INTEGRAL GEOMETRY ON SUBMANIFOLDS OF DIMENSION ONE AND CODIMENSION ONE IN THE PRODUCT OF SPHERES

Hong Jae KANG

(Received December 4, 2001)

1. Introduction

Let G be a Lie group and K a closed subgroup of G. Consider two submanifolds in a Riemannian homogeneous space G / K, one fixed and the other moving under g in G. Let the fixed one be M and the moving one be $g N$ and let μ_{G} be the invariant measure on G. By taking the geometric invariant $\operatorname{vol}(M \cap g N)$, volume of the submanifold $M \cap g N$, and integrating with respect to $d \mu_{G}(g)$, we get so called the Poincaré formula. This can be briefly stated as follows.

Let M^{p} and N^{q} be submanifolds of dimensions p and q respectively, in a Riemannian homogeneous space G / K. Then many works in integral geometry have been concerned with computing integrals of the following form

$$
\int_{G} \operatorname{vol}(M \cap g N) d \mu_{G}(g) .
$$

The Poincaré formula means equalities which represent the above integral by some geometric invariants of submanifolds M and N of G / K. For example in the case that G is the group of isometries of Euclidean space \mathbf{R}^{n} and M and N are submanifolds of \mathbf{R}^{n} then the result of above integral leads to formulas of Poincaré, Crofton and other integral geometers (see [6]). Especially R. Howard [1] obtained a Poincaré formula for Riemannian homogeneous spaces as follows:

Let M and N be submanifolds of G / K with $\operatorname{dim} M+\operatorname{dim} N=\operatorname{dim}(G / K)$. Assume that G is unimodular. Then

$$
\begin{equation*}
\int_{G} \sharp(M \cap g N) d \mu_{G}(g)=\iint_{M \times N} \sigma_{K}\left(T_{x}^{\perp} M, T_{y}^{\perp} N\right) d \mu_{M \times N}(x, y), \tag{1.1}
\end{equation*}
$$

where $\sharp(X)$ denotes the number of elements in a set X and $\sigma_{K}\left(T_{x}^{\perp} M, T_{y}^{\perp} N\right)$ is defined by (2.1) in Section 2.

[^0]The formula (1.1) holds under the general situation. However, it is difficult to give an explicit description through the concrete computation of $\sigma_{K}\left(T_{x}^{\perp} M, T_{y}^{\perp} N\right)$, and only a little is known about it ([2], [3], [7]). In the present paper, we attempt to explicitly describe this formula for submanifolds of dimension and codimension one in the product of arbitrary dimensional unit spheres. More precisely,

Theorem 1.1. Let M be a submanifold of $S^{m+1} \times S^{n+1}$ of dimension 1 and N a submanifold of codimension 1 . Assume that for almost all $g \in G, M$ and $g N$ intersect transversely. For any point $x \in M$ (resp. $y \in N$), $\sin \theta_{x}$ and $\cos \theta_{x}$ (resp. $\sin \tau_{y}, \cos \tau_{y}$) denote length of the first and second component of unit vector $u_{x}=\left(u_{1}, u_{2}\right)$ (resp. $v_{y}=$ $\left.\left(v_{1}, v_{2}\right)\right)$ of $T_{x} M$ (resp. $T_{y}^{\perp} N$), respectively. Then we have

$$
\begin{aligned}
& \int_{S O(m+2) \times S O(n+2)} \sharp(M \cap g N) d \mu_{S O(m+2) \times S O(n+2)}(g) \\
= & 2 \operatorname{vol}(S O(m+1) \times S O(n+1)) \iint_{M \times N} \sigma(x, y) d \mu_{M \times N}(x, y)
\end{aligned}
$$

where

$$
\sigma(x, y)= \begin{cases}\frac{c_{x y} \operatorname{vol}\left(S^{n-1}\right)}{n \operatorname{vol}\left(S^{n}\right)} F\left(-\frac{1}{2},-\frac{n}{2}, \frac{1+m}{2}, \frac{s_{x y}^{2}}{c_{x y}^{2}}\right), & \text { if } s_{x y} \leq c_{x y} \\ \frac{s_{x y} \operatorname{vol}\left(S^{m-1}\right)}{m \operatorname{vol}\left(S^{m}\right)} F\left(-\frac{1}{2},-\frac{m}{2}, \frac{1+n}{2}, \frac{c_{x y}^{2}}{s_{x y}^{2}}\right), & \text { if } s_{x y} \geq c_{x y}\end{cases}
$$

Here $F(a, b, c ; x)$ is the Gauss hypergeometric function, and $s_{x y}=\sin \theta_{x} \sin \tau_{y}$ and $c_{x y}=\cos \theta_{x} \cos \tau_{y}$.

2. Preliminaries

In this section we shall review the Poincaré formula on Riemannian homogeneous spaces given by R. Howard [1] and recall the Gauss hypergeometric function.

Let E be a finite dimensional real vector space with an inner product. For vector subspaces V and W with orthonormal bases v_{1}, \ldots, v_{p} and w_{1}, \ldots, w_{q} respectively, we define $\sigma(V, W)$ by

$$
\sigma(V, W)=\left|v_{1} \wedge \cdots \wedge v_{p} \wedge w_{1} \wedge \cdots \wedge w_{q}\right| .
$$

This definition is independent of the choice of orthonormal bases. Furthermore, if $p+$ $q=\operatorname{dim} E$ then

$$
\sigma(V, W)=\sigma\left(V^{\perp}, W^{\perp}\right)
$$

Let G be a Lie group and K a closed subgroup of G. We assume that G has a left invariant Riemannian metric that is also invariant under the right actions of ele-
ments of K. This metric induces a G-invariant Riemannian metric on G / K. We denote by o the origin of G / K. If $x, y \in G / K$ and V is a vector subspace of $T_{x}(G / K)$ and W is a vector subspace of $T_{y}(G / K)$ then define $\sigma_{K}(V, W)$ by

$$
\begin{equation*}
\sigma_{K}(V, W)=\int_{K} \sigma\left(\left(d g_{x}\right)_{o}^{-1} V, d k_{o}^{-1}\left(d g_{y}\right)_{o}^{-1} W\right) d \mu_{K}(k) \tag{2.1}
\end{equation*}
$$

where g_{x} and g_{y} are elements of G such that $g_{x} O=x$ and $g_{y} o=y$. This definition is independent of the choice of g_{x} and g_{y} in G such that $g_{x} o=x$ and $g_{y} o=y$.

We list here the basic properties of the Gauss hypergeometric function that are needed in this paper only. For further details see [4].

The Gauss hypergeometric series, convergent for $|z|<1$, is given by the power series

$$
\begin{equation*}
F(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{\Gamma(a+n)}{\Gamma(a)} \cdot \frac{\Gamma(b+n)}{\Gamma(b)} \cdot \frac{\Gamma(c)}{\Gamma(c+n)} \cdot \frac{z^{n}}{n!}, \tag{2.2}
\end{equation*}
$$

where Γ is the gamma function. By analytic continuation $F(a, b, c ; z)$ can be extended to define a function analytic and single-valued in the complex z plane cut along the positive real axis from 1 to ∞. We remark that above series reduces to a polynomial of degree n in z when a or b is equal to $-n,(n=0,1,2, \ldots)$. The series (2.2) is not defined when c is equal to $-m,(m=0,1,2, \ldots)$, provided a or b is not a negative integer n with $n<m$. The hypergeometric equation

$$
z(1-z) \frac{d^{2} u}{d z^{2}}+(c-(a+b+1) z) \frac{d u}{d z}-a b u=0
$$

has the solution $u=F(a, b, c ; z)$.
The six functions $F(a \pm 1, b, c ; z), F(a, b \pm 1, c ; z)$ and $F(a, b, c \pm 1 ; z)$ are called contiguous to $F(a, b, c ; z)$. Relations between $F(a, b, c ; z)$ and any two contiguous functions have been given by Gauss. By repeated application of these relations the function $F(a+m, b+n, c+l ; z)$ with integer m, n, l can be expressed as a linear combination of $F(a, b, c ; z)$ and one of its contiguous functions with coefficients which are rational functions of a, b, c, z. For examples,

$$
\begin{align*}
a z F(a+1, b+1, c+1 ; z) & =c[F(a, b+1, c ; z)-F(a, b, c ; z)], \tag{2.3}\\
(c-1) F(a, b, c-1 ; z) & =(c-a-1) F(a, b, c ; z)+a F(a+1, b, c ; z) .
\end{align*}
$$

Among the special cases are

$$
\begin{align*}
(1-z)^{t} & =F(-t, b, b ; z), \tag{2.4}\\
\arcsin x & =x F\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; z^{2}\right) . \tag{2.5}
\end{align*}
$$

Furthermore C.F. Gauss evaluated, for $\Re(c-a-b)>0$,

$$
\begin{equation*}
F(a, b, c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)} . \tag{2.6}
\end{equation*}
$$

In this paper, we may consider only when z is a real number.

3. Proof of Theorem $\mathbf{1 . 1}$

Let S^{m} be the unit sphere of dimension m. The special orthogonal group $S O(m+1)$ acts transitively on S^{m}. The isotropy subgroup of $S O(m+1)$ at a point in S^{m} is $S O(m)$. Thus $S^{m+1} \times S^{n+1}$ can be realized as a homogeneous space $(S O(m+2) \times$ $S O(m+2)) /(S O(m+1) \times S O(m+1))$. We have set, to simplify notation,

$$
G=S O(m+2) \times S O(m+2), \quad K=S O(m+1) \times S O(m+1)
$$

Let $\mathfrak{g}=\mathfrak{s o}(m+2) \times \mathfrak{s o}(m+2)$ be the Lie algebra of G. Define an inner product on \mathfrak{g} by

$$
(X, Y)=-\frac{1}{2} \operatorname{Trace}(X Y) \quad(X, Y \in \mathfrak{g})
$$

We extend this inner product (\cdot, \cdot) on \mathfrak{g} to the left invariant Riemannian metric on G. Then we obtain a bi-invariant Riemannian metric on G. This bi-invariant Riemannian metric on G induces a G-invariant Riemannian metric on $G / K=S^{m+1} \times S^{n+1}$.

Let M be a submanifold of $S^{m+1} \times S^{n+1}$ of dimension one and N a submanifold of codimension one. By the formula (1.1), we have

$$
\begin{equation*}
\int_{G} \sharp(M \cap g N) d \mu_{G}(g)=\iint_{M \times N} \sigma_{K}\left(T_{x} M, T_{y} N\right) d \mu_{M \times N}(x, y) . \tag{3.1}
\end{equation*}
$$

Let $u_{x}=\left(u_{1}, u_{2}\right)$ and $v_{y}=\left(v_{1}, v_{2}\right)$ be unit vectors of $T_{x} M$ and $T_{y}^{\perp} N$ respectively. By the action of K, we can transport u_{x} to $\left(\left(\sin \theta_{x}, 0, \ldots, 0\right),\left(\cos \theta_{x}, 0, \ldots, 0\right)\right)$ and v_{y} to $\left(\left(\sin \tau_{y}, 0, \ldots, 0\right),\left(\cos \tau_{y}, 0, \ldots, 0\right)\right)$ respectively. Let e_{1}, \ldots, e_{m+n+2} be the standard orthonormal basis of \mathbf{R}^{m+n+2}. Thus we can take

$$
\left(-\cos \tau_{y} e_{1}+\sin \tau_{y} e_{m+2}\right), e_{2}, \ldots, e_{m+1}, e_{m+3}, \ldots, e_{m+n+2}
$$

as an orthonormal basis of $T_{y} N$. We can simply write

$$
\sigma\left(\theta_{x}, \tau_{y}\right)=\sigma_{K}\left(T_{x} M, T_{y} N\right)
$$

since $\sigma_{K}\left(T_{x} M, T_{y} N\right)$ is dependent only on θ_{x} and τ_{y}. Then we have

$$
\sigma\left(k^{-1} T_{x} M, T_{y} N\right)
$$

$$
\begin{aligned}
& =\left|\left(\sin \theta_{x} e_{1}+\cos \theta_{x} e_{m+2}\right) k \wedge\left(-\cos \tau_{y} e_{1}+\sin \tau_{y} e_{m+2}\right) \wedge \hat{e}_{1, m+2}\right| \\
& =\left|\sin \theta_{x} \sin \tau_{x} k_{11}+\cos \theta_{y} \cos \tau_{y} k_{m+2 m+2}\right|,
\end{aligned}
$$

where

$$
\hat{e}_{1, m+2}=e_{2} \wedge \cdots \wedge e_{m+1} \wedge e_{m+3} \wedge \cdots \wedge e_{m+n+2}
$$

and

$$
k=\left[\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right] \in S O(m+1) \times S O(n+1) .
$$

For simplicity of writing we put $\sin \theta \sin \tau=s$ and $\cos \theta \cos \tau=c$. Then we get

$$
\sigma(\theta, \tau)=\iint_{K}\left|s k_{11}+c k_{m+2 m+2}\right| d \mu_{K}(k)
$$

We now have to compute following:

$$
\begin{equation*}
\int_{S O(m+1)} \int_{S O(n+1)}\left|t k_{11}+g_{11}\right| d \mu_{S O(n+1)}(g) d \mu_{S O(m+1)}(k) \tag{3.2}
\end{equation*}
$$

We here give the following lemma to compute the above integral.
Lemma 3.1. If $|\alpha| \leq 1$ then

$$
\int_{S^{n}}\left|\alpha+x_{1}\right| d \mu_{S^{n}}(x)=2 \operatorname{vol}\left(S^{n-1}\right)\left\{\frac{1}{n}{\sqrt{1-\alpha^{2}}}^{n}+\alpha^{2} F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3}{2} ; \alpha^{2}\right)\right\} .
$$

Proof. Define a mapping $\phi:(-1,1) \times S^{n-1} \rightarrow S^{n}$ by

$$
\left(t, x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \mapsto\left(t, \sqrt{1-t^{2}} x\right) .
$$

Using ϕ as a variable transformation we have

$$
\begin{aligned}
\int_{S^{n}}\left|\alpha-x_{1}\right| d \mu_{S^{n}}(x) & =\int_{-1}^{1} \int_{S^{n-1}}|\alpha-t|{\sqrt{1-t^{2}}}^{n-2} d \mu_{S^{n-1}}(x) d t \\
& =\operatorname{vol}\left(S^{n-1}\right) \int_{-1}^{1}|\alpha-t|{\sqrt{1-t^{2}}}^{n-2} d t
\end{aligned}
$$

Here $\operatorname{vol}\left(S^{n}\right)$ is the surface area of the n-dimensional unit sphere and its value is

$$
\operatorname{vol}\left(S^{n}\right)=\frac{2 \pi^{(n+1) / 2}}{\Gamma((n+1) / 2)},
$$

where Γ denotes the gamma function. By a simple calculation, we have

$$
\int{\sqrt{1-x^{2}}}^{n} d x=x F\left(\frac{1}{2},-\frac{n}{2}, \frac{3}{2} ; x^{2}\right) .
$$

Hence we obtain

$$
\int_{-1}^{1}|\alpha-t|{\sqrt{1-t^{2}}}^{n-2} d t=\frac{2}{n}{\sqrt{1-\alpha^{2}}}^{n}+2 \alpha^{2} F\left(\frac{1}{2}, 1-\frac{n}{2} ; \frac{3}{2} ; \alpha^{2}\right),
$$

which implies Lemma 3.1.
We first consider the case where $0 \leq t \leq 1$ in (3.2). Then we have

$$
\begin{align*}
& \int_{S O(n+1)}\left|t k_{11}+g_{11}\right| d \mu_{S O(n+1)}(g) \\
= & \operatorname{vol}(S O(n)) \int_{S^{n}}\left|t k_{11}+x_{1}\right| d \mu_{S^{n}}(x) \tag{3.3}\\
= & 2 \operatorname{vol}(S O(n)) \operatorname{vol}\left(S^{n-1}\right) \\
& \times\left\{\frac{1}{n} \sqrt{1-t^{2}\left(k_{11}\right)^{2}} n+t^{2}\left(k_{11}\right)^{2} F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3}{2}, t^{2}\left(k_{11}\right)^{2}\right)\right\} . \tag{3.4}
\end{align*}
$$

Equality (3.3) follows from the fibering of $S O(n+1)$ over S^{n} with the fiber $S O(n)$, and (3.4) follows from Lemma 3.1.

Notice

$$
\begin{equation*}
\int_{0}^{\pi} \sin x d x \int_{0}^{\pi} \sin ^{2} x d x \cdots \int_{0}^{\pi} \sin ^{m} x d x=\frac{\operatorname{vol}\left(S^{m+1}\right)}{2 \pi}=\frac{\operatorname{vol}\left(S^{m-1}\right)}{m}, \tag{3.5}
\end{equation*}
$$

then, using spherical coordinate transformation, the integral of the first term in (3.4) over $S O(m+1)$ is as follows:

$$
\begin{aligned}
& \int_{S O(m+1)}{\sqrt{1-t^{2}\left(k_{11}\right)^{2}}}^{n} d \mu_{S O(m+1)}(k) \\
= & \operatorname{vol}(S O(m)) \int_{S^{m}}{\sqrt{1-t^{2}\left(x_{1}\right)^{2}}}^{n} d \mu_{S^{m}}(x) \\
= & 2 \operatorname{vol}(S O(m)) \operatorname{vol}\left(S^{m-1}\right) \int_{0}^{\pi / 2}{\sqrt{1-t^{2} \cos ^{2} \theta_{1}}}^{n} \cdot \sin ^{m-1} \theta_{1} d \theta_{1} \\
= & 2 \operatorname{vol}(S O(m)) \operatorname{vol}\left(S^{m-1}\right) \int_{0}^{1}{\sqrt{1-t^{2} x^{2}}}^{n} \cdot{\sqrt{1-x^{2}}}^{m-2} d x .
\end{aligned}
$$

In the last integral,

$$
\int_{0}^{1}{\sqrt{1-x^{2}}}^{m-2} d x
$$

is an Euler beta function. Hence it can be evaluated in terms of gamma function, and we find that

$$
\begin{equation*}
\int_{0}^{1}{\sqrt{1-x^{2}}}^{m-2} d x=\frac{\operatorname{vol}\left(S^{m}\right)}{2 \operatorname{vol}\left(S^{m-1}\right)} \tag{3.6}
\end{equation*}
$$

By (3.6) and integration by part, for any even number l we obtain

$$
\int_{0}^{1} x^{l}{\sqrt{1-x^{2}}}^{m-2} d x=\frac{(l-1)!!(m-1)!!}{(m+l-1)!!} \cdot \frac{\operatorname{vol}\left(S^{m}\right)}{2 \operatorname{vol}\left(S^{m-1}\right)}
$$

where

$$
m!!= \begin{cases}m(m-2) \cdots 4 \cdot 2, & m: \text { even; } \\ m(m-2) \cdots 3 \cdot 1, & m: \text { odd }\end{cases}
$$

And by (2.4) we have

$$
{\sqrt{1-t^{2} x^{2}}}^{n}=F\left(-\frac{n}{2}, 1,1 ; t^{2} x^{2}\right) .
$$

So we obtain

$$
\int_{0}^{1}{\sqrt{1-t^{2} x^{2}}}_{n}^{n}{\sqrt{1-x^{2}}}^{m-2} d x=\frac{\operatorname{vol}\left(S^{m}\right)}{2 \operatorname{vol}\left(S^{m-1}\right)} \cdot F\left(\frac{1}{2},-\frac{n}{2}, \frac{1+m}{2} ; t^{2}\right) .
$$

Hence we have

$$
\begin{align*}
& \int_{S O(m+1)}{\sqrt{1-t^{2}\left(k_{11}\right)^{2}}}^{n} d \mu_{S O(m+1)}(k) \tag{3.7}\\
= & \operatorname{vol}(S O(m)) \operatorname{vol}\left(S^{m}\right) F\left(\frac{1}{2},-\frac{n}{2}, \frac{1+m}{2} ; t^{2}\right) .
\end{align*}
$$

On the other hand, the integral of the second term in (3.4) on $S O(m+1)$ is as follows:

$$
\begin{aligned}
& \int_{S O(m+1)}\left(k_{11}\right)^{2} F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3}{2} ; t^{2}\left(k_{11}\right)^{2}\right) d \mu_{S O(m+1)}(k) \\
= & \operatorname{vol}(S O(m)) \int_{S^{m}}\left(x_{1}\right)^{2} F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3}{2} ; t^{2}\left(x_{1}\right)^{2}\right) d \mu_{S^{m}}(x) .
\end{aligned}
$$

Using again spherical coordinate transformation we get

$$
\begin{aligned}
& \int_{S^{m}}\left(x_{1}\right)^{2} F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3}{2} ; t^{2}\left(x_{1}\right)^{2}\right) d \mu_{S^{m}}(x) \\
= & 2 \operatorname{vol}\left(S^{m-1}\right) \int_{0}^{1} x^{2}{\sqrt{1-x^{2}}}^{m-2} F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3}{2} ; t^{2} x^{2}\right) d x .
\end{aligned}
$$

Let $a_{n} x^{2 n}$ be a general term of the series $F\left(1 / 2,1-n / 2,3 / 2 ; t^{2} x^{2}\right)$. Then we arrive at the relation

$$
F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3}{2} ; t^{2} x^{2}\right)=1+b_{1} \cdot \frac{t^{2} x^{2}}{1!}+b_{2} \cdot \frac{t^{4} x^{4}}{2!}+\cdots+b_{n} \cdot \frac{t^{2 n} x^{2 n}}{n!}+\cdots,
$$

where $b_{n}=n!a_{n}$. Since

$$
\int_{0}^{1} x^{2}{\sqrt{1-x^{2}}}^{m-2} d x=\frac{1}{m+1} \cdot \frac{\operatorname{vol}\left(S^{m}\right)}{2 \operatorname{vol}\left(S^{m-1}\right)}
$$

we have

$$
\begin{aligned}
& \int_{0}^{1} x^{2}{\sqrt{1-x^{2}}}^{m-2} F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3}{2} ; t^{2} x^{2}\right) d x \\
= & \frac{\operatorname{vol}\left(S^{m}\right)}{2(m+1) \operatorname{vol}\left(S^{m-1}\right)} \cdot F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3+m}{2} ; t^{2}\right) .
\end{aligned}
$$

So we obtain

$$
\begin{align*}
& \int_{S O(m+1)}\left(k_{11}\right)^{2} F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3}{2} ; t^{2}\left(k_{11}\right)^{2}\right) d \mu_{S O(m+1)}(k) \tag{3.8}\\
= & \operatorname{vol}(S O(m)) \operatorname{vol}\left(S^{m}\right) \cdot \frac{1}{m+1} \cdot F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3+m}{2} ; t^{2}\right) .
\end{align*}
$$

A simple calculation shows that

$$
\begin{aligned}
& F\left(\frac{1}{2},-\frac{n}{2}, \frac{1+m}{2} ; t^{2}\right)+\frac{n t^{2}}{m+1} F\left(\frac{1}{2}, 1-\frac{n}{2}, \frac{3+m}{2} ; t^{2}\right) \\
= & F\left(-\frac{1}{2},-\frac{n}{2}, \frac{1+m}{2} ; t^{2}\right) .
\end{aligned}
$$

As the result, from (3.7), (3.8) and the last equality, we have

$$
\begin{aligned}
& \int_{S O(m+1)} \int_{S O(n+1)}\left|t k_{11}+g_{11}\right| d \mu_{S O(n+1)}(g) d \mu_{S O(m+1)}(k) \\
= & \frac{2 \operatorname{vol}(K) \operatorname{vol}\left(S^{n-1}\right)}{n \operatorname{vol}\left(S^{n}\right)} F\left(-\frac{1}{2},-\frac{n}{2}, \frac{1+m}{2} ; t^{2}\right) .
\end{aligned}
$$

It remains to compute the case where $t \geq 1$ of (3.2). In this case we may compute the following:

$$
t \int_{S O(m+1)} \int_{S O(n+1)}\left|k_{11}+\frac{1}{t} g_{11}\right| d \mu_{S O(n+1)}(g) d \mu_{S O(m+1)}(k)
$$

This integration is nothing but (3.2) which replace m with n. Hence we immediately obtain

$$
t \cdot \frac{2 \operatorname{vol}(K) \operatorname{vol}\left(S^{m-1}\right)}{m \operatorname{vol}\left(S^{m}\right)} F\left(-\frac{1}{2},-\frac{m}{2}, \frac{1+n}{2} ; \frac{1}{t^{2}}\right) .
$$

Therefore we have

$$
\sigma(\theta, \tau)= \begin{cases}2 \operatorname{vol}(K) c \cdot \frac{\operatorname{vol}\left(S^{n-1}\right)}{n \operatorname{vol}\left(S^{n}\right)} F\left(-\frac{1}{2},-\frac{n}{2}, \frac{1+m}{2}, \frac{s^{2}}{c^{2}}\right), & \text { if } s \leq c \\ 2 \operatorname{vol}(K) s \cdot \frac{\operatorname{vol}\left(S^{m-1}\right)}{m \operatorname{vol}\left(S^{m}\right)} F\left(-\frac{1}{2},-\frac{m}{2}, \frac{1+n}{2}, \frac{c^{2}}{s^{2}}\right), & \text { if } s \geq c\end{cases}
$$

which implies Theorem 1.1.
Up to this point, we unrestrainedly used the notation $\operatorname{vol}(S O(n+1))$ the volume of the special orthogonal group $S O(n+1)$. This value is given by

$$
\operatorname{vol}(S O(n+1))=\operatorname{vol}(S O(n)) \cdot \operatorname{vol}\left(S^{n}\right)
$$

Example. The case where $m=n=1$ in (3.2).
It is well known that

$$
K(k)=\frac{\pi}{2} F\left(\frac{1}{2}, \frac{1}{2}, 1 ; k^{2}\right), \quad E(k)=\frac{\pi}{2} F\left(-\frac{1}{2}, \frac{1}{2}, 1 ; k^{2}\right),
$$

where $K(k)$ and $E(k)$ are the complete elliptic integrals of the first and second kind respectively. By a simple calculation we have

$$
K(k)-E(k)=\frac{\pi}{4} k^{2} F\left(\frac{1}{2}, \frac{3}{2}, 2 ; k^{2}\right)
$$

Hence, for $0<t<1$, we have

$$
\begin{aligned}
\sigma(\theta, \tau) & =2 c \operatorname{vol}(S O(2))^{2} \cdot \frac{\operatorname{vol}\left(S^{0}\right)}{\operatorname{vol}\left(S^{1}\right)} \cdot F\left(-\frac{1}{2},-\frac{1}{2}, 1 ; t^{2}\right) \\
& =16 c\left(2 E(t)-\left(1-t^{2}\right) K(t)\right)
\end{aligned}
$$

Remark. Let $M=S^{1}$ and $N=S^{m} \times S^{n+1}$ in Theorem 1.1. Then, for almost all $g \in G=S O(m+2) \times S O(n+2)$, we have $\sharp(M \cap g N)=2$. Thus we have

$$
\int_{G} \sharp(M \cap g N) d \mu_{G}(g)=2 \operatorname{vol}(G) .
$$

Finally we can give the following inequalities as an application of the integral formula in Theorem 1.1.

Corollary 3.2. Put $G=S O(m+2) \times S O(n+2)$. Under the hypothesis of Theorem 1.1:
(1) If $N=S^{m} \times S^{n+1}$ then we have

$$
\frac{1}{\operatorname{vol}(G)} \int_{G} \sharp(M \cap g N) d \mu_{G}(g) \leq 2 \cdot \frac{\operatorname{vol}(M)}{\operatorname{vol}\left(S^{1}\right)} .
$$

The inequality becomes an equality if and only if M is a curve in S^{m+1}.
(2) If $M=S^{1}\left(\subset S^{m+1}\right)$ then we have

$$
\frac{1}{\operatorname{vol}(G)} \int_{G} \sharp(M \cap g N) d \mu_{G}(g) \leq 2 \cdot \frac{\operatorname{vol}(N)}{\operatorname{vol}\left(S^{m} \times S^{n+1}\right)} .
$$

The equality holds if and only if N is a submanifold of $L \times S^{n+1}$. Here L is a submanifold in S^{m+1}.

Proof. (1) In this case we can take $\sin \theta_{x} e_{1}+\cos \theta_{x} e_{m+2}$ and e_{2}, \ldots, e_{m+n+2} as an orthonormal basis of $T_{x} M$ and $T_{y} N$ respectively. Here e_{1}, \ldots, e_{m+n+2} is the standard orthonormal basis of \mathbf{R}^{m+n+2}. Hence we obtain

$$
\sigma(x, y)=\frac{\operatorname{vol}\left(S^{m-1}\right)}{m \operatorname{vol}\left(S^{m}\right)} \sin \theta_{x} .
$$

We therefore have

$$
\begin{aligned}
\int_{G} \sharp(M \cap g N) d \mu_{G}(g) & =2 \operatorname{vol}(K) \frac{\operatorname{vol}\left(S^{m-1}\right)}{m \operatorname{vol}\left(S^{m}\right)} \operatorname{vol}(N) \int_{M} \sin \theta_{x} d \mu_{M}(x) \\
& =\operatorname{vol}(G) \cdot \frac{1}{\pi} \int_{M} \sin \theta_{x} d \mu_{M}(x) .
\end{aligned}
$$

(2) In this case we can obtain

$$
\sigma(x, y)=\frac{\operatorname{vol}\left(S^{m-1}\right)}{m \operatorname{vol}\left(S^{m}\right)} \sin \tau_{y} .
$$

This, by a computation similar to that in (1), completes the proof.

References

[1] R. Howard: The kinematic formula in Riemannian homogeneous spaces, Mem. Amer. Math. Soc. 106 (1993), vi+69.
[2] H.J. Kang and H. Tasaki: Integral geometry of real surfaces in complex projective spaces, Tsukuba J. Math. 25 (2001), 155-164.
[3] H.J. Kang and H. Tasaki: Integral geometry of real surfaces in the complex projective plane, Geom. Dedicata 90 (2002), 99-106.
[4] W. Miller, Jr.: Lie Theory and Special Functions, Academic Press, New York, 1968.
[5] L.A. Santaló: Integral geometry in Hermitian spaces, Amer. J. Math. 74 (1952), 423-434.
[6] L.A. Santaló: Integral Geometry and Geometric Probability, Addison-Wesley, London, 1977.
[7] H. Tasaki: Generalization of Kähler angle and integral geometry in complex projective spaces, Steps in Differential Geometry (Debrecen, 2000), 349-361, Inst. Math. Inform., 2001.
[8] H. Tasaki: Integral Geometry under the action of the first symplectic group, Archiv der Mathematik 80 (2003), 106-112.
[9] H. Umemura: Theory of Elliptic Functions: Analysis of Elliptic Curves (in Japanese), University of Tokyo Press, 2000.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki
305-8571, Japan
e-mail: kang@math.tsukuba.ac.jp
Current address:
Major in Mathematics
Dong-A University
Saha-ku, Busan
604-714, Korea

[^0]: The author was supported by grant Proj. No. R14-2002-003-01000-0 from Korea Science and Engineering Foundation.

