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1. Introduction

Let be a positive integer. Letφ : (Z2) × → be a smooth action of the
group (Z2) = { 1 . . . | 2 = 1 and = } on a closed smooth -dimensional
manifold . It is well known that the fixed point set of the action φ on , i.e.,

= { ∈ | φ( ) = for all ∈ (Z2) }

is a disjoint union
⊔

− of closed submanifolds of .
The purpose of this paper is to study (Z2) -actions having the property that each

component of fixed point set has trivial normal bundle. When =1, Conner and Floyd
gave the complete analysis of such actions (see [1, Theorem 25.1]). When > 1,
as far as the author knows, some works in this respect are onlyon the case in which
the fixed point set consists of isolated fixed points. For example, see [1], [2], [3], [4],
and [5].

In [5], a linear independence condition for the fixed point set of (Z2) -actions
on closed manifolds was introduced, and then using the condition, one analyzed
the property of fixed point set for (Z2) -actions having only isolated points. Follow-
ing this idea, we first consider a more general case, i.e., (Z2) -actions with constant
dimensional fixed point set satisfying that each component of fixed point set has triv-
ial normal bundle. The result is stated as follows.

Theorem 1.1. Suppose that(φ ) is an (Z2) -action on a closed manifold
with constant -dimensional fixed point set for which each component of has
trivial normal bundle. Then either(φ ) bounds equivariantly or the fixed point set
has the following property:
(1) for < , must possess the linear dependence property;
(2) for = , is bordant to .

REMARK. In Theorem 1.1, linear dependence forces the fixed points of(φ ) to
have not only a normal representation, so has at least two connected components
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if (φ ) is nonbounding and < , i.e., is disconnected. This means that there
cannot be (Z2) -actions with just an isolated point (see also [1, Theorem 31.3]).

In addition, we also consider the case in which the fixed pointset has vari-
able codimensions. However, the general argument is still difficult since the key
point for (Z2) -actions ( > 1) is the variation in the normal action. For example,
see [4], [6] and [7]. With the help of a linear independence condition, when we add
a restriction that each part of the fixed point set possesses the linear independence
property, this naturally eliminate the existence of isolated points. Then the following
result is obtained.

Theorem 1.2. Suppose that(φ ) is an (Z2) -action on a closed manifold for
which the fixed point set =

⊔
>0 satisfies that for < , all Stiefel-Whitney

classes of the normal bundle to each part vanish in positive dimension, and
each possesses the linear independence property. Then for < , each connected
component of bounds, and is bordant to .

REMARK. It is well-known that any involution is equivariantly bordant to an invo-
lution with fixed point set having the connectedness property, so each part of the fixed
point set of any involution always possesses the linear independence property. Thus,
when = 1, Theorem 1.2 is just the Theorem 25.1 in [1], so Theorem 1.2 is directly
the generalization of [1, Theorem 25.1].

In Section 2, we introduce some notations, such as the lineardependence property,
and review a formula given by Kosniowski and Stong. Theorems1.1 and 1.2 will be
proved in Section 3. Throughout this paper, all manifolds and (Z2) -actions are to be
smooth. Let [ ] denote the fundamental homology class of the closed manifold .

ω( 1 . . . ) =
∑

1
1 · · · denotes the usual smallest symmetric polynomial con-

taining the given monomial whereω = ( 1 . . . ) is a partition of|ω| = 1 + · · · + .

2. Notations and a formula

Let φ : (Z2) × → be an action of the group (Z2) being generated by the
elements 1 . . . having the relations2 = 1 and = , and let =

⊔
− be

its fixed point set. Let Hom((Z2) Z2) be the set of homomorphismsρ : (Z2) → Z2 =
{+1 −1}, which consists of 2 distinct homomorphisms labeled byρ , = 1 . . . 2 .
One agrees to letρ1 = 1, i.e., ρ1( ) = 1 for all . Every irreducible real representation
of (Z2) is one-dimensional and has the formλρ : (Z2) ×R→ R with λρ( ) = ρ( )·
for someρ. λ1 is the trivial representation corresponding toρ1 = 1.

For each part − of , the restriction to each connected component−

of − of the tangent bundle of decomposes into subbundles under the action
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of (Z2)

τ | −
∼= τ − ⊕

⊕

ρ6= 1

νρ

whereνρ is the subbundle on which (Z2) acts viaλρ, and the subbundle on which
(Z2) acts trivially is identified with the tangent bundle of − . Let ρ = dimνρ ,
so that =

∑
ρ6= 1 ρ . If − is not connected, then the sequence (ρ2 . . . ρ2

)
(called thenormal dimensional sequence) may vary for different components, although∑

ρ6= 1 ρ is always equal to . Without loss of generality one may assumethat the
part of − with a given normal dimensional sequence is connected. Thisis because
one may form a connected sum of the components if− > 0, and cancel pairs of
components if − = 0, so that up to equivariant bordism, the (Z2) -action is un-
changed. Then, one may write − =

⊔
=1

− , ≥ 1, where − is the part of
− with a given normal dimensional sequence (ρ2

. . . ρ2
), and the collection

C =



( ρ2

. . . ρ2
) with

∑

ρ6= 1
ρ =

∣∣∣∣ = 1 . . .





of such sequences occuring in − will be called thenormal dimensional sequence
set of − .

Now, assuming 1 . . . to be formal variables, let

αρ =
∑
{ | λρ( ) = − }

for λρ an irreducible representation of (Z2) . Obviously,α1 = 0. With the above un-
derstood, we state the definition of the linear independencefor the fixed point set.

DEFINITION. We say that the (− )-dimensional part − of possesses the
linear independence propertyif its normal dimensional sequence set

C = {( ρ2
· · · ρ2

) | = 1 . . . }

has the following property:

1
∏

ρ6= 1α
1
ρ

ρ

. . .
1

∏
ρ6= 1α

ρ
ρ

are linearly independent in the quotient field ofZ2[ 1 . . . ].

Next, let us review the formula given by Kosniowski and Stong. Let ( 1 . . .

1 . . . ) be a polynomial overZ2 which is symmetric in the set of variables
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1 . . . . If we use the -th Stiefel-Whitney class of to replace the -thele-
mentary symmetric functionσ ( ) =

∑
1 · · · , then the resulting cohomology class

evaluated on the fundamental homology class of is a characteristic number

(2.1) ( 1 . . . 1 . . . )[ ]

On the other hand, consider each connected component− of − with the normal
bundle

⊕
ρ6= 1 νρ . In the polynomial, 1 . . . is replaced by 1 . . . − and, for

all ρ 6= 1, variablesαρ + ρ 1≤ ≤ ρ . If we let ( − ) (resp. (νρ )) replace

the -th elementary symmetric function in{ 1 . . . − }
(

resp.
{

1
ρ . . . ρ

ρ

})
,

then
(

1 . . . 1 . . . − . . . αρ + 1
ρ . . . αρ + ρ

ρ . . .
)

∏
ρ6= 1

∏
ρ

=1 (αρ + ρ)

is a class in the cohomology of − which may be evaluated on the fundamental
homology class of − , thus obtaining a characteristic number

(2.2)

(
1 . . . 1 . . . − . . . αρ + 1

ρ . . . αρ + ρ
ρ . . .

)

∏
ρ6= 1

∏
ρ

=1 (αρ + ρ)
[ − ]

which can be considered as an element in the quotient field ofZ2[ 1 . . . ].
Kosniowski and Stong [4] indicated the relation between (2.1) and (2.2).

Theorem 2.1. If ( 1 . . . 1 . . . ) is of degree less than or equal to,
then

( 1 . . . 1 . . . )[ ]

=
∑





∑

=1

(
1 . . . 1 . . . − . . . αρ + 1

ρ . . . αρ + ρ
ρ . . .

)

∏
ρ6= 1

∏
ρ

=1 (αρ + ρ)
[ − ]





in .

3. Proofs of Theorems 1.1 and 1.2

This section is devoted to prove Theorems 1.1 and 1.2.
First, let us begin with the proof of Theorem 1.1.
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Proof of Theorem 1.1. Write =
⊔

=1 with ≥ 1, where each is con-
nected, and let

ν −→ =
⊔

=1

⊕

ρ6= 1

νρ − −→

be the normal bundle to in such that the total class (ν) = 1, and

C = {( ρ2 − . . . ρ2 − ) | = 1 . . . }

the normal dimensional sequence set of . Recall that for (Z2) -actions the equivari-
ant bordism class is determined by the fixed point data, whichconsists of the fixed
point set and subbundles of the normal bundle on which (Z2) has given representa-
tions (see [8]). Thus, if each component of bounds, then (φ ) bounds equiv-
ariantly. In other words, the equivariant bordism class of an (Z2) -action having the
property that each component of the fixed point set has trivial normal bundle is deter-
mined by the bordism class of the fixed point set.

If there exists at least a nonbounding component in , then (φ ) must be non-
bounding. In this case, without loss of generality, one may assume that all compo-
nents 1 . . . of are nonbounding. In fact, if there exist bounding components
in , then one can cancel those bounding components in . This doesn’t change the
(Z2) -action up to equivariant bordism. For< , consider the symmetric polynomial

ω( ) =
∑

1
1 · · ·

whereω = ( 1 . . . ) is a non-dyadic partition of . Then one has that

ω( 1 . . . αρ2 . . . αρ2︸ ︷︷ ︸
ρ2 −

. . . αρ2
. . . αρ2︸ ︷︷ ︸

ρ
2

−

)

=
∑

1
1 · · · + terms of lower degree in ’s

= ω( ) + terms of lower degree in ’s

Since deg ω = < , by Theorem 2.1 one has that

0 = ω( )[ 1]
∏

ρ6= 1α
1
ρ −

ρ

+ · · · + ω( )[ ]
∏

ρ6= 1α
ρ −

ρ

Since each component is nonbounding, one can choose a suitable ω such that for
some 0, the characteristic numberω( )[

0
] is nonzero, so

1
∏

ρ6= 1α
1
ρ −

ρ

. . .
1

∏
ρ6= 1α

ρ −
ρ
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are linearly dependent in the quotient field ofZ2[ 1 . . . ]. Thus, for < , pos-
sesses the linear dependence property.

For = , the dimension of the normal bundle of in is zero, and so in
this case, each element of the normal dimensional sequence set is (0 . . . 0). Thus, for
any symmetric polynomial ω( ) =

∑
1

1 · · · whereω = ( 1 . . . ) with |ω| = ,
by Theorem 2.1, one has that

ω( )[ ] = ω( )[ 1 ] + · · · + ω( )[ ]

so is bordant to . This completes the proof.

NOTE. We see that for < , if (φ ) is nonbounding (i.e., no all components
of are bounding), then the linear dependence makes sure thatis disconnected.
In this case, we claim that all nonbounding components of must be linearly depen-
dent in ∗, where ∗ is the polynomial algebra overZ2 formed by all unoriented
closed manifolds. In fact, if all nonbounding components ofis linearly independent
in ∗, then there exists someω such that for some component

0
, the characteris-

tic number ω( )[
0
] 6= 0, but such the numbers for other components of are zero.

Further, we have from the proof of Theorem 1.1 that

1
∏

ρ6= 1α
0

ρ −
ρ

= 0

This is impossible. Thus, if (φ ) is nonbounding, then all nonbounding components
of with < must be linearly dependent in ∗. This means that the conclu-
sion (1) of Theorem 1.1 is equivalent to the statement that all nonbounding compo-
nents of with < is linearly dependent in ∗.

Next, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Being given a

0 =
− 0⊔

=1

0
− 0 ≥ 1

with each 0 connected and 0 < , and let

C = {( ρ2 − 0
. . . ρ2 − 0

) | = 1 . . . − 0}

the normal dimensional sequence set of0. We suppose inductively that each compo-
nent of bounds if < 0. Thus, up to equivariant bordism, (φ ) is equivariantly
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bordant to an (Z2) -action with fixed point set =
⊔

≥ 0
. Choose

ω( ) =
∑

1
1 · · ·

whereω = ( 1 . . . ) is a non-dyadic partition of 0, then we have that degω = 0,
and for any > 0,

ω( 1 . . . αρ2 . . . αρ2︸ ︷︷ ︸
ρ2 −

. . . αρ2
. . . αρ2︸ ︷︷ ︸

ρ
2

−

)

=
∑

1
1 · · · + terms of lower degree in ’s

= ω( ) + terms of lower degree in ’s

Since the highest degree in ’s ofω( 1 . . . αρ2 . . . αρ2︸ ︷︷ ︸
ρ2 −

. . . αρ2
. . . αρ2︸ ︷︷ ︸

ρ
2

−

) is

0, we have that for any part =
⊔

−

=1 with > 0,

−∑

=1

ω( 1 . . .

ρ2 −︷ ︸︸ ︷
αρ2 . . . αρ2 . . .

ρ
2

−

︷ ︸︸ ︷
αρ2

. . . αρ2
)

∏
ρ6= 1α

ρ −
ρ

[ ] = 0

Furthermore, by Theorem 2.1, we have that

0 = ω( )[ 0
1 ]

∏
ρ6= 1α

1
ρ − 0

ρ

+ · · · + ω( )
[

0
− 0

]

∏
ρ6= 1α

− 0
ρ − 0

ρ

Since 0 possesses the linear independence property, we have that for each , the
characteristic numberω( )[ 0 ] = 0, and so 0 bounds. This completes the induc-
tion, and thus, for < , each component of bounds. For the -dimensional
part of , similarly to the argument of Theorem 1.1, we may obtain that is
bordant to .
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