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Abstract
We prove a divisibility theorem for elements in the cut-graste group, or the
SK-group of G -manifolds,G a finite abelian group of odd order. Asapplication
we obtain necessary and sufficient conditions for that aed@s-manifold is equiv-
ariantly cobordant to the total space @f -fibration over thele.

1. Introduction

All manifolds considered in this paper are in the smooth gatg and those are
all unoriented, with or without boundary;  always denotesnitefiabelian group of
odd order unless otherwise stated, amd a fixed nonnegatiegein

Let 9M& denote the set ofn -dimensional clos&gl -manifolds. We define
equivalence relation ot which is called acut-and-paste equivalencer an
SK-equivalence The quotient set by this relation is denoted B /SK, and this be-
comes a semigroup with the addition induced from the disjoimon of manifolds.
The Grothendiek group din%/SK is called thecut-and-paste groupr the SK-group
of m-dimensional closed; -manifolds, and is denotedS#y¢

In this paper we will consider the divisibility for elemenis SK¢, i.e., for a
given x € SKS and an integer > 0 the existence yfe SKS such that ty=
We will obtain a necessary and sufficient condition for thkigibility in terms of the
Euler characteristics of manifolds (Theorem 4.2).

The following is an old result proved by Conner-Floyd [4]:

A closed manifold is cobordant to the total space of a fibratiwer the circle
St if and only if the Euler characteristig (M) of M is even.

To obtain an equivariant version of this result we will applyr divisibility the-
orem, and obtain a necessary and sufficient condition for ghalosedG -manifold
is equivariantly cobordant to the total space ofGa -fibratawer S* such that the
G-action takes place within the fibres, i.e., the action igid@tion St (Theorem 6.3).
We will also have some variants of the condition (Theorem),7ahd remark that one
of those variants is essentailly the same as the one whiclbtaned in a different
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way by Hara [6].

2. G-manifolds of type F

Let G be a finite abelian group of odd order, ami Ga -manifold. &wsub-
group H of G, M denotes the fixed point set tf by the restrictéd ieacG,
denotes the isotropy subgroupae M , afid the orbit of . ThereGsiavariant
neighbourhood olGx M which i€y -diffeomorphic 16 xs, V' for some regen-
tation V. of G, (see for example Bredon [2, Corollary VI.2.4] orwakubo [9, The-
orem 4.10]). LetV, denote the nontrivial part &f , i.&., Ve® V° . listipaper
we call G,, V,) aslice type atx inM, though G,, V) is usually called a slice type
in literature. More generally, lelf be a subgroup@f and aes@ntation ofH
such thatV ={ @, thenH,V ) is called slice type forG. Here V can be zero-
dimensional. Sinces is of odd order, the dimensionvof is abvayen.

A family F of slice types forG is a set of slice types satisfying the ctodi
that for any H, V )e 7 and anyx € G xg V , the slice type({,, V., )at i@ xgV
belongs toF. For a family 7 of slice types forG , if G, V, )e F for anyx e M
then M is called aG-manifold of typeF.

We give a partial orderx on the set of slice types for in such g weat
(H', V') < (H,V) if and only if H' is a subgroup o and& ¥7 @V’ as repre-
sentations ofH’ . For a slice type(V ), define

MUY ={x e M| (H, V) = (Gx, Vi)}.
This is aG -invariant submanifold aff of codimension even.

3. XK-group of G-manifolds

Let P and Q bem -dimensional compa& -manifolds.df 0P — 9Q is a
G-diffeomorphism between the boundaries Bf agd , then weiokdaclosed
G-manifold P U, 0 by pastingP and? with each other along the boundaryb
If P and Q are of typeF, then so isP U, Q . Ify :dP — 9Q is a second
G-diffeomorphism, we obtain a second closéd -maniféldly, Q . Then, Q is
said to beobtained fromP U, Q by equivariant cutting and pastifgy Schneiden und
Klebenin German), and vice versa.

Let MC(F) be the set ofn -dimensional closed -manifolds of type For M,

m

N € ME(F), M and N are said to bequivariantly SK -equivalentif there is

L € MY(F) such that the disjoint uniond/ & amdl [+ are obtained from each
other by a finite sequence of equivariant cuttings and pgstifhe SK -equivalence

is an equivalence relation oMY (F). The quotient set by this relation is denoted by
INC(F)/SK. This becomes a semigroup with the addition induced frosjoitit union

of G-manifolds. The Grothendieck group 6ftS(F)/SK is calledthe SK -group of

m-dimensional closed; -manifolds of tyg& and is denoted b K¢ X).
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Let 7/ c F be families of slice types foG . 1M is & -manifold of typg’,
then M is automatically of typeF. So we obtain an inclusiofi%(F") c 9% (F), and
this induces a homomorphism SKS F() — SKS(F).

If M e MG(F), and if (H,V) € F is maximal withn = dimV , thenm ")
is a G -manifold with one orbit type and the orbit spat&”-V)/G is a manifold of
dimensionm — n . AssigningV)/G to M, we have a correspondenfB?(F) —
M_n, Wheredt,, , is the set of f1—n )-dimensional closed manifolds. An equivaria
cutting and pasting operation oW restricts to oneMt"). So the correspondence
IMC(F) — M,,—, induces a homomorphism SKS Fj — SK,—,, where SK,,_, is
the SK -group of 2 — n )-dimensional (nonequivariant) closed rfads (cf. Karras—
Kreck—Neumann-Ossa [8]).

Theorem 3.1. Let F be a family of slice types foG  with a maximal element
(H,V),and let# =F — {(H,V)} andn =dimV. Then

0— SKS(F) - SKY(F) L SK,_y — 0O
is a split short exact sequence.

For a proof of this theorem, see the proof of Komiya [11, Tkeor6.5], and also
see Kosniowski [12, Corollary 2.6.3].

4. Divisibility theorem

Let F be a family of slice typesH,V ) foG with ditf <m , and give a partial
order< onJF as in Section 2. Note thaf is finite. Let the elements of be indexed
by an indexing sef X), i.e., F ={(H;, V;) | i € I(F)}. The partial order or¥ induces
a partial order on/ ). We denote this order by the same symbol . Lgtr)( , )
be the Mobius function on the partially ordered gef),(which is inductively defined
as follows (cf. Aigner [1]): For any, j € I X) with i < j,

I’Ll(]:)(lv l) = 17
wiF (i, j) = — Z wrF (i, h) = — Z riF(h, j) it i< j,

i<h<j i<h=j

where the dot- means the sum is taken over the letters under weAsemarked
in Komiya [11, Lemma 7.2] we obtain the following propositian a similar way
to Komiya [10].

Proposition 4.1. For any M € MY (F) and i € I(F) we have

> i Hx(MPY)) =0 mody G/Hi)

i<j
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where x(G/H;) is the cardinality ofG/H; .

An elementx € SK¢ () is written in the formx = M ]— V] for someM
N € 9MMY(F), where 1 ], [V] denote theSK -equivalence classMf N, , respeltiv
Define x () =x M )— x (V) andy; £ ) =x ")) — x(NU-Y)) for (H;, V;) € F.
This is well-defined since cutting and pasting operationpkethe Euler characteristic
invariant. Note that ifn is odd them x( ) =0 ang, x ( ) =0 for amye SKS F)(

If F is the family of all slice typesH{,V ) forG with ditW < m , then any
m-dimensionalG -manifold is of typer, and we denotén¢(F) and SKS (F) by Im&
and SKS , respectively. In this case we also denote/by the indes@t/ (F) of the
elements ofF.

We obtain the following divisibility theorem.

Theorem 4.2. An elementr € SKS is divisible by an integer> 0, i.e., there
is y € SKY such thatx = ty, if and only if

m

Zﬂl(i, Nxjx)=0 modty G/H;)

i<j

for anyi e I.

The “only if” part of this theorem is easily shown from Projims 4.1. The “if”
part will be shown in the next section. Before we proceed ®ribxt section, we note
that if m is odd thenSK¢ =0 (see Kosniowski [12, Chapter 5]) andceethe theo-
rem is trivially valid.

5. Proof of the divisibility theorem

In this section we prove the “if” part of Theorem 4.2 in the mvdimensional
case.

Let F be the family of all slice typesH,V ) foG with diti < n2 . Let the
elements ofF be indexed by integers in such a way that

F={H,V)liell, 1={01....k}

andi < j =i < j, where< is the ordinary order for integers. Théf, (Vo) is the
minimal element ofF with respect to the orderk  such thay = {1} the trivial group,
and Vp = {0}. We have a filtration ofF,

FoCF1C---CFr=7F,
where

Fi={H, Vi) liel(F)), I(F)=1{0,1...,j}
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Then #H;, V; ) is a maximal element of;. Consider the following assertion:

A(j). An elementx € SK$ (F;) is divisible by an integer > 0, if for any i €
1(F))

> (i B)xa(x) =0 modiyx G/H; )

i§/1
where w7, ( . ) is the Mobius function on the partially ordered sé(F;).

A(k) is the “if” part of Theorem 4.2. For any (& j <k ) we prowe j ( ) by
induction.

To prove A (0), note thaSK$ (Fo) is the SK -group of Z -dimensional closed
free G -manifolds, and is isomorphic t6K,, by the isomorphism which assigns to
a free G -manifoldM its orbit spac#//G . Note also that Euler charétic detects
the elements ofK,,. See for these facts Karras—Kreck—Neumann—-Ossa [8] and Kos
niowski [12]. Assumex £ }= 0 mody ) fox € SKS (Fo). If m #0 and we take
N € My, with x(N) = x(x)/tx(G), then we seec = x N ] inSK$ (Fo). We can
also take such av € My, if m=0and x ¢)> 0. If x ) < O, then considerx
This provesA (0).

To proceed the induction step, consider the following conative diagram.

0 — SK$(Fj—1) —> SKZ(F;) 2> SKoy—y —> 0

[

0— SKZ(J;n(Fj—l) _L) SKZGm(]:J) i) SKZm—n — 07

wheren =dimV; , and, is the homomorphism given by the multiplcaty . The
horizontal sequences are exact from Theorem 3.1.

AssumeA ( — 1) as an induction hypothesis, and assumextkaSK$ (F;) sat-
isfies the congruence iA j( ). From the congruence we see

x(p(x)) = x;(x)/x(G/H;)=0 modz,

and hencep X ) is divisible by , i.e., is in the image xf . By daygrchasing and
the exactness of the sequences, we have SK$ (F;) andw € SK$ (F;—1) such
that ) =x — tz in SK$ (F;). Sincex, @) =xi & )— x» (z ), we see that  satisfies
the congruence iM j(— 1). Thus the induction hypothesis asstivat w is in the
image of A, . This implies that there is € SK5 (F;—1) such thatx = (% )+ ). This
provesA ( ), and completes the proof of Theorem 4.2.

6. Fibring over the circle

If there is an 2 + 1)-dimensional compa¢ -manifold such th#@t is the
disjoint union M +N of M ,N € MY, then M andN are said to bequivariantly

m?



238 K. Komiya

cobordant with aG -cobordism¥. This is an equivalence relation ant®, and gives

rise to them -dimensional (unoriented) cobordism gréap. We denote by ¥ & the
cobordism class o . It is clear that @[ 0 in NC.

Lemma 6.1 (cf. Karras—Kreck—Neumann-Ossa [8, Lemma 1.9For M, N €
I, if M is obtained fromN by equivariant cutting and pastirtgen M+N is equiv-

ariantly cobordant to the total space of @ -fibration ov&t such that theG -action
takes place within the fibres.

Proof. LetM =P U, Q andN =P U, Q , wherep,yy 8P — 0Q are
G-diffeomorphisms between the boundariesrof -dimensiopaipgactG -manifoldsP
Q. Let W be the union ofP x [0 1] andD x [0 1] with the following identific
tions: forx € oP, identify ¢,t)e 0P x [Q ¥ 3] with ¢ & )z )e 00 x [Q ¥ 3] and
(x,1) € 9P x [2/3, 1] with (¥ (x),t) € 0Q x [2/3, 1]. After smoothing, we obtain an
(m + 1)-dimensional compaatt -manifoldd  such thtgy M N+ L+ |, whére is
the total space of a required fibration. U

Lemma 6.2. Given M e MY, if [M] = 2x in SKS for somex € SK¢, then

M is equivariantly cobordant to the total space ofGa -fibratiover S* such that the
G-action takes place within the fibres.

Proof. Letx =[Ni] —[N2] for Ni, N2 € MMC. Then [M + 2V,] = [2N4] in SKS

m?

and this implies that for somé € 9%, M + 2N, + L is obtained from &; + L by a

finite sequence of equivariant cuttings and pastings. Fremrha 6.1 we see that
is G-cobordant to the total space of a required fibration. ]

Theorem 6.3. M € 9MS is equivariantly cobordant to the total space of a
G-fibration over S* such that theG -action takes place within the firifsand only
if x(MV)) is even for any slice typéH, V).

Proof. If M is equivariantly cobordant to the total space ofGdfibration as
above, then for any slice type#(V M} *") is also cobordant to the total space of a
fibration overS™. Conner-Floyd [4] impliesy & (")) is even.

Assume, conversely, that M*:¥)) is even for anyi € I , wher¢ H;, V; |)i € I}
is the family of all slice types#,V ) with dinv < m . Then we see fromoposi-
tion 4.1,

D i, Hx(MP) =0 mod % G/H;)
i<j

for anyi e I, sincex G/H; ) is odd. Theorem 4.2 implies thaf [ ]x 2 SKC for

m
somex € SK¢ , and Lemma 6.2 implies tha¢  is equivariantly cobordarthe total
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space of aG -fibration oves' such that theG -action takes place within the fibres.
O

7. Some variants

In this section we obtain some variants of the condition ioleth in Theorem 6.3.
Let F={(H;, V;) | i € I} be the family of all slice typesH, V ) with difi <m
An Euler functiong;(, ) on I is defined as follows: for, j € I  with < j

ei(i. )= Y wilh, j)x(Hi/Hy).

i<h=j

Theorem 7.1. For M € ¢, the following (i)—(v) are equivalent to each other

() M is equivariantly cobordant to the total space ofGa -fibratiover S* such that
the G -action takes place within the fibres

(i) x(MU) is even for any slice typéH, V),

(iii) [ M] is divisible by2 in SKC,
(iv) for anyi € I,

D i, NxME )y =0 mod 2 G/H; )

i<j

(v) for anyi €I,

> i, NxME ) =0 mod 2 G/H: )

i<j

Proof. (i) < (ii) and (iii) < (iv) are already shown as Theoren8 @&nd Theo-
rem 4.2, respectively. (i) (iv) is also already noted in tm®of of Theorem 6.3.
(iv) = (ii) and (v) = (ii) are inductively and easily shown, smg,; (i) = 1 and
er(i, i) =1.

Finally (iv) = (v) is shown as follows: If we put for anye I

3w Hx (M) = 2,5 G/ Hy)
i<j
for some integet; , then we have

> i, x (M)

i<j

- Z ( Z i (h, j)X(Hh/H,)) X(M(Hj’Vj))

i<j \izh=j
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= 2| 2o il x| (Hy/ Hy)

i<h hi}
= > 2x(G/Hy)x (Hi/H;)
ijh
= 2x(G/H) ) ln
ijh

0 mod 2 G/H;) O

ConcLubiNg Remarks. (1) The Euler characteristic of an odd dimensional closed
manifold is zero, and¥”-") is even codimensional. Thus, M € M¢ is odd dimen-
sional, then the statements (ii)—(v) in Theorem 7.1 ardatfivvalid and hence (i) al-
ways holds.

(2) (v) is essentially the same as the condition obtained anaH6, Theorem 3.10].

(3) If G is of even order, the situation is somewhat differevithen G = Z,, the

cyclic group of order 2 , there is obtained in Hara [5] a cdoditfor M € 9¢ to be

equivariantly cobordant to & -manifold which is equivatiarfibred over S?.

(4) There are also corresponding results in the orientee, cks which the signa-
ture of manifold is needed instead of the Euler characteriSee Burdick [3] and
Neumann [13] for the nonequivariant oriented case, and ldemKreck [7] for the
Zy-equivariant oriented case.
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