ON THE IDEAL CLASS GROUPS OF RAY CLASS FIELDS OF ALGEBRAIC NUMBER FIELDS

Hiroyuki OSADA

(Received June 8, 2001)
For an algebraic number field $k, C(k)$ and \tilde{k} denote the ideal class group and the Hilbert class field of k, respectively. For an abelian group G and an integer m, G^{m} means the subgroup of G consisting of m-th powers of the elements of G. Let $h(k)$, $R(k)$ and $D(k)$ be the class number, the regulator and the absolute value of the discriminant of k, respectively. For an integer $m>1, k_{m}$ denotes the class field of k corresponding to ray modulo m. Let ζ_{m} be a primitive m-th root of unity. Let q be a prime and k / Q be a real cyclic extension of degree q. Let m be the conductor of k. In the paper [5], we showed that $C\left(Q\left(\zeta_{m}+\zeta_{m}^{-1}\right)\right)$ has a subgroup which is isomorphic to $C(k)^{q}$. In this paper we generalize the above result in Theorem 1. And we show that for any given integer $n>1$, there exist infinitely many mutually prime positive integers m such that
(1) m has at most two different prime factors and any prime factor of m is congruent to $1(\bmod 4)$,
(2) $C\left(Q\left(\zeta_{m}+\zeta_{m}^{-1}\right)\right)$ has a subgroup which is isomorphic to $Z / A_{m} Z$ for some integer $A_{m}>n$
(Corollary of Theorem 3). Further we give some applications of the following Theorem 1.

Theorem 1. Let L / k be an abelian extension and K be a subfield of L such that K / k is an extension of degree n. Then $C(L)$ has a subgroup which is isomorphic to $C(K)^{n h(k)}$.

Proof. By Galois theory, we have the following exact sequence

$$
\operatorname{Gal}(\tilde{L} / L) \rightarrow \operatorname{Gal}(\tilde{K} / K) \rightarrow \operatorname{Gal}(L \cap \tilde{K} / K) \rightarrow 0
$$

Hence by class field theory, we have the following exact sequence

$$
C(L)^{N_{L / K}} \rightarrow C(K)^{f} \rightarrow \operatorname{Gal}(L \cap \tilde{K} / K) \rightarrow 0,
$$

where $N_{L / K}$ is the norm map from $C(L)$ to $C(K)$. Now we write the class groups additively. Let $x \in C(K)$ and $G=\operatorname{Gal}(K / k)$. Since $h(k) \cdot C(k)=0$, we have that
$\sum_{\sigma \in G} \sigma(h(k) x)=0$. Hence $n h(k) x=n h(k) x-\sum_{\sigma \in G} \sigma(h(k) x)=\sum_{\sigma \in G}(1-\sigma) h(k) x$. Since $L \cap \tilde{K} / k$ is an abelian extension, the group G acts trivially on $\operatorname{Gal}(L \cap \tilde{K} / K)$ by conjugation. From the G-homomorphism f maps each $(1-\sigma) h(k) x$ to 0 , it follows that $f(n h(k) x)=0$. By exactness, we see that the image $C(L)$ contains $n h(k) x$. Since $N_{L / K}(C(L))$ has a subgroup $C(K)^{n h(k)}$, we see that $C(L)$ has a subgroup which is isomorphic to $C(K)^{n h(k)}$. This completes the proof.

Example. Let $K=Q(\sqrt{145})$ and $L=Q\left(\zeta_{145}+\zeta_{145}^{-1}\right)$. By $C(K)$ is isomorphic to $Z / 4 Z$ and Theorem 1, we see that $C(L)$ has a subgroup which is isomorphic to $Z / 2 Z$. And we see that $L \cap \tilde{K}=Q(\sqrt{5}, \sqrt{29})$.

Lemma 1. For any given integer $r>1$, let $q_{i}(1 \leqq i \leqq r-1)$ be odd primes such that $q_{1}<q_{2}<\cdots<q_{r-1}$. Let $n>q_{1}$ be an integer and $m=\left(2 n q_{1} q_{2} \cdots q_{r-1}\right)^{2}+$ 1. If m is a square-free integer, then $C(Q(\sqrt{m}))$ has a subgroup which is isomorphic to $Z / S_{m} Z$ for some integer $S_{m}>r$.

Proof. Let $F=Q(\sqrt{m})$ and $u=2 n q_{1} q_{2} \cdots q_{r-1}$. Since $n>q_{1}$ and $q_{1}<q_{2}<$ $\cdots<q_{r-1}$, we see that $q_{1}^{r}<u / 2$. Since $m \equiv 1\left(\bmod q_{1}\right)$, we have that $\left(q_{1}\right)=\beta \beta^{\prime}$ and $\beta \neq \beta^{\prime}$, where β and β^{\prime} are prime ideals in F. Now we assume that β^{s} is a principal ideal in F for some positive integer s. Then there exist integers x and y such that

$$
\beta^{s}=\left(\frac{x+y \sqrt{m}}{2}\right) \quad \text { and } \quad x \equiv y \quad(\bmod 2) .
$$

Hence we have

$$
q_{1}^{s}=\left|\frac{x^{2}-y^{2} m}{4}\right|,
$$

that is,

$$
\pm 4 q_{1}^{s}=x^{2}-y^{2} m
$$

If $y=0$, then we have $x^{2}=4 q_{1}^{s}$. Hence s is necessarily $2 t$ for some integer t. Since $x= \pm 2 q_{1}^{t}$, we have

$$
\beta^{2 t}=\left(q_{1}^{t}\right)=\beta^{t} \beta^{\prime t} .
$$

Therefore we have $\beta=\beta^{\prime}$. This contradicts $\beta \neq \beta^{\prime}$. Hence we have $y \neq 0$. Let x_{0} be an integer and y_{0} be the smallest positive integer satisfying

$$
\beta^{s}=\left(\frac{x_{0}+y_{0} \sqrt{m}}{2}\right),
$$

that is,

$$
\beta^{s}=\left(\frac{ \pm\left|x_{0}\right|+y_{0} \sqrt{m}}{2}\right)
$$

Let $\varepsilon= \pm u+\sqrt{m}$. Since ε are units of F, we have

$$
\beta^{s}=\left(\frac{\left(\pm\left|x_{0}\right|+y_{0} \sqrt{m}\right)(\mp u+\sqrt{m})}{2}\right)
$$

that is,

$$
\beta^{s}=\left(\frac{-\left|x_{0}\right| u+y_{0} m \pm\left(\left|x_{0}\right|-y_{0} u\right) \sqrt{m}}{2}\right)
$$

From $\left|\left|x_{0}\right|-y_{0} u\right|>0$ and the definition of y_{0}, we have

$$
\left|\left|x_{0}\right|-y_{0} u\right| \geqq y_{0}
$$

Hence either $\left|x_{0}\right|-y_{0} u \geqq y_{0}$ or $-\left|x_{0}\right|+y_{0} u \geqq y_{0}$. So either

$$
\pm 4 q_{1}^{s}=x_{0}^{2}-y_{0}^{2} m \geqq y_{0}^{2}(u+1)^{2}-y_{0}^{2}\left(u^{2}+1\right)=2 u y_{0}^{2} \geqq 2 u
$$

or

$$
\pm 4 q_{1}^{s}=x_{0}^{2}-y_{0}^{2} m \leqq y_{0}^{2}(u-1)^{2}-y_{0}^{2}\left(u^{2}+1\right)=-2 u y_{0}^{2} \leqq-2 u
$$

Therefore in each case $4 q_{1}^{s} \geqq 2 u$, that is, $q_{1}^{s} \geqq u / 2$. If $r \geqq s$, then this contradicts $q_{1}^{r}<u / 2$. So if $r \geqq s, \beta^{s}$ is not a principal ideal in F. Now we assume that $t=S_{m}$ is the smallest positive integer such that β^{t} is a principal ideal in F. From the above argument, we see that $C(F)$ has a subgroup which is isomorphic to $Z / S_{m} Z$ for some integer $S_{m}>r$. This completes the proof.

Lemma 2. Let $G(n)=a n^{2}+b n+c$ be an irreducible polynomial with $a>0$ and $c \equiv 1(\bmod 2)$. Then there exist infinitely many integers n such that $G(n)$ has at most two prime factors (see Iwaniec [2, Theorem]).

Theorem 2. For any given integer $r>1$, there exist infinitely many mutually prime positive integers m such that
(1) m has at most two different prime factors and any prime factor of m is congruent to $1(\bmod 4)$,
(2) $C(Q(\sqrt{m}))$ has a subgroup which is isomorphic to $Z / S_{m} Z$ for some integer $S_{m}>$ r.

Proof. For any given integer $r>1$, let $m=\left(2 n q_{1} q_{2} \cdots q_{r-1}\right)^{2}+1$, where $q_{i}(1 \leqq$ $i \leqq r-1)$ are odd primes such that $q_{1}<q_{2}<\cdots<q_{r-1}$ and $n>q_{1}$ is an integer.

Then by Lemma 2, there exist infinitely many integers n such that m has at most two different prime factors. It is easy to see that any prime factor of m is congruent to 1 $(\bmod 4)$. Hence by Lemma 1, we have this theorem.

Theorem 3. Let k be an algebraic number field. Then for any given integer $n>$ 1, there exist infinitely many mutually prime positive integers m such that
(1) m has at most two different prime factors and any prime factor of m is congruent to $1(\bmod 4)$,
(2) $C\left(k_{m}\right)$ has a subgroup which is isomorphic to $Z / A_{m} Z$ for some integer $A_{m}>n$.

Proof. By Theorem 2, for any given integer $r>1$, there exists a positive integer m such that
(1) m has at most two different prime factors and any prime factor of m is congruent to $1(\bmod 4)$,
(2) $C(Q(\sqrt{m}))$ has a subgroup which is isomorphic to $Z / S_{m} Z$ for some integer $S_{m}>$ r.
Let $F=Q(\sqrt{m}),(D(k), m)=1$ and $K=k F$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By k_{m} contains $K,[K: k]=2$ and Theorem 1 , we see that $C\left(k_{m}\right)$ has a subgroup which is isomorohic to $C(K)^{2 h(k)}$. Hence by Theorem 2, for any given integer $r>1$, there exist infinitely many mutually prime positive integers m such that (1) m has at most two different prime factors and any prime factor of m is congruent to $1(\bmod 4)$,
(2) $C\left(k_{m}\right)$ has a subgroup which is isomorphic to $2 h(k)\left(Z / S_{m} Z\right)$ for some integer $S_{m}>r$.
Let $r \geqq 2 n h(k)$ for any given integer $n>1$ and $2 h(k)\left(Z / S_{m} Z\right)=Z / A_{m} Z$. Then we have $A_{m}>n$. Thus this theorem is proved.

Putting $k=Q$ in Theorem 3, we have

Corollary. For any given integer $n>1$, there exist infinitely many mutually prime positive integers m such that
(1) m has at most two different prime factors and any prime factor of m is congruent to $1(\bmod 4)$,
(2) $C\left(Q\left(\zeta_{m}+\zeta_{m}^{-1}\right)\right)$ has a subgroup which is isomorphic to $Z / A_{m} Z$ for some integer $A_{m}>n$.

Theorem 4. Let k be an algebraic number field and $t>1$ be an integer. Then for any given integer $n_{i}>1(1 \leqq i \leqq t)$, there exist infinitely many mutually prime positive integers $m_{1}, m_{2}, \ldots, m_{t}$ such that
(1) m_{i} has at most two different prime factors and any prime factor of m_{i} is congruent to $1(\bmod 4)$,
(2) $C\left(k_{m_{1} m_{2} \cdots m_{t}}\right)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{t} Z / A_{m_{i}} Z$ for some inte$\operatorname{ger} A_{m_{i}}>n_{i}$.

Proof. By Theorem 2, for any given integer $r_{i}>1(1 \leqq i \leqq t)$, there exist mutually prime positive integers m_{i} such that
(1) m_{i} has at most two different prime factors and any prime factor of m_{i} is congruent to $1(\bmod 4)$,
(2) $C\left(Q\left(\sqrt{m_{i}}\right)\right)$ has a subgroup which is isomorphic to $Z / S_{m_{i}} Z$ for some integer $S_{m_{i}}>r_{i}$.
Let $F=Q\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{t}}\right)$. Then $C(F)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{t} Z / S_{m_{i}} Z$. Let $\left(D(k), m_{i}\right)=1(1 \leqq i \leqq t)$ and $K=k F$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By $k_{m_{1} m_{2} \cdots m_{t}}$ contains $K,[K: k]=2^{t}$ and Theorem 1 , we see that $C\left(k_{m_{1} m_{2} \cdots m_{t}}\right)$ has a subgroup which is isomorphic to $C(K)^{2^{t} h(k)}$. Hence by Theorem 2, for any given integer $r_{i}>1(1 \leqq i \leqq t)$, there exist infinitely many mutually prime positive integers $m_{1}, m_{2}, \ldots, m_{t}$ such that
(1) m_{i} has at most two different prime factors and any prime factor of m_{i} is congruent to $1(\bmod 4)$,
(2) $C\left(k_{m_{1} m_{2} \cdots m_{t}}\right)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{t} 2^{t} h(k)\left(Z / S_{m_{i}} Z\right)$ for some integer $S_{m_{i}}>r_{i}$.
Let $r_{i} \geqq 2^{t} n_{i} h(k)$ for any given integer $n_{i}>1$ and $2^{t} h(k)\left(Z / S_{m_{i}} Z\right)=Z / A_{m_{i}} Z$. Then we have $A_{m_{i}}>n_{i}$. Thus we have this theorem.

Putting $k=Q$ in Theorem 4, we have

Corollary. Let $t>1$ be an integer. Then for any given integer $n_{i}>1(1 \leqq$ $i \leqq t$), there exist infinitely many mutually prime positive integers $m_{1}, m_{2}, \ldots, m_{t}$ such that
(1) m_{i} has at most two different prime factors and any prime factor of m_{i} is congruent to $1(\bmod 4)$,
(2) $C\left(Q\left(\zeta_{m_{1} m_{2} \cdots m_{t}}+\zeta_{m_{1} m_{2} \cdots m_{t}}^{-1}\right)\right)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{t} Z / A_{m_{i}} Z$ for some integer $A_{m_{i}}>n_{i}$.

Lemma 3. Let $n>1$ be an integer. For given finite sets S_{1}, S_{2}, S_{3} of primes satisfying $S_{i} \cap S_{j}=\phi$ if $i \neq j$, there exist infinitely many imaginary (resp. real) quadratic number fields F such that
(a) the ideal class group of F has a subgroup which is isomorphic to $Z / n Z \oplus Z / n Z$ (resp. $Z / n Z$),
(b) all primes contained in $S_{i} \begin{cases}\text { are decomposed in } F & (i=1), \\ \text { remain prime in } F & (i=2), \\ \text { are ramified in } F & (i=3)\end{cases}$
(see Yamamoto [8, Theorem 2]).

Theorem 5. Let k be an algebraic number field and A be any finite abelian group. Then there exist infinitely many mutually prime positive square-free integers t such that
(1) $t \equiv 1 \quad(\bmod 4)$,
(2) $C\left(k_{t}\right)$ has a subgroup which is isomorphic to A.

Proof. Let A be any finite abelian group. Then A is isomorphic to $\bigoplus_{i=1}^{s} Z / n_{i} Z$ for some integers $n_{i}>1$ and $s \geqq 1$. It suffices to prove this theorem for the case $s>1$. By Lemma 3, for given integer $n_{i}(1 \leqq i \leqq s)$, there exist mutually prime positive square-free integers m_{i} such that
(1) $m_{i} \equiv 1 \quad(\bmod 4)$,
(2) $C\left(Q\left(\sqrt{m_{i}}\right)\right)$ has a subgroup which is isomorphic to $Z / 2^{s} h(k) n_{i} Z$.

Now we put $t=m_{1} m_{2} \cdots m_{s}$. Let $F=Q\left(\sqrt{m_{1}}, \sqrt{m_{2}}, \ldots, \sqrt{m_{s}}\right)$. Let $(D(k), D(F))=1$ and $K=k F$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$ and $C(F)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{s} Z / 2^{s} h(k) n_{i} Z$. By k_{t} contains K, [K : $k]=2^{s}$ and Theorem 1, we see that $C\left(k_{t}\right)$ has a subgroup which is isomorphic to $C(K)^{2^{s} h(k)}$. Hence $C\left(k_{t}\right)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{s} Z / n_{i} Z$. Therefore by Lemma 3, we have this theorem.

Putting $k=Q$ in Theorem 5, we have

Corollary. Let A be any finite abelian group. Then there exist infinitely many mutually prime positive square-free integers t such that
(1) $t \equiv 1 \quad(\bmod 4)$,
(2) $C\left(Q\left(\zeta_{t}+\zeta_{t}^{-1}\right)\right)$ has a subgroup which is isomorphic to A.

REMARK. $\quad k_{m} \cap k_{n}=\tilde{k}$, if $(m, n)=1$.

The Brauer-Siegel theorem. Let k be a normal algebraic number field of degree n over Q. Then

$$
\frac{\log (h(k) R(k))}{\log \sqrt{D(k)}} \rightarrow 1 \quad \text { as } \quad \frac{n}{\log D(k)} \rightarrow 0
$$

(see Lang [3, Chapter IX]).

Theorem 6. Let k be a totally imaginary algebraic number field and $h(k)=2^{s}$ for an integer $s \geqq 0$. Let p be an odd prime such that $p \equiv 3(\bmod 4)$. Then there exist infinitely many primes p such that for any given integer $n>1, C\left(k_{p}\right)$ has a subgroup which is isomorphic to $C(Q(\sqrt{-p}))$ with $h(Q(\sqrt{-p}))>n$.

Proof. We assume that $D(k)<p$. Let $F=Q(\sqrt{-p})$ and $K=k F$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By k_{p} contains $K,[K: k]=2$ and

Theorem 1, $C\left(k_{p}\right)$ has a subgroup which is isomorphic to $C(K)^{2 h(k)}$. From $h(k)=2^{s}$ for an integer $s \geqq 0$ and $2 \nmid h(F)$, we see that $C(F)^{2 h(k)}=C(F)$. Therefore $C\left(k_{p}\right)$ has a subgroup which is isomorphic to $C(F)$. On the other hand, we see that $R(F)=1$ and $D(F)=p$. Hence by the Brauer-Siegel theorem, we have

$$
\frac{\log h(F)}{\log \sqrt{p}} \rightarrow 1 \quad \text { as } \quad p \rightarrow \infty
$$

So by Dirichlet's theorem on prime numbers in arithmetic progressions, there exist infinitely many primes p such that for any given integer $n>1, C\left(k_{p}\right)$ has a subgroup which is isomorphic to $C(F)$ with $h(F)>n$. This completes the proof.

Lemma 4. There exist infinitely many primes p such that $p \mid h\left(Q\left(\zeta_{p}\right)\right)$, that is, $p \mid B_{2 s}$ for some integer $s(2 \leqq 2 s \leqq p-3)$, where $B_{2 s}$ are the Bernoulli numbers (see [1]).

Lemma 5. Let p be an odd prime such that $p \mid h\left(Q\left(\zeta_{p}\right)\right)$. Let f_{p} be the number of s satisfying $p \mid B_{2 s}(2 \leqq 2 s \leqq p-3)$. Then $C\left(Q\left(\zeta_{p}\right)\right)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{f_{p}} Z / p Z$ (see Ribet [6, Main Theorem]).

Theorem 7. Let k be a totally imaginary algebraic number field and p be an odd prime such that $p \mid h\left(Q\left(\zeta_{p}\right)\right)$. Let f_{p} be as in Lemma 5. Then there exist infinitely many primes p such that $C\left(k_{p}\right)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{f_{p}} Z / p Z$.

Proof. Let $D(k)<p$ and $h(k)<p$. Let $F=Q\left(\zeta_{p}\right)$ and $K=k F$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By k_{p} contains $K,[K: k]=p-1$ and Theorem 1, $C\left(k_{p}\right)$ has a subgroup which is isomorphic to $C(K)^{(p-1) h(k)}$. So by Lemma 4, Lemma 5 and $(h(k)(p-1), p)=1$, there exist infinitely many primes p such that $C\left(k_{p}\right)$ has a subgroup which is isomorphic to $\bigoplus_{i=1}^{f_{p}} Z / p Z$. This completes the proof.

Lemma 6. Let p be an odd prime such that $p \equiv 2^{a+1}+1\left(\bmod 2^{a+2}\right)$ with $a \geqq$ 1. Let k and k_{0} be the subfields of $Q\left(\zeta_{p}\right)$ such that $[k: Q]=2^{a+1}$ and $\left[k_{0}: Q\right]=2^{a}$, respectively. And let $h_{1}=h(k) / h\left(k_{0}\right)$. Then

$$
\frac{\log h_{1}}{2^{a-1} \log p} \rightarrow 1 \quad \text { as } \quad p \rightarrow \infty
$$

Proof. Let $R(k)=R$ and $R\left(k_{0}\right)=R_{0}$. Then it is known that $R=2^{2^{a}-1} R_{0}$. By $D(k)=p^{2^{a+1}-1}, D\left(k_{0}\right)=p^{2^{a}-1}$ and the Brauer-Siegel theorem, we have

$$
\frac{\log (h(k) R)}{\log \sqrt{D(k)}} \rightarrow 1 \quad \text { and } \quad \frac{\log \left(h\left(k_{0}\right) R_{0}\right)}{\log \sqrt{D\left(k_{0}\right)}} \rightarrow 1 \quad \text { as } \quad p \rightarrow \infty
$$

Since

$$
\frac{\log (h(k) R)}{\log \sqrt{D(k)}}=\frac{\log h_{1}}{\log \sqrt{D(k)}}+\frac{\log \left(h\left(k_{0}\right) R_{0}\right)}{\left(2^{a}-1 / 2\right) \log p}+\frac{\left(2^{a}-1\right) \log 2}{\left(2^{a}-1 / 2\right) \log p}
$$

and

$$
\frac{\log \left(h\left(k_{0}\right) R_{0}\right)}{\left(2^{a}-1 / 2\right) \log p}=\frac{\log \left(h\left(k_{0}\right) R_{0}\right)}{\log \sqrt{D\left(k_{0}\right)}} \cdot \frac{2^{a}-1}{2^{a+1}-1}
$$

it follows that

$$
\frac{\log h_{1}}{2^{a-1} \log p} \rightarrow 1 \quad \text { as } \quad p \rightarrow \infty
$$

This completes the proof.

Theorem 8. Let k be a totally imaginary algebraic number field and $h(k)=2^{s}$ for an integer $s \geqq 0$. Let p be an odd prime such that $p \equiv 2^{a+1}+1\left(\bmod 2^{a+2}\right)$ with $a \geqq 1$. Let F be the subfield of $Q\left(\zeta_{p}\right)$ such that $[F: Q]=2^{a+1}$. Then for any given integer $n>1$, there exist infinitely many primes p such that $C\left(k_{p}\right)$ has a subgroup which is isomorphic to $C(F)$ with $h(F)>n$.

Proof. Let $D(k)<p$ and $K=k F$. Then $C(K)$ has a subgroup which is isomorphic to $C(F)$. By k_{p} contains $K,[K: k]=2^{a+1}$ and Theorem $1, C\left(k_{p}\right)$ has a subgroup which is isomorphic to $C(K)^{2^{a+1} h(k)}$. By genus theory, we see that $2 \nmid h(F)$. From $h(k)=2^{s}$ for an integer $s \geqq 0$ and $2 \nmid h(F)$, we see that $C(F)^{2^{a+1} h(k)}=C(F)$. Hence $C\left(k_{p}\right)$ has a subgroup which is isomorphic to $C(F)$. By Lemma 6 and Dirichlet's theorem on prime numbers in arithmetic progressions, for any given integer $n>1$, there exist infinitely many primes p such that $C\left(k_{p}\right)$ has a subgroup which is isomorphic to $C(F)$ with $h(F)>n$. This completes the proof.

References

[1] Z.I. Borevich and I.R. Shafarevich: Number Theory, Academic Press, London and New York, 1966.
[2] H. Iwaniec: Almost-primes represented by quadratic polynomials, Invent. Math. 47 (1978), 171-188.
[3] S. Lang: Algebraic numbers, Addison-Wesley, 1964.
[4] H. Osada: Note on the class-number of the maximal real subfield of a cyclotomic field, Manuscripta Math. 58 (1987), 215-227.
[5] H. Osada: Note on the class-number of the maximal real subfield of a cyclotomic field, II, Nagoya Math. J. 113 (1989), 147-151.
[6] K. Ribet: A modular construction of unramified p-extensions of $Q\left(\mu_{p}\right)$, Invent. Math. 34 (1976), 151-162.
[7] T. Takagi: Über eine Theorie des relativ-Abel'schen Zahlkörpers, J. Coll. Sci. Imp. Univ. Tokyo. 41 (1920), 1-133.
[8] Y. Yamamoto: On unramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57-76.

2-14 Kamiitabashi 2-chome Itabashi-ku, Tokyo
174-0076, Japan

