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1. Introduction

In this paper the Cauchy problem in Gevrey classes is stuftiecsome partial
differential — or, more generally, pseudo-differential -gquations of Schrodinger type,
that is, for differential equations whose type of evolutien2 and whose characteris-
tic roots are real. Our aim is to determine some Gevrey ingddrr which the well-
posedness of the Cauchy problem holds in Gevrey classesdef er Such an index
depends on the multiplicity of the characteristic roots amdthe lower order terms.
Our result was obtained in [2] in the special case of diffdgeérequations with con-
stant leading coefficients.

2. Notation

Let us first introduce some notation about Gevrey spaces.
If ¢ > 1, theny?(R") will denote the class of all the smooth functioffs  such
that:

sup |02 f(x)|. A7l =7 < 400
x€R”

for someA > 0.
Now we define some Gevrey-Sobolev spaces (compare [4] and f5f ¢ >
0,0 > 1,k > 0, let DZQE”‘(R") denote the space of all functiong such that

€27 £||, < +oo, where |.||x is the usual Sobolev norm % R(). Note that,
if ¥ <k ande’ > e, then D% (R") € DI (R"). In this paper the space of the
functions belonging thZf’O(R") for somee, will be denoted byD7,(R"). Let £(¢) be
a positive function oft ¢ € [T, T]. If u(r,) € DI*(R"), for everyr € [T, T},
let us denote|e=OP)" 7y, x) |l by [u()llcqy.ox-

Let us now give some notation about pseudo-differentialratpes. We shall de-

note by S? the class of the pseudo-differential operators, 1§, ) whosebsym(x, &)
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satisfies the following condition:

sup sup |0¢DIs(x, &)[.()1*TPATIPlal 18177 < oo
0. BEN" ¢ £CR”
|€1>B

for someA >0, B > 0.
Finally s(x, &) is called ac-regularizing symbol if:

sup sup |DZs(x, &) exp(h(€)Y)A™PIB1~7 < o
BEN" x ¢cR”
[€|>B

for someA ,h > 0, B > 0. A o-regularizing operator maps the dual spacelgt(RR")
to D7,(R").
3. The main result

Let us consider the following operator:

m
(3.1) P =mau(t,x, Dy, D) + ) _aj(t,x, D)D"
j=1

where:
wom(t. %, Dy, Dy) = [[ (D = Aj(t.x. D)) -+ (D, = XY (¢, x. Dy)).
j=1

with E;zlsj =m, s >8_1>--->s1, and

a;(t, x, Dy) € B([~To, Tal; SZ4(R")) for someg ,r < g < 2r,

3.2)
whereo €

2r . .
1, —] if ¢ <2r ando €]1, +o00) if g=2r.
2r—gq

Moreover we assume that thkag.(t,x,g)’s are real-valued and satisfy the following
properties:

(i) N ec" H[~To. To; SH(R").

(3.3) (i) ) 004N € SR, V.. € SA(R")
k=1,..., n

(iii)y if i Zh (N1, x,8) - M@ x, 8> cj’,’<|£|2, for somecl; >0

Remark. Assumptions of the type (3.3) (ii) are not unusual in theréture about
Schrodinger equations: for example, compare (8) in [7].
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Examples. 1) Assume thatP =mp, + Zfﬁl Poy,—n Where 7y, (t; D;, D) =
[T (D, — N(t, D)y, with S 7y =m, r =r1 > --- > 1, Xl are homogeneous of
degree 2 in¢ and Ni(r, &) # M, &) if i # h and¢ # 0, and P, _,(t, x, D;, D) =
Z’;’:K,ﬁl)/z]z‘al:zj_h anj(t,x)D2D;"7, with ao; € B([-T,T];v*(R")) for some
o>1.

Then our result applies if we assume thag, _, vanishes forh =1...,2r — 1.

2) Consider the operator in 1), but, more generally, assuma¢ X (¢, x, D,) sat-
isfy (3.3) (i) and are of the form\i(s, D) + p'(¢, x, D,), Where ) is homogeneous
of order 2 andy/ is of order 1.

3) Let P = 8,2 + ao(t, x)0, + ax(t, x, D) + a3(t, x, D) + as(t, D,) be a differen-
tial operators, where the subscripts denote the order oh egeratora; . We as-
sume thatas(t,€) > J€[* > 0, as(t, x, &) is real, that all the coefficients are in
C([—To, To]; v° (R")) for somecs > 1 (the coefficients ofiz are inC([—To, Tq]; v (R™))
and those ofz4 are in CY([—To, Tq)).

Then our theorem applies with amy> 1, if we take \'(¢, x, &) =/aa(t, &) +as(t, x, §),
N(t,x,€) = —aa(t, &) +az(t, x, ). Note that if we had taken\'(z, &) = /aa(t, ),
N2(t, €) = —/aa(t, §), then our theorem could not have been applied.

4) The pseudo-differential operators studied in [3] sgtiah our assumptions, if in
the main Theorem in [3] we confine ourselves to the ecasel/p. Note thatp in [3]
is equal to 2- ¢, in the notation of this paper.

Theorem 3.1. Let P be as in(3.1), (3.2), (3.3) If the initial data g, are in
D7,(R") and f € C([—To, To; D7.(R")), then there existd €]0, To] such that the
Cauchy problem

Pu(r) = f(t)
(3.4) .\ . _
D!u(0) =g h=0....m—-1

has a solutionu(t,.) € D7, (R"), Vt € [—To, To]. More precisely if M is an in-
teger such thatM < m — ¢/2, then there exist$y > 0 such thatd'u(t,.) €
DZ;é(ZT”)'Z(’"”’)(R") for everyh, h = 0,..., M, and the following energy inequality
holds

(3.5) D 1187 ut, Mls@r—r.0.2m-1)—g
h=0

Proof. Lets; =Y. s DenoteXN; by X if j = 1 and by Ay, if j > 1.

Let 8,' denoteD, — )\,-(t,x,Dx). If J = (jl,...,jk) set{J} = {jl,...,jk}, |J| =k,
9y =0jy - 0jy.

m—1 t
S C {Z |||81(1u(0)|||2T5.0',2—q/r + A |||f(7—)|||5(2T—‘r)‘o',2—q/r dr

h=0
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Let Z® = {J = Guooooudi); 4 < -+ < jw {J} € {1,...,51}} and, fork =
2. IW = {0 =G ) ja <o < g {JY C {81, ..., 5%} }. Thusmy, can
be written in the formd,, - - 9;,, with J, € Z®).

First of all, by using Proposition 4.1, we writ2  in the folloyg form (modulo
o-regularizers):

(36) Tom + Z gljl """" J,_(t,x, Dx)ajl---aj,.

wheready, . . 5, €B(-T,T); S;N).

Now we reduce the Cauchy problem fér  to a first-order systeth wiagonal
principal part. Setpp =2 —¢/r. Let us introduce the new unknowt = {U; }|/|<m—1,
as follows:

.....

Up = <DX>P(r*1)u
Uy = (D) Do if |J]<m—r ,
Uy = (D" VIV iftm—r<|J<m—1

Then we have a system of the form:

(3.7) DU — L(t, x, DU — B(t, x, DU = F(t, x)

)‘jl

where £ is a diagonal matrix of the for with X;, € {A, ..., Al
>‘f2m,1
the entries of83 belong toB([—To, Tol; S£), and the entries of~(z,.) belong toD7,.
The initial values of/ are determined as follows:

Uo(t = 0) = (D) Vgo =1
Uj(t =0) = (D)(=i)7h N ik (N 00 Xi)g)j—k = ¥,
k<|J]
Jrekee{J}
J1< <k
wherep(J)=r—21if [J|<m—randu(J)=m—|J|—1if m—r <|J|<m-—1
Then the initial conditions are:

(3.8) U0, x)=w(x)

where the entries o =/(;)|;<n—1 belong toD7,. For anys > 0, we can write:

d d _O(DYe DYV
E””u(l)nug(zr—:),a,o:2Re<E<65(2T MOIY(r)) , eTETNP) ua)>
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where ( , ) denotes the inner product in the cartesian produéf and T <€]0, To]
will be chosen suitably in what follows.
First note that, in view of Lemma 4.3 and its proof, we have:

eé(ZT—t)(D)l/"C(I)e—é(ZT—t)(D)l/" . e—é(ZT—l)(D)““E*(t)eé(ZT—IXD}l/“
= L(1) = L7(1) + R(),
where R ¢) € S¥Y°(R") and |R(1)|; = suqmmg,|8§‘8§R(r,x,§)|(§>‘°‘|‘l/" is a non-
decreasing function of(2T — t), for any!.
Thus, if, say, 2T < 1, we have:

— 1/o _ 1/o ~
2Re( "I £ (e (e), P U (1) ) < ENIUE B a1 1)1/

where C is independent of.
Then we can write:

d -
77 U@l 3er—n.c0 < =281UE@r—0y.0.1/@0) * Coll lUON @7 —1.0.1/20)

+ ColllUD 3 ar —1y.0p/2
+2/[[|[FOls@r—n.eolllU@ls@r—n.0.04

where C and Co depend only onC and B, respectively. Now we fix§ > (C + Co)/2.
Hence, in view ofp < 1/0, we obtain:

d
7 HU@llllser -n.0.0 < [IFOlser .00

and finally:

3.9)  [lDlsr—n.o.0 < [UO[|257.0.0 +

1
/O HFE sr—ryo0dr

Vvt € [-T, T]. Now, applying Lemma 4.2, we obtain

10 utt, Ml s@r—i.0.200—1)—q
(3.10) < Z i dsu@)ls@r—n.o2r—q = Z U O ser—o.0.p

|| <m—r [J|<m—r

If gn € DZf”’O(R”) for somee;, > 0, we choosel" such thabZ < e;,, h =0,...,m—
1. Then plugging (3.10) into (3.9), we get the energy ineity&B.5). O

4. Preliminary results

In this section the notation is the same as;& For brevity’s sakeg-regularizers
are not mentioned explicitly in the identities involvingepsio-differential operators.
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Lemma 4.1. Assume tha®; and )\; satisfy(3.3) (i) and are distinct in the sense
that there exists;; > 0 such that

4.1) it x, ) = Aj (e, x, )] = eijlé .
Then for any positive integetV, we can write the identity in the following way

(2.4) Id. =d{(¢e, x, D)0, +d'V (. x, D); +r™(e, x, D),

whered), d\) € 5,2 and r™ e 5,V
Proof. Let us denoteX(z, x, &) —\;(t, x, £))~* by d;; (¢, x, £). Then we can write
the identity as follows:
Id. = d,'j(l‘, X, Dx)8j + dj,'(l‘, X, DX)&- + r(l)(t, X, Dx), Wherer(l) S S;l. Flnally the
required identity follows by induction. U

Lemma 4.2. Assume that the\;’s satisfy (3.3) (i) and are distinct in the sense
of (41)for je{l,...,s}. Forh=1,...,s,letZ, be{J =, ..., ju)ij1 <+ < jus
{J/} c{1,...,s}}. Then for allk = 0,...,s —1 and for any positive integeN we
can write

s—2
Dy = N W2, D)0+ 30 1t x, D),
JeEL,_1 h=0 J€I,;

for somec(f) and r; depending orN  and belonging g% and S,V respectively.

Proof. To prove this Lemma we refer to the proof of Lemma 2.41h The
only change is that Lemma 2.1 in [1] is to be replaced througly the Lemma 4.1
above. Moreover, we just have to observe thatj i# j, then D, can be written
as cj; @,x, D, )9,' + Cj,'(l, X, Dx)aj + 71, where Cij (,X, f) = /\j(t,x, 5)/()\1'(1‘,)6, 5) —
Ai(t,x,€) € 82, andry € S, O

Finally, arguing as in the proof of Proposition 2.1 in [1] aapplying Lemma 4.1
and Lemma 4.2, we obtain the following:

Proposition 4.1. If the operator P satisfie$3.1), (3.2), (3.3)then for any pos-
itive integer N, P can be written in the following fornfmodulo o-regularizers:

Tom + Z gljl """" J,_(t,x, Dx)ajl---aj,.
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wheredy, . € B(—T.T];S%) and vy, ..., € B(~T,T]; S;").

.....

Lemma 4.3. If X\ satisfies(3.3) (i), (ii), then for any e > 0, the operator

4.2) D7 \()e =PI — =07 \*(1)=(P)

Dy

is A(1, x, D) — M(t, x, Dy) + r(t, x, Dy), wherer(t) € S/° (R").

Proof. The symbol of (4.2) has an expansipi, sy(t, x, ), where

SN(t,X,g) = Z j {D’YA(I X, 5)8’7( €+"7>1/<776<§>1/<7) . D})\*(I,X,f).
lvI=N

9 (e—slErm THe(e) }
HE )}

Note thatso(t, x, &) is A(t, x, &) — A*(¢, x, £), which is in Si/”(R”) because of the
first assumption in (3.3) (ii). The symboi(z, x, £) is —i(c/o) (€)Y 72V (A1, x, &) +
A (¢, x, £)).€, which is in SY7 in view of (3.3) (ii). More generally, the terms multi-
plying DX or DI X* in sy(t, x, ) for N > 2, are of the form:

egM(©) +e28D(&) + - +NgM (), whereg!) e MV,

When N is even, thea" g(¥)(¢) actually multipliesDY (A — A*) which is in S¥7; thus

sy(t) is in S¥/7T WA= which is a subset ofY/°. If N is odd, then we can see
that gV (¢) is of the form gt (¢)¢&, where| | = N —1 andg!)) € S(V=D/7=N Thus,
writing DY (A + A\*) = DY(\* — \) + 2D} D, A\ and arguing as in the case| = 1, we

prove again thaty #( ) is irsy/ 7" ~23/o=1), O
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