover” was introduced and studied by Davis and Januszkiewicz in [5]. It is
a real version of “Quasitoric manifold,” i.e., an -dimensional manifold endowed with
an action of the groupZ2 whose orbit space is an -dimensional simple convex poly-
tope. A typical example is provided by the natural action ofZ2 on the real projec-
tive spaceR whose orbit space is an -simplex. Let be an -dimensional simple
convex polytope. Here issimple if the number of codimension-one faces (which are
called “facets”) meeting at each vertex is , equivalently, the dual of its boundary
complex ( ) is an ( 1)-dimensional simplicial sphere. In thispaper we shall han-
dle a convex polytope in the category of combinatorics. We denote the set of facets of

(or the set of vertices of ) byF . Associated to a small cover over , there
exists a function :F Z2 called a “characteristic function” of . A basic result
in [5] is that small covers over are classified by their characteristic functions (cf. [5,
Proposition 1.8]). The characteristic function is a (face-)coloring of (or a vertex-
coloring of ), which satisfies a “linearly independent condition” (see §1). Coloring
convex -polytopes have been studied actively in combinatorics. We shall investigate
the topological properties of small covers through the coloring theory in combinatorics
specially when = 3.

The notion of small cover can be generalized to the case wherethe base space is
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more general than a simple convex polytope. An -dimensionalnice manifold with
corners such that the dual complex is a simplicial decomposition of ( ), is called
a simple polyhedral complex. For a coloring of which satisfies the linearly indepen-
dent condition, we can construct an -dimensional manifold with Z2-action over in
a similar way. We call it a small cover over a simple polyhedral complex .

In this paper we give a criterion when a small cover over a simple con-
vex polytope is orientable (Theorem 1.7). In case = 3, this criterion implies that
an orientable three-dimensional small cover corresponds to a 4-colored simple con-
vex 3-polytope. Therefore the existence of an orientable small cover over every sim-
ple convex 3-polytope is equivalent to the four color theorem (Corollary 1.8). Next we
shall discuss the colorability of a 3-polytope making allowance for the linearly inde-
pendent condition, and prove existence of non-orientable small cover over every simple
convex 3-polytope, except the 3-simplex (Theorem 2.3). Theproof of Theorem 2.3 is
given in a way similar to the proof of classical five color theorem by Kempe. More-
over we shall discuss the existence of non-orientable smallcover over 4-colorable sim-
ple polyhedral handlebody with a positive genus (Theorem 3.1).

1. The orientability of small covers

At first we shall recall the definition and basic results of small covers in [5]
or [3]. An -dimensional convex polytope issimple if the number of codimension-one
faces (which are calledfacets) meeting at each vertex is . Equivalently, is simple if
the dual of its boundary complex is a simplicial decomposition of ( 1)-dimensional
sphere. We denote the simplicial complex dual to by . In this paper we shall
handle polytopes in the category of combinatorics and understand that two polytopes
are identical if they are combinatorially equivalent. Therefore a considerable structure
of a polytope is only its face structure, i.e., the dual complex . The natural ac-
tion of Z2 on R is called thestandard representationand its orbit space isR+.

DEFINITION 1.1. A manifold endowed with the action of the groupZ2 is
a small coverover an -dimensional simple convex polytope if its orbit space is
homeomorpic to and is locally isomorphic to the standard representation, i.e.,
there exists an automorphism ofZ2 such that for any point , there exists
stable neighborhoods of and R and -equivariant homeomorphism

: ( ( ) = ( ) ( )).

Let 1 : 1 and 2 : 2 be two small covers over .An equivalence
over is an automorphism ofZ2, together with a -equivariant homeomorphism

: 1 2, which covers the identity on .

EXAMPLE 1.2. The groupZ2 acts on 1 by a reflection, and its orbit space is
an interval . Taking the -fold product, we have aZ2 action on an -dimensional
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torus = 1 1, which is a small cover over the -cube .

EXAMPLE 1.3. We have a usualZ2 action on the real projective spaceR as
follows:

( 1 ) [ 0 1 ] = [ 0 1 1 ]

This is a small cover over the -simplex .

Let : be a small cover over an -dimensional simple convex poly-
tope . For a face of , the isotropy group at 1(int ) is independent of
the choice of , denoted by . In particular, if is a facet, is a rank-one sub-
group, hence, it is determined by a generator ( )Z2. In this way we obtain a func-
tion : F Z2 whereF is the set of facets of . This function is calledthe char-
acteristic functionof . If is a codimension- face of then =1

where ’s are the facets which contain , and is the rank- subgroup generated
by ( 1) ( ). Therefore the characteristic function satisfies the following condi-
tion.

( ) If 1 are the facets meeting at a vertex of , then (1) ( )
are linearly independent vectors ofZ2.

In particular, the characteristic function :F Z2 is a (face-)coloring of (or
a vertex-coloring of the dual graph ). We often call ita linearly independent col-
oring of (or ). Conversely a coloring of satisfying the linearly independent
condition ( ) determines a small cover ( ) over whose characteristic function
is the given . The construction of ( ) is as follows. For each point ,
let ( ) be the unique face of which contains in its relative interior. We define
an equivalence relation on Z2 as follows:

(1) ( ) ( ) = 1
( )

where ( ) is the subgroup generated by (1) ( ) such that ( ) = 1

( F). Then the quotient space ( Z2) is ( ).

Theorem 1.4 ([5, Proposition 1.8]). Let be a small cover over such that
its characteristic function is : F Z2. Then is equivalent to ( ). In other
words, the small cover is determined up to equivalence over by its characteristic
function.

EXAMPLE 1.5. In case = 2, is a polygon and a characteristic function is
a function :F Z2

2 which satisfies the linearly independent condition ( ). Let

1 2 be a basis ofZ2
2. Since any pair of 1 2 1+ 2 is linearly independent, is
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just a 3-coloring of . If ( ) is a -gon colored by three colors (resp. two colors)
then ( ) is the non-orientable surface ( 2)R 2 (resp. the orientable surface with
genus ( 2) 2) endowed with a certain action ofZ2

2 where R 2 is the connected
sum of copies ofR 2 (cf. [5, Example 1.20]).

REMARK 1.6. When an -dimensional simple convex polytope is -colored
( ), we understand that the image of the coloring function is abasis forZ2,
and define the quotient space ( ) = ( Z2) where the equivalence relation

is given in a way similar to (1). It is called the “manifold defined by the coloring
” in [7]. When = , ( ) coincides with the small cover ( ), and is called

the “pullback from the linear model” in [5]. In the special case = = 3, pullbacks
from the linear model were studied by Izmestiev in details in[7].

Next we shall discuss the orientability condition of a smallcover.

Theorem 1.7. For a basis 1 of Z2, a homomorphism : Z2 Z2 =
0 1 is defined by ( ) = 1 ( = 1 ). A small cover ( ) is orientable if

and only if there exists a basis1 of Z2 such that the image of is1 .

Proof. Let us calculate the -dimensional integral homologygroup ( ;Z) of
a small cover = ( ). The combinatorial structure of defines a natural cel-
lular decomposition of = ( Z2) . We denote by ( ) the chain complex
associated with this cellular decomposition. In particular, and 1 are the free
abelian groups generated by Z2 = ( ) Z2 and (F Z2) =
[ ] F Z2 , respectively, where the equivalence class ofF Z2 is

defined by the equivalence relation ( ) ( ( ) + ). We give an orientation on
a facet such that ( ) = 1 + + where = #F . Under these notations if

= Z2
( ) ( Z) is an -cycle of then

( ) =
Z2 =1

( ) =
[ ] (F Z2)

( + ( )+ )[ ] = 0

Therefore ker if and only if = ( )+ for any facet and Z2. The lat-
ter is equivalent to = ( 1) ( 1 )+ + ( )+ for any facets 1 and Z2.
Suppose that there is no basis ofZ2 such that 1. It means that for each set of
facets 1 such that = ( ) (1 ) is a basis ofZ2, there exists
a facet such that ( ) = 0, i.e., ( ) =1 + + where is an even number.
Then = ( 1)

1+ + + = ( )+ = that is = 0 for any Z2. Thus
( ; Z) = ker = 0, and is non-orientable. On the other hand, when there exists

a basis ofZ2 such that 1, for any Z2, the parity of = ( ) does not depend
on the choice of ’s such that = (1)+ + ( ). In fact, if ( 1)+ + ( ) =
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( 1) + + ( ) then ( 1) + + ( ) = ( 1) + + ( ), therefore
mod 2. Then ( ;Z) = ker = Z is generated by = Z2

( 1) ( )( ),
and is orientable.

We call a linearly independent coloring which satisfies the orientability condition
in Theorem 1.7an orientable coloringof (or ). In case = 2, it is easy to see
that an orientable coloring of a polygon is just a 2-coloringof (see Example 1.5). In
case = 3, a three-dimensional small cover ( ) is orientable ifand only if there
exists a basis ofZ3

2 such that the image of is contained in +
+ . Since each triple of + + is linearly independent, the orientable

coloring of a 3-polytope is just a 4-coloring of . By the four color theorem ([1]),
we obtain the following corollary (in fact, the corollary below is equivalent to the four
color rheorem).

Corollary 1.8. There exists an orientable small cover over every simple convex
3-polytope.

REMARK 1.9. Although there exists a small cover over every three-dimensional
simple convex polytope, for each integer 4, there exists an -dimensional sim-
ple convex polytope which admits no small cover (cf. [5, Nonexample 1.22]). In
fact, a cyclic polytope defined as the convex hull of + 1 pointson a curve

( ) = ( 2 ) is a simplicial polytope such that the one-skeleton of is
a complete graph when 4 (see [2,§13]). Let be the simple polytope dual
to . Since the chromatic number of is , the polytope admits no small cover
whenever 2 .

2. Existence of non-orientable small covers

We call a linearly independent coloring which does not satisfy the orientability
condition in Theorem 1.7a non-orientable coloring. In this section we shall discuss
the existence of a non-orientable coloring over a simple polytope in case = 3. We
shall recall and use some notions of 3-polytopes and the graph theory. For further de-
tails see [2] or [6].

For a simple convex 3-polytope , we set the number of -cornered facets
of . Then the numbers of facets, edges and vertices of are2 = 3 , 1 =

3 2 and 0 = 3 3, respectively. Since the Euler number0 1 + 2

of ( ) is two, we obtain immediately the following formula.

Lemma 2.1. For any simple convex3-polytope ,

(2) 3 3 + 2 4 + 5 = 12 +
7

( 6)
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Fig. 1.

The lemma implies a well-known fact that each simple convex 3-polytope has
a facet which has less than six edges.

We introduce an operation “blow up” for a vertex of a simple 3-polytope (see
Fig. 1). We cut around a vertex of and create a new triangular facet there. The re-
verse operation of the blow up is called a “blow down.” Notice that for any simple
convex polytope except the 3-simplex, two triangular facets must not adjoin each other.
Therefore except for the 3-simplex, the blow down for any triangular facet is possible.
For the dual simplicial complex , a blow up is operated for a 2-simplex of and
a blow down is operated for a vertex of with degree three, respectively. The blow
up can be done keeping the linearly independence. In fact, wecan assign + +
to the new triangle where , and are the colors assigned to three facets adjacent
to the triangle. The blow up operation corresponds tothe equivariant connected sum
of R 3 at the fixed point of small covers corresponding to the vertex(see [5, 1.11]).
When is endowed with a linearly independent coloring, the blow down for a trian-
gular facet can not be done keeping the linearly independence. From the above fact
we obtain the following lemma immediately.

Lemma 2.2. If a convex polytope has a non-orientable coloring then each
polytope obtained by blowing up has also a non-orientable coloring.

Theorem 2.3. There exists a non-orientable small cover over every simplecon-
vex 3-polytope, except the3-simplex.

Proof. Let be a simple convex polytope but not the 3-simplex.Operating
the blow downs for triangular facets of over again, can be transformed to a poly-
tope which does not have a triangular facet or is the triangular prism. In the lat-
ter case although the triangular prism can be transformed tothe 3-simplex further by
the blow down, we stop the operation because the 3-simplex isexcepted from this the-
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Fig. 2.

orem. By Lemma 2.2, a non-orientable coloring of leads to that of . Therefore we
can assume that does not have a triangular facet or is the triangular prism. We
assume the four color theorem, and shall prove that some facets of 4-colored poly-
tope can be repainted making allowance for the linearly independent condition and
construct a non-orientable coloring. Here we assume that iscolored by four colors

+ + for some basis ofZ3
2. (When is colored by only three

colors, we can repaint a facet and assume that is 4-colored ifnecessary.) The case
that has a quadrilateral facet is immediate. In fact, the 4-coloring around a quadri-
lateral facet must be the following situation: a center quadrilateral is colored
by and two facets adjacent to are colored by and the rest two facets adja-
cent to are colored by one color or two colors and + + , respectively
(see Fig. 2). In both cases we can repaint the center quadrilateral by + instead
of , and produce the non-orientable coloring. In particular, the triangular prism has
a non-orientable coloring because it has a quadrilateral facet.

Suppose that has no triangle and quadrilateral. By Lemma 2.1, must have
a pentagonal facet . We can assume that the 4-coloring aroundis in the fol-
lowing situation: the center pentagon is colored by and the adjacent five facets

1 5 are 3-colored by , , , and + + , respectively (see Fig. 3). Here
we shall repaint some facets of and construct a non-orientable coloring in a way
similar to the proof of the classical Five Color Theorem by Kempe using the “Kempe
chain” (cf. [8] or [6]). First we consider the -chain containing the pentagon

, i.e., the connected component of facets colored by or , which contains . If
the -chain has no elementary cycle containing then we divideit by the edge

3 into two chains, and the one side which contains3 can be repainted by +
and + instead of and , respectively. If the -chain has an elementary cycle
containing then 2 and 4 belong to a different component of + + -chain
respectively, because of the Jordan curve theorem. Therefore the one side of them can
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Fig. 3.

be repainted by + and + instead of and + + , respectively. In both
cases the repainted polytope is five or six-colored and the new coloring also satisfies
the linearly independent condition. Therefore we obtain a non-orientable coloring of .

3. Coloring simple polyhedral handlebodies

Let be an -dimensional nice manifold with corners. We say that is a simple
polyhedral complexif its dual complex is a simplicial decomposition of ( ). This
condition implies that any intersection of two faces is a face of . We can characterize
a simple polyhedral complex by a pair of a manifold and a simplicial decomposi-
tion of ( ). In fact a simplicial decomposition of ( ) determines the polyhe-
dral structure of as follows. For each simplex , let denote the geometric
realization of the poset = . We say that is acodimension-
face of if is a ( 1)-simplex of . Then its dual complex is clearly same
as .

We call a facet-coloring of (or a vertex-coloring of ) simplya coloring of
(or ). We denote byF the set of facets of (or the set of vertices of ). A func-
tion : F Z2 is called a linearly independent coloring of (or ) if satisfies
for the condition ( ) in§1. We put ( ) = ( Z2) , where the equivalence
relation is defined as (1) in§1. We have aZ2-action on an -dimensional manifold

( ) with the orbit space . Conversely an -dimensional manifold endowed
with a locally standardZ2-action whose orbit space is homeomorphic to determines
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a characteristic function :F Z2. Then is equivalent to ( ) if the restric-
tion on 1(int ) of the projection : is a trivial covering. We will say that

( ) is a small coverover . (Warning: In [5], for each ( 1)-dimensional simpli-
cial complex , the simple polyhedral complex is the cone on . Then ( )
can be defined in a similar way, however, it is not always a manifold, and therefore it
is called a “Z2-space” in [5].)

When is an orientable simple polyhedral complex, the orientability condition of
( ) is same as the condition in Theorem 1.7. Therefore we may generalize the

notion of (non-) orientable coloringof (or ) to this case. Henceforth, we take
as a simple polyhedral handlebody with genus 0, i.e., a handlebody together
with a simplicial decomposition of the orientable closed surface with genus .
In this case, the formula (2) in Lemma 2.1 is generalized to

(3)
3

( 6) = 12( 1)

where is the number of -cornered facets of (or vertices of whose degree is
). In the rest of this section we shall prove the following theorem.

Theorem 3.1. Let be a4-colorable simple polyhedral handlebody with genus
0 (equivalently, there exists an orientable small cover over). If has suffi-

ciently many facets then there also exists a non-orientablesmall cover over .

Assume that is colored by four colors + + for some basis
of Z3

2. We shall repaint some facets of and construct a non-orientable col-
oring. By the same reason as in the proof of Theorem 2.3, when has a quadrilateral
facet, the construction of non-orientable coloring is immediate.

Next we consider two operations “blow down” and “blow up” introduced in §2
(see Fig. 1). We can define these operations for a simple polyhedral handlebody (or
a simplicial decomposition of an orientable surface ) in a similar way. The blow
up can be always done for any vertex of together with a linearly independent col-
oring. Notice that for any simple polyhedral handlebody with a positive genus, two
triangular facets must not adjoin each other. Therefore theblow down can be always
done for any triangular facet of . Operating the blow down fortriangular facets of

one after another, we can reduce to a simple polyhedral complex which has
no triangular facet. As we have already seen in Lemma 2.2, a non-orientable coloring
on can be extended on . In the course of this process if a quadrilateral facet ap-
pears, we can also construct a non-orientable coloring of . We assume that a quadri-
lateral facet does not appear during the reduction from to . Generally if we oper-
ate blow up for a vertex of a triangular facet then a quadrilateral facet will be created.
By the above assumption must be obtained by blow up for original vertices of
(but not for new vertices born by blow up). Therefore the number of facets of is
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at most the sum of numbers of facets and vertices of . Consequently it is sufficient
to prove Theorem 3.1 in the case that does not have a quadrilateral or a triangle.
In fact if the following proposition holds for any simple polyhedral handlebody which
has more than facets but not a quadrilateral and a triangle then Theorem 3.1 holds
for any simple polyhedral handlebody which has more than + facets where is
the maximum of numbers of vertices of simple polyhedral handlebodies which do not
have more than facets and a quadrilateral and a triangle.

Proposition 3.2. Let be a 4-colorable simple polyhedral handlebody with
genus 0 such that does not have a quadrilateral or a triangle(equivalently its
dual is a simpicial decomposition of an orientable surface with genus 0
such that does not have a vertex with degree three or four). If has sufficiently
many facets then has a non-orientable coloring.

For a subset of vertices of a simplicial complex , we denote bythe sub-
graph of one-skeleton 1 generated by (which is called thesection subgraph). We
need the following lemma instead of the Jordan curve theorem.

Lemma 3.3. Let be a simplicial decomposition of the orientable closed sur-
face with genus 0, and ( ) be a division of vertices of ( = ( ))
such that the section subgraphs , are both connected and have no cycle of
length three. When2 + 1 edges are removed from , either or is dis-
connected.

Proof. Because and have no cycle of length three, each 2-simplex of
intersects both of and , i.e., all vertices and only one edge of belong to

. Therefore the number of 2-simplices of and the number of edges of
which do not belong to coincide. Thus ( ) = ( ) = 2 2 where

( ) is the Euler number of . Since and are both one-dimensionalconnected
subcomplices of , this means that the first Betti number of is 2, thus
the lemma follows.

For a four-colored simple polyhedral handlebody (or a simplicial decomposition
of a surface ), we consider a division of facetsF into two Kempe chains in

a way similar to the proof of Theorem 2.3, e.g.,F = where (resp. ) is
a set of vertices which are colored by or (resp. or + + ). In thiscase

-chain of (resp. + + -chain) corresponds to the section subgraph
(resp. ) of . We notice that there are three ways to divideF into two Kempe
chains, i.e., + + , + + and + + . If
an -chain is disconnected then one of its connected component can be repainted
by + and + instead of and , respectively, and we obtain a non-orientable
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Fig. 4.

Fig. 5.

coloring of . Assume that every chain is connected. Then eachdivision of F into
two chains satisfies the condition in Lemma 3.3.

In order to divide a connected Kempe-chain into two components we introduce
a notion of acutable edgeof (or ). An edge of is called acutable edge
(of type ( )) when its star subcomplex of (i.e., the subcomplex generated
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Fig. 6.

by simplices which contain the edge) is three-colored, i.e., the both end vertices of
the edge are colored by and others are colored by only one color . Similarly
an edge of is called a cutable edge when the dual edge is a cutable edge of
(see Fig. 4). A cutable edge of type ( ) is an edge of -chain. If there ex-
ist cutable edges of a same type ( ) such that an -chain becomesto be
disconnected when they are removed, then one of its connected component can be re-
painted and we can construct a non-orientable coloring of . For example, for a four-
coloring of shown in Fig. 5, -chain is the set of facets ’s and1 2 and

4 5 are cutable edges of the same type ( ). Here a component2 3 4

of -chain between two cutable edges can be repainted by + and +in-
stead of and , respectively, and we can construct a non-orientable coloring of .
We remark that the edge 3 in Fig. 3 in the proof of Theorem 2.3 is a cutable
edge which divides connected chain into two components. When has more than 12
cutable edges, there exists a divisionF = into two chains ( ) such that

has more than 4 cutable edges because there are three ways to divide F

into two Kempe chains. Here there are at most two types of cutable edges contained
in (or ), respectively. Then either of or becomes to be disconnected
when cutable edges of a same type are removed because of Lemma3.3. Therefore

can be repainted as a non-orientable coloring when has more than 12 cutable
edges.

Denote the number of facets of with -corners by . By assumption 3 = 4 = 0.
We notice that a facet with -corners has at least two cutable edges if is not a mul-
tiple of three. Therefore if

(4)
0 (mod 3)

12

then there exist more than 12 cutable edges and can be repainted as a non-
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orientable coloring. If there exists a hexagonal facet of such that the six facets
adjacent to it are all hexagonal, then the seven facets can berepainted as a non-
orientable coloring as shown in Fig. 6 or they have at least two cutable edges. This
is the case if 6 = 6 because a -cornered facet ( = 6) adjacent to at most

hexagonal facets. More generally, if6 = 6 7( 1) then can be re-
painted as a non-orientable coloring or there exist more than hexagonal facets each
of which has at least two cutable edges. Therefore, if the above inequality hold for

= 12 0(mod 3) , i.e.

(5) 6

= 6

+ 7 12
0 (mod 3)

1

then can be repainted as a non-orientable coloring.
Values of ’s, which do not satisfy the above inequlities (4) and (5), are

bounded. In fact, it follows from (3) and inequalities opposite to (4) and (5) that

= 6

( + 1) + 7 12
0 (mod 3)

1 from (5)†

= 5 +
6

( 6) + 7
0 (mod 3) 9

+ 84 7

= 7
0 (mod 3) 9

+ 96 19 from (3)

7

3
7

( 6) + 96 19

=
7

3
( 5 + 12 12) + 96 19 from (3)

=
7

3
5 + 124 47

7

3
0 (mod 3)

+ 124 47

152 47 from (4)†

where (4)† and (5)† are the inequalities opposite to (4) and (5), respectively.There-
fore the proof of Theorem 3.1 is completed.

REMARK 3.4. The 4-colorability of graphs embedded into an orientable surface
is an interesting problem. For example, we have the following conjecture (cf. [4,
Conjecture 1.1]):every simplicial decomposition of an orientable surface such that
all vertices have even degree and all non-contractible cycles are sufficiently large
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is 4-colorable. In case that = 1 and a graph satisfies a special condition called
“6-regular,” the 4-colorability of toroidal 6-regular graph was studied in [4].
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