ON THE IDEAL CLASS GROUPS OF RAY CLASS FIELDS OF ALGEBRAIC NUMBER FIELDS

HIROYUKI OSADA

(Received June 8, 2001)

For an algebraic number field k, C(k) and \tilde{k} denote the ideal class group and the Hilbert class field of k, respectively. For an abelian group G and an integer m, G^m means the subgroup of G consisting of m-th powers of the elements of G. Let h(k), R(k) and D(k) be the class number, the regulator and the absolute value of the discriminant of k, respectively. For an integer m>1, k_m denotes the class field of k corresponding to ray modulo m. Let ζ_m be a primitive m-th root of unity. Let q be a prime and k/Q be a real cyclic extension of degree q. Let m be the conductor of k. In the paper [5], we showed that $C(Q(\zeta_m + \zeta_m^{-1}))$ has a subgroup which is isomorphic to $C(k)^q$. In this paper we generalize the above result in Theorem 1. And we show that for any given integer n>1, there exist infinitely many mutually prime positive integers m such that

- (1) m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),
- (2) $C(Q(\zeta_m + \zeta_m^{-1}))$ has a subgroup which is isomorphic to Z/A_mZ for some integer $A_m > n$

(Corollary of Theorem 3). Further we give some applications of the following Theorem 1.

Theorem 1. Let L/k be an abelian extension and K be a subfield of L such that K/k is an extension of degree n. Then C(L) has a subgroup which is isomorphic to $C(K)^{nh(k)}$.

Proof. By Galois theory, we have the following exact sequence

$$\operatorname{Gal}(\tilde{L}/L) \to \operatorname{Gal}(\tilde{K}/K) \to \operatorname{Gal}(L \cap \tilde{K}/K) \to 0.$$

Hence by class field theory, we have the following exact sequence

$$C(L)^{N_{L/K}} \to C(K)^f \to \operatorname{Gal}(L \cap \tilde{K}/K) \to 0$$
,

where $N_{L/K}$ is the norm map from C(L) to C(K). Now we write the class groups additively. Let $x \in C(K)$ and G = Gal(K/k). Since $h(k) \cdot C(k) = 0$, we have that

2 H. OSADA

 $\sum_{\sigma \in G} \sigma(h(k)x) = 0$. Hence $nh(k)x = nh(k)x - \sum_{\sigma \in G} \sigma(h(k)x) = \sum_{\sigma \in G} (1-\sigma)h(k)x$. Since $L \cap \tilde{K}/k$ is an abelian extension, the group G acts trivially on $\operatorname{Gal}(L \cap \tilde{K}/K)$ by conjugation. From the G-homomorphism f maps each $(1-\sigma)h(k)x$ to 0, it follows that f(nh(k)x) = 0. By exactness, we see that the image C(L) contains nh(k)x. Since $N_{L/K}(C(L))$ has a subgroup $C(K)^{nh(k)}$, we see that C(L) has a subgroup which is isomorphic to $C(K)^{nh(k)}$. This completes the proof.

EXAMPLE. Let $K = Q(\sqrt{145})$ and $L = Q(\zeta_{145} + \zeta_{145}^{-1})$. By C(K) is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ and Theorem 1, we see that C(L) has a subgroup which is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. And we see that $L \cap \tilde{K} = Q(\sqrt{5}, \sqrt{29})$.

Lemma 1. For any given integer r > 1, let q_i $(1 \le i \le r - 1)$ be odd primes such that $q_1 < q_2 < \cdots < q_{r-1}$. Let $n > q_1$ be an integer and $m = (2nq_1q_2 \cdots q_{r-1})^2 + 1$. If m is a square-free integer, then $C(Q(\sqrt{m}))$ has a subgroup which is isomorphic to Z/S_mZ for some integer $S_m > r$.

Proof. Let $F = Q(\sqrt{m})$ and $u = 2nq_1q_2\cdots q_{r-1}$. Since $n > q_1$ and $q_1 < q_2 < \cdots < q_{r-1}$, we see that $q_1^r < u/2$. Since $m \equiv 1 \pmod{q_1}$, we have that $(q_1) = \beta\beta'$ and $\beta \neq \beta'$, where β and β' are prime ideals in β . Now we assume that β is a principal ideal in β for some positive integer β . Then there exist integers β and β such that

$$\beta^s = \left(\frac{x + y\sqrt{m}}{2}\right) \quad \text{and} \quad x \equiv y \pmod{2}.$$

Hence we have

$$q_1^s = \left| \frac{x^2 - y^2 m}{4} \right|,$$

that is,

$$\pm 4q_1^s = x^2 - y^2m.$$

If y = 0, then we have $x^2 = 4q_1^s$. Hence s is necessarily 2t for some integer t. Since $x = \pm 2q_1^t$, we have

$$\beta^{2t} = (q_1^t) = \beta^t \beta'^t.$$

Therefore we have $\beta = \beta'$. This contradicts $\beta \neq \beta'$. Hence we have $y \neq 0$. Let x_0 be an integer and y_0 be the smallest positive integer satisfying

$$\beta^s = \left(\frac{x_0 + y_0 \sqrt{m}}{2}\right),\,$$

that is,

$$\beta^s = \left(\frac{\pm |x_0| + y_0 \sqrt{m}}{2}\right).$$

Let $\varepsilon = \pm u + \sqrt{m}$. Since ε are units of F, we have

$$\mathcal{B}^{s} = \left(\frac{(\pm |x_0| + y_0 \sqrt{m})(\mp u + \sqrt{m})}{2}\right),\,$$

that is,

$$\beta^{s} = \left(\frac{-|x_{0}|u + y_{0}m \pm (|x_{0}| - y_{0}u)\sqrt{m}}{2}\right).$$

From $||x_0| - y_0u| > 0$ and the definition of y_0 , we have

$$||x_0| - y_0 u| \ge y_0$$
.

Hence either $|x_0| - y_0u \ge y_0$ or $-|x_0| + y_0u \ge y_0$. So either

$$\pm 4q_1^s = x_0^2 - y_0^2 m \ge y_0^2 (u+1)^2 - y_0^2 (u^2+1) = 2uy_0^2 \ge 2u$$
.

or

$$\pm 4q_1^s = x_0^2 - y_0^2 m \le y_0^2 (u - 1)^2 - y_0^2 (u^2 + 1) = -2uy_0^2 \le -2u.$$

Therefore in each case $4q_1^s \ge 2u$, that is, $q_1^s \ge u/2$. If $r \ge s$, then this contradicts $q_1^r < u/2$. So if $r \ge s$, \mathcal{B}^s is not a principal ideal in F. Now we assume that $t = S_m$ is the smallest positive integer such that \mathcal{B}^t is a principal ideal in F. From the above argument, we see that C(F) has a subgroup which is isomorphic to Z/S_mZ for some integer $S_m > r$. This completes the proof.

Lemma 2. Let $G(n) = an^2 + bn + c$ be an irreducible polynomial with a > 0 and $c \equiv 1 \pmod{2}$. Then there exist infinitely many integers n such that G(n) has at most two prime factors (see Iwaniec [2, Theorem]).

Theorem 2. For any given integer r > 1, there exist infinitely many mutually prime positive integers m such that

- (1) m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),
- (2) $C(Q(\sqrt{m}))$ has a subgroup which is isomorphic to Z/S_mZ for some integer $S_m > r$.

Proof. For any given integer r > 1, let $m = (2nq_1q_2 \cdots q_{r-1})^2 + 1$, where $q_i(1 \le i \le r-1)$ are odd primes such that $q_1 < q_2 < \cdots < q_{r-1}$ and $n > q_1$ is an integer.

4 H. Osada

Then by Lemma 2, there exist infinitely many integers n such that m has at most two different prime factors. It is easy to see that any prime factor of m is congruent to 1 (mod 4). Hence by Lemma 1, we have this theorem.

Theorem 3. Let k be an algebraic number field. Then for any given integer n > 1, there exist infinitely many mutually prime positive integers m such that

- (1) m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),
- (2) $C(k_m)$ has a subgroup which is isomorphic to $\mathbb{Z}/A_m\mathbb{Z}$ for some integer $A_m > n$.

Proof. By Theorem 2, for any given integer r > 1, there exists a positive integer m such that

- (1) m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),
- (2) $C(Q(\sqrt{m}))$ has a subgroup which is isomorphic to Z/S_mZ for some integer $S_m > r$.

Let $F = Q(\sqrt{m})$, (D(k), m) = 1 and K = kF. Then C(K) has a subgroup which is isomorphic to C(F). By k_m contains K, [K:k] = 2 and Theorem 1, we see that $C(k_m)$ has a subgroup which is isomorphic to $C(K)^{2h(k)}$. Hence by Theorem 2, for any given integer r > 1, there exist infinitely many mutually prime positive integers m such that (1) m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),

(2) $C(k_m)$ has a subgroup which is isomorphic to $2h(k)(Z/S_mZ)$ for some integer $S_m > r$.

Let $r \ge 2nh(k)$ for any given integer n > 1 and $2h(k)(Z/S_mZ) = Z/A_mZ$. Then we have $A_m > n$. Thus this theorem is proved.

Putting k = Q in Theorem 3, we have

Corollary. For any given integer n > 1, there exist infinitely many mutually prime positive integers m such that

- (1) m has at most two different prime factors and any prime factor of m is congruent to 1 (mod 4),
- (2) $C(Q(\zeta_m + \zeta_m^{-1}))$ has a subgroup which is isomorphic to Z/A_mZ for some integer $A_m > n$.

Theorem 4. Let k be an algebraic number field and t > 1 be an integer. Then for any given integer $n_i > 1$ $(1 \le i \le t)$, there exist infinitely many mutually prime positive integers m_1, m_2, \ldots, m_t such that

(1) m_i has at most two different prime factors and any prime factor of m_i is congruent to 1 (mod 4),

(2) $C(k_{m_1m_2\cdots m_t})$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^t Z/A_{m_i}Z$ for some inte $ger\ A_{m_i} > n_i$.

Proof. By Theorem 2, for any given integer $r_i > 1$ $(1 \le i \le t)$, there exist mutually prime positive integers m_i such that

- (1) m_i has at most two different prime factors and any prime factor of m_i is congruent to $1 \pmod{4}$,
- (2) $C(Q(\sqrt{m_i}))$ has a subgroup which is isomorphic to $Z/S_{m_i}Z$ for some integer

Let $F = Q(\sqrt{m_1}, \sqrt{m_2}, \dots, \sqrt{m_t})$. Then C(F) has a subgroup which is isomorphic to $\bigoplus_{i=1}^t Z/S_{m_i}Z$. Let $(D(k), m_i) = 1$ $(1 \le i \le t)$ and K = kF. Then C(K) has a subgroup which is isomorphic to C(F). By $k_{m_1m_2\cdots m_t}$ contains $K, [K:k] = 2^t$ and Theorem 1, we see that $C(k_{m_1m_2\cdots m_t})$ has a subgroup which is isomorphic to $C(K)^{2^th(k)}$. Hence by Theorem 2, for any given integer $r_i > 1$ $(1 \le i \le t)$, there exist infinitely many mutually prime positive integers m_1, m_2, \ldots, m_t such that

- (1) m_i has at most two different prime factors and any prime factor of m_i is congruent to 1 (mod 4),
- (2) $C(k_{m_1m_2\cdots m_t})$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^t 2^t h(k)(Z/S_{m_i}Z)$ for some integer $S_{m_i} > r_i$.

Let $r_i \ge 2^t n_i h(k)$ for any given integer $n_i > 1$ and $2^t h(k)(Z/S_{m_i}Z) = Z/A_{m_i}Z$. Then we have $A_{m_i} > n_i$. Thus we have this theorem.

Putting k = Q in Theorem 4, we have

Corollary. Let t > 1 be an integer. Then for any given integer $n_i > 1$ (1 \leq $i \leq t$), there exist infinitely many mutually prime positive integers m_1, m_2, \ldots, m_t such

- (1) m_i has at most two different prime factors and any prime factor of m_i is congruent to 1 (mod 4),
- (2) $C(Q(\zeta_{m_1m_2\cdots m_t} + \zeta_{m_1m_2\cdots m_t}^{-1}))$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^t Z/A_{m_i}Z$ for some integer $A_{m_i} > n_i$.

Lemma 3. Let n > 1 be an integer. For given finite sets S_1 , S_2 , S_3 of primes satisfying $S_i \cap S_j = \phi$ if $i \neq j$, there exist infinitely many imaginary (resp. real) quadratic number fields F such that

(a) the ideal class group of F has a subgroup which is isomorphic to $Z/nZ \oplus Z/nZ$ (resp. Z/nZ),

(b) all primes contained in
$$S_i$$
 are decomposed in F ($i = 1$), remain prime in F ($i = 2$), are ramified in F ($i = 3$) (see Yamamoto [8, Theorem 2]).

(see Yamamoto [8, Theorem 2])

6 H. Osada

Theorem 5. Let k be an algebraic number field and A be any finite abelian group. Then there exist infinitely many mutually prime positive square-free integers t such that

- (1) $t \equiv 1 \pmod{4}$,
- (2) $C(k_t)$ has a subgroup which is isomorphic to A.

Proof. Let A be any finite abelian group. Then A is isomorphic to $\bigoplus_{i=1}^{s} Z/n_i Z$ for some integers $n_i > 1$ and $s \ge 1$. It suffices to prove this theorem for the case s > 1. By Lemma 3, for given integer n_i $(1 \le i \le s)$, there exist mutually prime positive square-free integers m_i such that

- (1) $m_i \equiv 1 \pmod{4}$,
- (2) $C(Q(\sqrt{m_i}))$ has a subgroup which is isomorphic to $Z/2^s h(k) n_i Z$.

Now we put $t = m_1 m_2 \cdots m_s$. Let $F = Q(\sqrt{m_1}, \sqrt{m_2}, \dots, \sqrt{m_s})$. Let (D(k), D(F)) = 1 and K = kF. Then C(K) has a subgroup which is isomorphic to C(F) and C(F) has a subgroup which is isomorphic to $\bigcap_{i=1}^{s} Z/2^s h(k) n_i Z$. By k_t contains K, $[K:k] = 2^s$ and Theorem 1, we see that $C(k_t)$ has a subgroup which is isomorphic to $C(K)^{2^s h(k)}$. Hence $C(k_t)$ has a subgroup which is isomorphic to $\bigcap_{i=1}^{s} Z/n_i Z$. Therefore by Lemma 3, we have this theorem.

Putting k = Q in Theorem 5, we have

Corollary. Let A be any finite abelian group. Then there exist infinitely many mutually prime positive square-free integers t such that

- (1) $t \equiv 1 \pmod{4}$,
- (2) $C(Q(\zeta_t + \zeta_t^{-1}))$ has a subgroup which is isomorphic to A.

Remark. $k_m \cap k_n = \tilde{k}$, if (m, n) = 1.

The Brauer-Siegel theorem. Let k be a normal algebraic number field of degree n over Q. Then

$$\frac{\log(h(k)R(k))}{\log\sqrt{D(k)}} \to 1 \quad as \quad \frac{n}{\log D(k)} \to 0$$

(see Lang [3, Chapter IX]).

Theorem 6. Let k be a totally imaginary algebraic number field and $h(k) = 2^s$ for an integer $s \ge 0$. Let p be an odd prime such that $p \equiv 3 \pmod{4}$. Then there exist infinitely many primes p such that for any given integer n > 1, $C(k_p)$ has a subgroup which is isomorphic to $C(Q(\sqrt{-p}))$ with $h(Q(\sqrt{-p})) > n$.

Proof. We assume that D(k) < p. Let $F = Q(\sqrt{-p})$ and K = kF. Then C(K) has a subgroup which is isomorphic to C(F). By k_p contains K, [K:k] = 2 and

Theorem 1, $C(k_p)$ has a subgroup which is isomorphic to $C(K)^{2h(k)}$. From $h(k) = 2^s$ for an integer $s \ge 0$ and $2 \nmid h(F)$, we see that $C(F)^{2h(k)} = C(F)$. Therefore $C(k_p)$ has a subgroup which is isomorphic to C(F). On the other hand, we see that R(F) = 1 and D(F) = p. Hence by the Brauer-Siegel theorem, we have

$$\frac{\log h(F)}{\log \sqrt{p}} \to 1$$
 as $p \to \infty$.

So by Dirichlet's theorem on prime numbers in arithmetic progressions, there exist infinitely many primes p such that for any given integer n > 1, $C(k_p)$ has a subgroup which is isomorphic to C(F) with h(F) > n. This completes the proof.

Lemma 4. There exist infinitely many primes p such that $p|h(Q(\zeta_p))$, that is, $p|B_{2s}$ for some integer s $(2 \le 2s \le p-3)$, where B_{2s} are the Bernoulli numbers (see [1]).

Lemma 5. Let p be an odd prime such that $p|h(Q(\zeta_p))$. Let f_p be the number of s satisfying $p|B_{2s}$ $(2 \le 2s \le p-3)$. Then $C(Q(\zeta_p))$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{f_p} Z/pZ$ (see Ribet [6, Main Theorem]).

Theorem 7. Let k be a totally imaginary algebraic number field and p be an odd prime such that $p|h(Q(\zeta_p))$. Let f_p be as in Lemma 5. Then there exist infinitely many primes p such that $C(k_p)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{f_p} Z/pZ$.

Proof. Let D(k) < p and h(k) < p. Let $F = Q(\zeta_p)$ and K = kF. Then C(K) has a subgroup which is isomorphic to C(F). By k_p contains K, [K:k] = p-1 and Theorem 1, $C(k_p)$ has a subgroup which is isomorphic to $C(K)^{(p-1)h(k)}$. So by Lemma 4, Lemma 5 and (h(k)(p-1), p) = 1, there exist infinitely many primes p such that $C(k_p)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{f_p} Z/pZ$. This completes the proof.

Lemma 6. Let p be an odd prime such that $p \equiv 2^{a+1} + 1 \pmod{2^{a+2}}$ with $a \ge 1$. Let k and k_0 be the subfields of $Q(\zeta_p)$ such that $[k:Q] = 2^{a+1}$ and $[k_0:Q] = 2^a$, respectively. And let $h_1 = h(k)/h(k_0)$. Then

$$\frac{\log h_1}{2^{a-1}\log p}\to 1\quad as\quad p\to\infty.$$

Proof. Let R(k) = R and $R(k_0) = R_0$. Then it is known that $R = 2^{2^a - 1} R_0$. By $D(k) = p^{2^{a+1} - 1}$, $D(k_0) = p^{2^a - 1}$ and the Brauer-Siegel theorem, we have

$$\frac{\log(h(k)R)}{\log\sqrt{D(k)}} \to 1 \quad \text{and} \quad \frac{\log(h(k_0)R_0)}{\log\sqrt{D(k_0)}} \to 1 \quad \text{as} \quad p \to \infty.$$

8 H. Osada

Since

$$\frac{\log(h(k)R)}{\log\sqrt{D(k)}} = \frac{\log h_1}{\log\sqrt{D(k)}} + \frac{\log(h(k_0)R_0)}{(2^a - 1/2)\log p} + \frac{(2^a - 1)\log 2}{(2^a - 1/2)\log p}$$

and

$$\frac{\log(h(k_0)R_0)}{(2^a-1/2)\log p} = \frac{\log(h(k_0)R_0)}{\log \sqrt{D(k_0)}} \cdot \frac{2^a-1}{2^{a+1}-1},$$

it follows that

$$rac{\log h_1}{2^{a-1}\log p} o 1$$
 as $p o \infty$.

This completes the proof.

Theorem 8. Let k be a totally imaginary algebraic number field and $h(k) = 2^s$ for an integer $s \ge 0$. Let p be an odd prime such that $p \equiv 2^{a+1} + 1 \pmod{2^{a+2}}$ with $a \ge 1$. Let F be the subfield of $Q(\zeta_p)$ such that $[F:Q] = 2^{a+1}$. Then for any given integer n > 1, there exist infinitely many primes p such that $C(k_p)$ has a subgroup which is isomorphic to C(F) with h(F) > n.

Proof. Let D(k) < p and K = kF. Then C(K) has a subgroup which is isomorphic to C(F). By k_p contains K, $[K:k] = 2^{a+1}$ and Theorem 1, $C(k_p)$ has a subgroup which is isomorphic to $C(K)^{2^{a+1}h(k)}$. By genus theory, we see that $2 \nmid h(F)$. From $h(k) = 2^s$ for an integer $s \geq 0$ and $2 \nmid h(F)$, we see that $C(F)^{2^{a+1}h(k)} = C(F)$. Hence $C(k_p)$ has a subgroup which is isomorphic to C(F). By Lemma 6 and Dirichlet's theorem on prime numbers in arithmetic progressions, for any given integer n > 1, there exist infinitely many primes p such that $C(k_p)$ has a subgroup which is isomorphic to C(F) with C(F) = n. This completes the proof.

References

- Z.I. Borevich and I.R. Shafarevich: Number Theory, Academic Press, London and New York, 1966.
- [2] H. Iwaniec: Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978), 171–188.
- [3] S. Lang: Algebraic numbers, Addison-Wesley, 1964.
- [4] H. Osada: Note on the class-number of the maximal real subfield of a cyclotomic field, Manuscripta Math. 58 (1987), 215–227.
- [5] H. Osada: Note on the class-number of the maximal real subfield of a cyclotomic field, II, Nagoya Math. J. 113 (1989), 147–151.
- [6] K. Ribet: A modular construction of unramified p-extensions of $Q(\mu_p)$, Invent. Math. 34 (1976), 151–162.

- [7] T. Takagi: Über eine Theorie des relativ-Abel'schen Zahlkörpers, J. Coll. Sci. Imp. Univ. Tokyo. 41 (1920), 1–133.
- [8] Y. Yamamoto: On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57–76.

2-14 Kamiitabashi 2-chome Itabashi-ku, Tokyo 174-0076, Japan