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1. Introduction

1.1. Let be a hyperbolic Riemann surface of analytically finite type, that
is, a hyperbolic Riemann surface obtained by removing0 distinct points from a
closed Riemann surface of genus0 with 2 0 − 2 + 0 > 0. Take distinct points

1 2 . . . of , and set˙ = \ { 1 2 . . . }. We consider the group of orien-
tation preserving homeomorphismsω of onto itself which satisfy two conditions
(1) ω( ) = for every = 1, 2 . . . , and
(2) ω is isotopic to the identity self-map id of .
We factor this group by the normal subgroup of homeomorphisms of onto itself that
are isotopic to the identity as self-maps of˙ . Denote the factor group by

Isot( { 1 2 . . . }) or Isot( )

1.2. The purpose of this paper is to classify the elements of Isot() in the case
of = 2. For = 1, it is studied by Kra [10]. Our problem and form ofthe solution
are suggested by his beautiful theorem (Theorem 2 of Kra [10]).

Every element [ω] ∈ Isot( ) induces canonically an element〈ω| ˙ 〉 of the
Teichmüller modular group Mod(˙ ). Namely, for the Teichmüller space (˙ ) of
˙ , 〈ω| ˙ 〉 is an biholomorphic automorphism of (˙ ) given by 〈ω| ˙ 〉([ ]) =
[ ◦ ω−1 ] for all [ ] ∈ ( ˙ ). Since the correspondence Isot( )∋ [ω] 7→
〈ω| ˙ 〉 ∈ Mod(˙ ) is injective, we can classify [ω] by a classification for the elements of
Mod(˙ ).

For our classification, we use the following one due to Bers [1] for the elements
of Mod(˙ ). Let ( ˙ ) be the Teichmüller distance on (˙ ), and set

(χ) = inf
τ∈ ( ˙ )

( ˙ )(τ χ(τ ))
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Then, elementsχ ( 6= id) of Mod(˙ ) are classified as follows:
(1) χ is elliptic if (χ) = 0, and (χ) = ( ˙ )(τ0 χ(τ0)) for someτ0, i.e., χ has a fixed
point τ0 in ( ˙ ).
(2) χ is parabolic if (χ) = 0, and (χ) < ( ˙ )(τ χ(τ )) for all τ .
(3) χ is hyperbolic if (χ) > 0, and (χ) = ( ˙ )(τ0 χ(τ0)) for someτ0.
(4) χ is pseudo-hyperbolicif (χ) > 0, and (χ) < ( ˙ )(τ χ(τ )) for all τ .

1.3. In order to characterize [ω] ∈ Isot( ), we will use the pure braid [ω]
induced by [ω]. Let ω : × → be an isotopy from id toω, where is the unit
interval [0 1]. We set

= × · · · ×︸ ︷︷ ︸
times

p = ( 1 2 . . . ) and

= {( 1 2 . . . ) ∈ | = for some with 6= }

Then we have a closed curveω = ( ω 1 ω 2 . . . ω ) in \ defined by

ω (·) = ω( ·)

It is well-known that the map

Isot( )∋ [ω] 7→ [ ω] ∈ π1( \ p)

is well-defined and isomorphic (see Theorem 4.2 of Birman [3]for compact case). The
fundamental groupπ1( \ p) is called thepure braid groupwith strings of .
We call an element [ ]∈ π1( \ p) a pure braid with strings of , which is
represented by a closed path = (1 2 . . . ) : → \ with base pointp. The
maps : → are calledstrings of . From this point of view, we will characterize
the type of〈ω| ˙ 〉 ∈ Mod(˙ ) by using the pure braid [ω] induced from [ω].

1.4. Now we assume throughout that = 2 unless otherwise stated. Then we
have the following main result.

Main Theorem. Let be a hyperbolic Riemann surface of analytically finite
type with two specified points1, 2 ∈ , and set ˙ = \ { 1 2}. Let [ω] be a non-
trivial element of Isot( 2), which induces an element〈ω| ˙ 〉 of Mod(˙ ) and a pure
braid [ ω] with a representative ω = ( 1 2).

Then the element〈ω| ˙ 〉 is not elliptic. Moreover, 〈ω| ˙ 〉 is classified as follows:
(1) 〈ω| ˙ 〉 is parabolic if and only if

(1a)each string of ω is either a trivial, a parabolic, or a simple hyperbolic
closed curve on , and
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(1b) the strings 1, 2 are separable, or parallel.
(2) 〈ω| ˙ 〉 is hyperbolic if and only if

(2a) the pure braid[ ω] is essential,
(2b) the strings 1, 2 are not parallel, and
(2c) for any puncture of , each string is not parallel to .

The definitions such as essential, separable, parallel, etcin this statement are given
at the beginning of the next section. A part of the above result has been announced
without proof in the survey article [9].

Note that in our terminology, Kra’s result (Theorem 2 of Kra [10]) is restated as
follows.

Kra’s Theorem. Let be a hyperbolic Riemann surface of analytically finite
type with one specified point1, and set ˙ = \ { 1}. Let [ω] be a non-trivial el-
ement ofIsot( 1), which induces an element〈ω| ˙ 〉 of Mod(˙ ) and a pure braid[ ω]
of one string ω = .

Then the element〈ω| ˙ 〉 is not elliptic. Moreover, 〈ω| ˙ 〉 is classified as follows:
(1) 〈ω| ˙ 〉 is parabolic if and only if the string is either a parabolic ora simple
hyperbolic closed curve on, and
(2) 〈ω| ˙ 〉 is hyperbolic if and only if the string is essential.

In order to deal with the case for> 2, we need to extend the notion that strings
are separable or parallel. This will be pursued further in the future.

1.5. This paper is organized as follows. In Section 2 we will give some defi-
nitions for curves and pure braids on a Riemann surface. We also explain a relation
between Bers’ classification and Thurston’s one for elements of Teichmüller modular
transformations. We recall distortion theorems of quasiconformal maps and several re-
sults on hyperbolic geometry of Riemann surfaces. These facts are used in Section 3
and Section 4. In Section 3, for a given [ω] ∈ Isot( 2) we construct an isotopy from
id to ω in with certain good properties, which is called acanonical isotopyof [ω].
Using the canonical isotopy, we will give a proof of our main theorem in Section 4.
We illustrate some examples for the theorem in the final section.

2. Preliminaries

2.1. First of all, let us give some definitions for curves on a hyperbolic Riemann
surface of analytically finite type. A simple closed curve onis said to bead-
missibleunless it is deformed continuously into a point or a punctureof . A non-
trivial element [ ] of the fundamental group of is calledparabolic if is deformed
continuously into a puncture of ,hyperbolic if it is not. A hyperbolic element [ ] is
said to besimple if is freely homotopic to a power of a simple closed curve on .
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A hyperbolic element [ ] is calledessentialif any closed curve ′ freely homotopic
to intersects every admissible simple closed curve on . We say that a non-trivial
closed curve on isparabolic, hyperbolic, simple hyperbolic, essentialif the ele-
ment [ ] of the fundamental group of is parabolic, hyperbolic, simple hyperbolic,
essential hyperbolic, respectively.

2.2. Next we will give some definitions for pure braids [ ] of two strings on .
A pure braid [ ] of two strings on is said to beessentialunless there exists a

subdomain in satisfying the following three conditions:
(i) the boundary of consists of smooth simple closed curves;
(ii) the subgroup ∗(π1( ∗)) of π1( ∗) has a hyperbolic element, where :→
is the inclusion map;
(iii) ′

1( ) ∩ = ∅ and ′
2( )∩ = ∅ for some representative (′1

′
2) of [ ].

We say that the strings1 and 2 of a representative = (2 2) of the pure braid
[ ] are separableif there exist disjoint non-trivial simple closed curves1 . . . ⊂

and distinct components 1, 2 of the complement \ ( 1 ∪ · · · ∪ ) such that
′
1( ) ⊂ 1 and ′

2( ) ⊂ 2 for some representative (′1
′
2) of [ ].

It is said that 1 is parallel to 2 if there exists a continuous map :× →
satisfying the following three conditions:
(i) ( 1 2) 6= 2( 1) for any 1 ∈ , 2 ∈ [0 1),
(ii) ( · 0) = 1(·), (· 1) = 2(·), and
(iii) (0 ·) = (1 ·).
We see that if 1 is parallel to 2 then 2 is parallel to 1 (see Lemma 8). So we may
say that 1 and 2 are parallel if 1 is parallel to 2. Note that if 1 is parallel to 2 for
some representative (1 2), then ′

1 is parallel to ′
2 for all ( ′1

′
2) ∈ [( 1 2)].

A string of ( 1 2) is parallel to a puncture of if there exists a continuous
map : × → ∪ { } satisfying the following three conditions:
(i) ( 1 2) ∈ \ { ( 1)} for all ( 1 2) ∈ × [0 1), where is 1 or 2 with 6= ,
(ii) ( · 0) = (·), (· 1) = , and
(iii) (0 ·) = (1 ·).
If is parallel to a puncture , then it turns out that′ is parallel to for all repre-
sentative (′1

′
2) of [( 1 2)].

2.3. A finite non-empty set of disjoint simple closed curves{ 1 . . . } on
is said to beadmissibleif no can be deformed continuously into either a point, a
puncture of , or into a with 6= . We say that an orientation preserving home-
omorphismω : → is reducedby { 1 . . . } if { 1 . . . } is admissible and
if ω( 1 ∪ · · · ∪ ) = 1 ∪ · · · ∪ .

A self-map ω of is called reducible if it is not isotopic to the identity map
and is isotopic to a reduced map. A self-map of is calledirreducible if it is not
reducible. This is a classification for self-mapsω, which is introduced by Thurston



NIELSEN-THURSTON-BERS TYPE OF SOME SELF-MAPS 663

(cf. Thurston [14]). Theorem 4 of Bers [1] says that an element 〈ω〉 ∈ Mod( ) of
infinite order is hyperbolic if and only ifω is irreducible.

If ω : → is reduced by{ 1 . . . }, then we denote by 1 . . . the
components of \ ( 1 ∪ · · · ∪ ), and call themparts of . Each surface is of
finite type ( ) with 2 − 2 + > 0, andω permutes the parts . Letα be the
smallest positive integer so thatα fixes . We say thatω is completely reducedby
{ 1 . . . } if α | is irreducible for each . Lemma 5 of Bers [1] shows that ev-
ery reducible map is isotopic to a completely reduced map. Ifω is completely reduced,
then the maps α | are called the components maps ofω. A parabolic or pseudo-
hyperbolic elementχ ∈ Mod( ) can be always induced by a completely reduced map
ω. The component maps ofω induce elements of Teichmüller modular groups of parts
of , which is called therestrictions of χ. The elementχ is parabolic if all the re-
strictions are periodic or trivial, and pseudo-hyperbolicif at least one restriction is hy-
perbolic (see Theorem 7 of Bers [1] and its proof).

2.4. Now let us recall distortion theorems of quasiconformal maps. Let be a
Riemann surface with hyperbolic metric of constant Gaussian curvature−1. For arbi-
trary points , on and for any curve joining and , there exists aunique
geodesic curve homotopic rel to . Let ( ) be the hyperbolic length of

on . For any number ∈ (0 1), denote byµ( ) the modulus of the Grötzsch’s
ring domain{ ∈ C | | | < 1}\[0 ]. It is known thatµ( ) satisfies lim→1 µ( ) = 0
and lim→0 µ( ) =∞ (cf. Chapter II, 2.2 and 2.3 of Lehto and Virtanen [11]).

Lemma 1 (Chapter II, 3.1 of Lehto and Virtanen [11]).Let 1 and 2 be hyper-
bolic Riemann surfaces, and let : 1 → 2 be a quasiconformal map with maximal
dilatation ( ). Then

1
( )
≤ µ(tanh( 1( )/2))
µ(tanh( 2( ( ))/2))

≤ ( )

for any curve on 1.

Lemma 2 (cf. Teichmüller [13], Gehring [8]). There exists a strictly increasing
real-valued continuous functionρ : [1 ∞)→ [0 ∞) satisfying the following conditions:
(1) ρ(1) = 0 and lim →∞ ρ( ) =∞.
(2) Let be a hyperbolic Riemann surface of analytically finite type and a point
of . Then

( ( )) ≤ ρ( ( ))

for any quasiconformal self-map of which is isotopic to the identity.
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C( 2 arcsinh(cosh( ( )/2)))

Fig. 1. The collar around .

2.5. Finally we will give several facts on hyperbolic geometry ofa hyperbolic
Riemann surface of analytically finite type.

For any > 0 and any non-trivial closed curve , denote byC( ) the set of all
points ∈ such that there exists a closed geodesic loop satisfying thefollowing
three conditions:
(1) contains ,
(2) is freely homotopic to on , and
(3) ( ) < .
Using hyperbolic trigonometry and the collar theorem (cf. Buser [4], 2.3.1 and 4.4.6),
we get the following (see Fig. 1).

Lemma 3. Let be an admissible simple closed geodesic on a hyperbolic
Riemann surface of analytically finite type, and a closed curve on . Assume
that is freely homotopic to the -fold iterate of for some positive integer .

Then for any real number satisfying

( ) < ≤ 2 arcsinh

((
sinh

( )
2

)(
coth

( )
2

))

the setC( ) is conformally equivalent to an annulus.

For any admissible simple closed geodesic on , the set

C
(

2 arcsinh

(
cosh

( )
2

))

is said to be thecollar around . By Lemma 3, if ( )< 2 arcsinh 1, the set
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C( 2 arcsinh 1)

Fig. 2. The cusp around a puncture of .

C( 2 arcsinh 1) is conformally equivalent to an annulus.

By the Shimizu-Leutbecher lemma (cf. II.C.5 of Maskit [12]), we have the follow-
ing assertion (see Fig. 2).

Lemma 4. Let be a hyperbolic Riemann surface of analytically finite type,
and a non-trivial closed curve on which can be continuously deformed into a
puncture of .

Then, for any real number with0 < ≤ 2 arcsinh 1,the setC( ) is confor-
mally equivalent to a once-punctured disk.

For a non-trivial simple closed curve which can be continuously deformed into
a puncture of , the setC( 2 arcsinh 1) is called acusp around .

3. Canonical isotopies

3.1. Let [ω] be a non-trivial element of Isot( 2). For any quasiconformal map
on ˙ onto another Riemann surface, Teichmüller’s existence and uniqueness theorem

for extremal quasiconformal maps implies that there existsa unique quasiconformal
self-mapω of ( ˙ ) such thatω is isotopic to ◦ω−1◦ −1 on (˙ ) and is extremal
on (˙ ), i.e., ω minimizes the dilatation among all quasiconformal self-maps on (̇ )
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isotopic to ◦ ω−1 ◦ −1 (cf. Gardiner [6], Theorem 2 and Theorem 3, pp. 119–120).

˙
ω| ˙ //

��

˙

��
( ˙ ) ( ˙ )ω

oo

It is well-known that every quasiconformal map on˙ is extended to a quasicon-
formal map ˆ on . Becauseω is isotopic to id on , the automorphism̂ω is iso-
topic to id on ˆ ( ). For simplicity, we denote [̇ ( ˙ )] ∈ ( ˙ ) by [ ]. Note that

(〈ω| ˙ 〉) = inf{log (ω ) | [ ] ∈ ( ˙ )}.
In order to study the relation between (ω ) and ( ω) = ( ◦ ω 1 ◦ ω 2), in

the next subsection we will construct an isotopy :ˆ ( ) × → ˆ ( ) between id and
ω̂ on ˆ ( ) such that
(1) the pure braid [ (ω)] on ˆ ( ) is induced by the homotopy , i.e., [ (ω)] =
[( ( ˆ ( 1) ·) ( ˆ ( 2) ·))],
(2) the map (· ) : ˆ ( )→ ˆ ( ) is a quasiconformal map for every , and
(3) the maximal dilatation of (· ) is bounded by a constant depending only on

= ( ˙ )([ ] 〈ω| ˙ 〉([ ])).

3.2. Let ∋ 7→ [ ] ∈ ( ˙ ) be a geodesic curve connecting [ ] and〈ω| ˙ 〉([ ])
with respect to the Teichmüller distance. Denote bŷ the extremal quasiconformal
map of ˆ ( ) onto ̂ ( ) isotopic to ̂ ◦ ˆ−1 on ˆ ( ).b

##F

F

F

F

F

F

F

F

Fb
��

ˆ ( ) b // ̂ ( )

We set =̂−1 ◦ ̂ ◦ ˆ −1| ( ˙ ), and let be the extremal quasiconformal map of
( ˙ ) onto ( (˙ )) isotopic to on (̇ ).

˙ //

��

( ˙ )

( ˙ ) // ( ( ˙ ))

b | ( ( ˙ ))

OO

Define a map ω : ˆ ( ) × → ˆ ( ) by

ω ( ) = ̂ ( ) ( ∈ ˆ ( ) ∈ )
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Then we have the following assertion (cf. Earle and McMullen[5]).

Lemma 5. Let ω (· ) ( ∈ ) be a family of quasiconformal self-maps of
ˆ ( ) constructed as above. Thenω is an isotopy betweenid and ω̂ on ˆ ( ), and
it is uniquely determined by the isotopy classes of andω| ˙ up to parameters. More-
over, for each ∈ , the maximal dilatation of the quasiconformal mapω (· )
satisfies

≤ exp(2 ( ˙ )([ ] 〈ω| ˙ 〉([ ])))(3.1)

In this paper, we call ω the canonical isotopybetween id and̂ω on ˆ ( ).

3.3. Let us give a proof of Lemma 5. First we prove that the mapω is
uniquely determined by the isotopy classes of andω| ˙ up to parameters. Let ′ be
an arbitrary quasiconformal map oḟ onto (˙ ) isotopic to , andω′ an arbitrary
self-homeomorphism of fixing 1, 2 such thatω′| ˙ is isotopic toω| ˙ . Then there
exists a geodesic curve∋ 7→ [ ′] ∈ ( ˙ ) with respect to the Teichmüller distance
connecting [ ′] = [ ] and 〈ω′| ˙ 〉([ ′]) = 〈ω| ˙ 〉([ ]) on ( ˙ ). We have [ ′] = [ ]
( ∈ ) for a suitable parametrization (see Section 7.4 of Gardiner and Lakic [7]).

Fix a number ∈ . Then there is a conformal mapσ of ( ˙ ) onto ′( ˙ ) such
that σ is isotopic to ′ ◦ ( )−1 on (˙ ). Denote byω′ ′ the extremal quasiconformal

self-map of (̇ ) isotopic to ′ ◦ ω′−1 ◦ ′−1 on (˙ ). By Teichmüller’s uniqueness
theorem, we obtainω′ ′ = ω . Let ′̂ : ˆ ( ) → ′̂( ) be the extremal quasiconformal

map isotopic to ′̂ ◦ ′̂
−1

on ˆ ( ). Since

′̂ ∼ ′̂ ◦ ′̂
−1 ∼ σ̂ ◦ ̂ ◦ ˆ−1 ∼ σ̂ ◦̂ on ˆ ( )

we have ′̂ = σ̂◦̂ by Teichmüller’s uniqueness theorem. Set′ = ′̂
−1
◦ ′̂◦ ˆ′−1| ( ˙ ),

and let ′ denote the extremal quasiconformal map of (˙ ) onto ′( ( ˙ )) isotopic to
′ on (˙ ). Then we obtain

′ ∼ ′̂
−1
◦ ′̂ ◦ ˆ′−1| ( ˙ )

∼ (̂−1 ◦ σ̂−1) ◦ (σ̂ ◦ ̂ ) ◦ ˆ −1| ( ˙ )

∼ ̂−1 ◦ ̂ ◦ ˆ −1| ( ˙ ) ∼ on (˙ )

and Teichmüller’s uniqueness theorem yields′̂ = ̂ for any ∈ .
By taking 0 = and 1 = ◦ ω−1, we have ω (· 0) = 0̂ = id and ω (· 1) =

1̂ = ω̂ .
Next we prove inequality (3.1). Since∋ 7→ [ ] ∈ ( ˙ ) is the unique geodesic
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curve connecting [ ] and〈ω| ˙ 〉([ ]), we have

(̂) ≤ (̂ ◦ ˆ −1) ≤ exp( ( ˙ )([ ] 〈ω| ˙ 〉([ ])))

for any ∈ . Hence the maximal dilatation of ω (· ) satisfies (3.1).
In order to prove that ω : ˆ ( ) × → ˆ ( ) is continuous, we may assume

that = id by changing of base points of Teichmüller spaces. Let us recall the fol-
lowing Teichmüller’s theorem: For any hyperbolic Riemannsurface of analytically
finite type, let 2( )1 be the set of all holomorphic quadratic differentialsφ satisfy-
ing ‖φ‖1 =

∫
|φ( )| < 1. For each elementφ of 2( )1, define the Beltrami

differential µφ on by

µφ = ‖φ‖1
φ

|φ|
for φ 6≡ 0, andµφ = 0 for φ ≡ 0. Let φ : → φ( ) be a quasiconformal map with
Beltrami coefficientµφ, which is called the Teichmüller map associated withφ. Then
Teichmüller’s theorem asserts that the map

: 2( )1 ∋ φ 7→ [ φ] ∈ ( )

is a homeomorphism (cf. Gardiner [6], Theorem 8, p. 126).
If [ω] ∈ Isot( 2) is trivial, then ω id(· ) = id for any ∈ . So it is sufficient

to consider the case where [ω] ∈ Isot( 2) is non-trivial. In this case, the quadratic
differential φ = ˙

−1([ω−1]) is not identically zero. For any ∈ , let : ˙ → ( ˙ )
be the quasiconformal map with Beltrami coefficient

µ = ‖φ‖1
φ

|φ|

Then ∋ 7→ [ ] ∈ ( ˙ ) is the Teichmüller geodesic from [id] to〈ω| ˙ 〉([id]).
In order to prove that ω id is continuous at (0 0), we take an arbitrary se-

quence{ }∞=1 ⊂ converging to 0 ∈ , and prove that the sequence of the maps
{ ω id(· )}∞=1 converges to ω id(· 0) uniformly on every compact subset of . The
proof consists of three steps as follows.

STEP 1. First we prove that̂ converges tô 0 uniformly on every compact set.
For simplicity, we denote ,µ by , µ respectively. Letπ : H → be a universal

covering. For each , take a universal coveringπ : H → ̂ ( ) and a map˜ : H → H
so that ̂ ◦ π = π ◦ ˜ and the continuous extension of̃ to H fixes the points
0, 1,∞. We shall use the same symbol for a quasiconformal self-map of H and its
continuous extension toH. Denote byµ̃ the Beltrami coefficient of˜ .

Since the sequence{µ̃ }∞=1 converges tõµ0 almost everywhere inH, the sequence

{ ˜ }∞=1 converges to 0̃ uniformly on every compact subset ofH (cf. Gardiner [6],
Lemma 5, p. 21).
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STEP 2. Next we prove that the sequence of the inverse maps{̂−1}∞=1 con-

verges to 0̂

−1 uniformly on every compact set. We set̂ = ̂ , for short.
Since the map 7→ [ ] ∈ ( ˙ ) and the forgetful map of (̇) onto ( ) are

continuous, the sequence{[̂]}∞=1 ⊂ ( ) converges to [̂ 0] ∈ ( ). For any , we

set ψ = −1([̂ ]) ∈ 2( )1. By Teichmüller’s uniqueness theorem,

ν =




‖ψ ‖1

ψ

|ψ | (if ψ 6≡ 0)

0 (if ψ ≡ 0)

is the Beltrami coefficient of̂ . Sincê is isotopic to ̂ on , we can take a map
˜ : H → H so that̂ ◦ π = π ◦ ˜ on H and ˜ = ˜ on the real axis. Theñ
fixes 0, 1,∞. Let ν̃ be the Beltrami coefficient of̃ . If ψ0 ≡ 0, then the sequence
of norms{‖ν̃ ‖∞}∞=1 converges to zero. In the case ofψ0 6≡ 0, the sequence{ν̃ }∞=1

converges pointwise tõν0 on H\{ ∈ H | ψ0(π ( )) = 0 or π ( ) = ( = 1 2)},
because eachψ is holomorphic and‖ψ0−ψ ‖1→ 0 as →∞. Hence, in both cases,
the sequence{ν̃ }∞=1 converges toν̃0 almost everywhere inH. It follows that the se-
quence{˜}∞=1 converges to 0̃ uniformly on every compact subset ofH (cf. Gar-
diner [6], Lemma 5, p. 21).

Let us see the convergence of the sequence{˜−1}∞=1. If ψ0 ≡ 0, then the

map 0̃
−1 is the identity, and the Beltrami coefficients̃ν′ of the maps˜−1 sat-

isfy ‖ν̃′‖∞ = ‖ν̃ ‖∞ → 0 as → ∞. In the case ofψ0 6≡ 0, we may assume
that ψ 6≡ 0 for each . Sinceψ is holomorphic, the Beltrami coefficient̃ν of
˜ is real analytic onH\{ ∈ H | ψ (π ( )) = 0}. Hence˜ is real analytic on
H\{ ∈ H | ψ (π ( )) = 0}, and the partial derivatives∂˜, ∂̄˜ converge uniformly
to ∂ 0̃, ∂̄ 0̃ respectively on every compact subset ofH\{ ∈ H | ψ0(π ( )) = 0}. It
follows that the Beltrami coefficients

ν̃′ (ζ) = −ν̃ ( )×
(
∂˜( )
|∂˜( )|

)2

ζ = ˜( )

of the inverse maps̃ −1 converge to the Beltrami coefficient

ν̃′0(ζ) = −ν̃0( ) ×
(
∂ 0̃( )
|∂ 0̃( )|

)2

ζ = ˜( )

of 0̃
−1 pointwise almost everywhere. Thus the sequence of maps{˜−1}∞=1 con-

verges to 0̃
−1 uniformly on every compact subset ofH in both cases.

STEP 3. Last we verify that̂ = ω id(· ) converges to 0̂ = ω id(· 0) uni-
formly on every compact subset of .

Each ̂ is a quasiconformal self-map isotopic to id on , and̂| ˙ is a
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Teichmüller map satisfying

[ ̂ | ˙ ] = [̂−1 ◦ ̂ | ˙ ] ∈ ( ˙ )

By the results of Step 1 and Step 2, the mapŝ−1 ◦ ̂ : → converges to
the map 0̂

−1 ◦ 0̂ uniformly on every compact subset of . It follows that the se-
quence{[ ̂ | ˙ ]}∞=1 ⊂ ( ˙ ) converges to [̂0| ˙ ]. Hence, by an argument similar to that
in Step 2, we see that the sequence{ ̂ }∞=1 converges to 0̂ uniformly on every com-
pact subset of .

3.4. Next we see a property of the canonical isotopy. Define a function
λ0 : [0 ∞)× (0 ∞)→ R by

λ0( ) = 2 arctanh

(
µ−1

(
µ(tanh(/2))

exp(4 )

))

whereµ( ) is the modulus of Grötzsch’s ring domain{ ∈ C | | | < 1}\[0 ]. The
function λ0 is a continuous function which is strictly increasing with respect to the
first and the second parameters. The functionλ0 also satisfies

λ0( 0 0) ≥ 0 and lim
→0

λ0( 0 ) = 0(3.2)

for any 0 ≥ 0, 0 > 0. In view of Lemma 5 and a distortion theorem of quasiconfor-
mal maps, we get the following.

Lemma 6. Let [ω] be an arbitrary element ofIsot( 2), and [ ] an arbitrary
point of ( ˙ ). Denote by ω the canonical isotopy betweenid and ω̂ on ˆ ( ). Take
a curve connecting two points1, 2 on ˆ ( ). For each ∈ , let be a unique
geodesic curve in the homotopy class ofω ( ) rel ω ( 1 ) and ω ( 2 ).

Then for any , ′ ∈ ,

ˆ ( )( ) ≤ λ0( ( ˙ )([ ] 〈ω| ˙ 〉([ ])) ˆ ( )( ′))

Proof. Set

0 = ( ˙ )([ ] 〈ω| ˙ 〉([ ]))

= ω (· ) ◦ { ω (· ′)}−1

Lemma 1 and (3.1) of Lemma 5 together yield

µ( ′)
µ( )

≤ ( ) ≤ exp(4 0)
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where = tanh(̂ ( )( )/2) and ′ = tanh( ˆ ( )( ′)/2). Hence we have ˆ ( )( ) ≤
λ0( 0 ˆ ( )( ′)).

4. Proof of Main Theorem

4.1. A proof of main theorem will be given in a series of propositions as fol-
lows.

Proposition 1. For any non-trivial element[ω] ∈ Isot( 2), the element〈ω| ˙ 〉 ∈
Mod(˙ ) is not elliptic.

Proof. Since the correspondence Isot( 2)∋ [ω] 7→ 〈ω| ˙ 〉 ∈ Mod(˙ ) is injective,
it is sufficient to show that the group Isot( 2) is a torsion-free group.

Let [ω] be an element of Isot( 2). Assume that there exists a number0 ≥ 1
such that (ω| ˙ ) 0 is isotopic to the identity oṅ . Since (ω| \{ 1}) 0 is isotopic to the
identity on \{ 1} and the group Isot( { 1}) is isomorphic to the torsion-free group
π1( 1), it follows that ω| \{ 1} is isotopic to the identity on \ { 1} (cf. Proposi-
tion 1 of Kra [10]). Because Isot(\{ 1} { 2}) is isomorphic to the torsion-free group
π1( \ { 1} 2), the element [ω] ∈ Isot( \ { 1} { 2}) is trivial, and the mapω| ˙ is
isotopic to the identity oṅ . Hence Isot( 2) is torsion-free.

REMARK. From a referee we learned a simple proof of Proposition 1: If〈ω| ˙ 〉 is
elliptic, it has a fixed point [0] in ( ˙ ). Set 0̇ = 0( ˙ ) and 0 = 0̂( ). Then the
map 0 ◦ ω| ˙ ◦ 0

−1 : 0̇ → 0̇ is isotopic to some conformal self-mapσ : 0̇ → 0̇.

Since the map 0̂ ◦ ω ◦ 0̂
−1

: 0 → 0 is isotopic to the identity, we havêσ = id and
conclude thatω| ˙ is isotopic to the identity on 0̇. This contradicts to the assumption
of Proposition 1.

4.2. Next we state the following topological assertions.

Lemma 7. Let [ω] be an element ofIsot( 2), and [ ω] ( ω = ( 1 2)) the pure
braid induced byω. If 1 is parallel to 2, then for any > 0 there exists a self-
homeomorphism of with ( 2) = 2 such that the element[ ◦ω◦ −1 ] of the pure
braid group of with base point( ( 1) 2) has a representative( ′1 2) satisfying

( ′1( ) 2( )) < for all ∈ .

Proof. Since 1 is parallel to 2, there exists a continuous map :× →
such that
(i) ( 1 2) 6= 2( 1) for any 1 ∈ , 2 ∈ [0 1),
(ii) ( · 0) = 1(·), (· 1) = 2(·), and
(iii) (0 ·) = (1 ·).
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Take a number 0 ∈ so that

( ( 1 2) 2( 1)) < for 1 ∈ 2 ∈ [ 0 1]

Set

′
1 = (0 0)

′
1( ) = ( 0)

˙ ′ = \ { ′1 2}

Then there exists a homeomorphismω′ : → isotopic to the identity of and there
exists an isotopy ω′ : × → such that
(1) ω′(· 0) = id and ω′(· 1) = ω′(·), and
(2) ω′( ′1 ) = ′

1( ) and ω′ ( 2 ) = 2( ) for all ∈ .
The element [(′1 2)] ∈ π1( \ ( ′1 2)) is the pure braid induced from [ω′] ∈
Isot( { ′1 2}).

On the other hand, we can construct a homeomorphism :→ isotopic to the
identity on and the isotopy : × → such that
(1) (· 0) = id and (· 1) = (·), and
(2) ( 1 ) = (0 0 ) and ( 2 ) = 2 for all ∈ .
The map satisfies (1) = ′

1. Set ω′′ = ◦ ω ◦ −1. We shall show that (′1 2)
is a representative of the pure braid induced from [ω′′] ∈ Isot( { ′1 2}). Define an
isotopy ω′′ : × → from id to ω′′ by

ω′′( ) =





( −1( ) 1− 3 )

(
0≤ <

1
3

∈
)

ω( −1( ) 3 − 1)

(
1
3
≤ <

2
3

∈
)

(ω ◦ −1( ) 3 − 2)

(
2
3
≤ ≤ 1 ∈

)

We set ′′1 ( ) = ω′′ ( ′1 ) for all ∈ . Then [( ′′1 2)] ∈ π1( \ ( ′1 2)) is the pure
braid induced from [ω′′] ∈ Isot( { ′1 2}). The closed path ∋ 7→ ( ′1( ) 2( )) ∈
\ is homotopic rel ( ′1 2) to the closed path ∋ 7→ ( ′′1 ( ) 2( )) ∈ \ on
\ by the homotopy

× ∋ ( ) 7→





( (0 0(1− 3 )) 2( ))
(

0 ≤ ≤
3

)

( ( − /3
1− 2 /3 0(1− )

)
2( )

) (
3
≤ ≤ 1−

3

)

( (1 0(3 − 2)) 2( ))
(

1−
3
≤ ≤ 1

)
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This yields [( ′1 2)] = [( ′′1 2)].

Lemma 8. Let [ω] be an element ofIsot( 2), and [ ω] ( ω = ( 1 2)) be the
pure braid induced fromω.
(1) 1 is parallel to 2 if and only if there exists a simple closed curve on˙ such
that (1a) is the boundary curve of a topological open disk of with1, 2 ∈ ,
and (1b) ω( ) is freely homotopic to oṅ .
(2) is parallel to a puncture of if and only if there exists a simple closed curve

on ˙ such that(2a) is the boundary curve of a topological open disk of˙ ∪
{ } with , ∈ , and (2b) ω( ) is freely homotopic to oṅ .

Proof. We will give a proof of statement (1). We may assume that the map
ω| ˙ : ˙ → ˙ is a Teichmüller map. Then, by the same construction as one in Step 3
of Lemma 5, we find an isotopyω : × → from id to ω such that
(1) ω( ·) = (·) for = 1, 2, and
(2) the map ω(· )| ˙ : ˙ → \ { 1( ) 2( )} is a Teichmüller map for every∈ .
Note that since ω(· )| ˙ is a Teichmüller map for every∈ , the same argument as
one in the proof of Lemma 5 yields that the map× ∋ ( ) 7→ ( ω(· ))−1( ) ∈
is also continuous.

Assume that there exists a simple closed curve on˙ satisfying (1a) and (1b).
Take a simple curveα on such thatα(0) = 1 and α(1) = 2, and set ω( 1 2) =

ω(α( 2) 1) for any 1, 2 ∈ . Then ω( 1 0) = ω( 1 1) = 1( 1) and ω( 1 1) =

ω( 2 1) = 2( 1) for any 1 ∈ . Sinceα is simple, we obtain ω( 1 2) 6= 2( 1) for
any 1 ∈ and 2 ∈ [0 1).

Becauseω( ) is freely homotopic to on˙ , there exists a homeomorphism
: → isotopic to the identity of and there exists an isotopy :× →

such that
(1) (· 0) = id, (· 1) = (·),
(2) ( 1 ) = 1, ( 2 ) = 2 for all ∈ , and
(3) ( ) = .
This follows from Baer-Zieschang theorem (A.3 of Buser [4]). We set (1 2) =

(ω(α( 2)) 1) for any 1, 2 ∈ .
Since the curvesα and (1 ·) = ◦ ω(α) are simple and are contained in the

disk , we can easily construct a continuous mapα : × → such that
(1) α(0 ·) = (1 ·), α(1 ·) = α(·),
(2) α( 1 0) = 1, α( 1 1) = 2 for all 1 ∈ , and
(3) α( 1 2) 6= 2 for any 1 ∈ , 2 ∈ [0 1).
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Finally we define a continuous map :× → by

( 1 2) =





ω(3 1 2)

(
0 ≤ 1 <

1
3 2 ∈

)

(3 1 − 1 2)

(
1
3
≤ 1 <

2
3 2 ∈

)

α(3 1 − 2 2)

(
2
3
≤ 1 ≤ 1 2 ∈

)

Set ′1( ) = ( 0) and ′
2( ) = ( 1). Then ( ′1

′
2) ∈ [( 1 2)], and ′

1 is parallel to ′
2

by . Thus, we conclude that1 is parallel to 2.
Conversely, assume that1 is parallel to 2. Set 0 = min{ inj( 2( )) | ∈ },

where inj( ) is the injectivity radius of at ∈ . Then, by Lemma 7, we may
assume that (1( ) 2( )) < 0/3 for all ∈ . Let ⊂ denote the circle of radius

0/2 centered at2( ). Then = 0 = 1 is a simple closed curve oṅ satisfying (1a),
andω( ) is freely homotopic to oṅ by the homotopy ∋ 7→ ω◦( ω(· ))−1( ).
We have proved statement (1).

Statement (2) is proved similarly.

4.3. As an immediate consequence of Lemma 8, we obtain the following propo-
sition.

Proposition 2. For a non-trivial element[ω] ∈ Isot( 2), the assumption that
〈ω| ˙ 〉 is hyperbolic as an element ofMod(˙ ) implies conditions(2a), (2b)and (2c) of
Main Theorem.

Proof. By Proposition 1, the element〈ω| ˙ 〉 is not elliptic. If condition (2a) of
Main Theorem does not hold, then there exists an admissible simple closed curve
on ˙ which does not intersect1 and 2 for some representative (1 2) of [ ω]. Since
ω( ) is freely homotopic to oṅ , the mapω| ˙ is reducible. If condition (2b) or
(2c) of Main Theorem does not hold, then by Lemma 8, the mapω| ˙ is reducible.
Hence, by Theorem 7 of Bers [1], the element〈ω| ˙ 〉 is not hyperbolic.

4.4. Let [ω] be an element of Isot( 2), and [ ] an arbitrary point of (˙ ). De-
note byω the extremal quasiconformal self-map of (˙ ) isotopic to ◦ω−1◦ −1 on

( ˙ ). Let ω : ˆ ( ) × → ˆ ( ) be the canonical isotopy between id and̂ω . For
any = 1, 2, we set

( ) = ω ( ˆ ( ) ) ∈ ˆ ( ) ∈

Then ( 1 2 ) ∈ π1( \ p ) is a pure braid induced from [̂ω ] ∈ Isot(ˆ ( )
{ ˆ ( 1) ˆ ( 2)}), where = ˆ ( ) × ˆ ( ), = {( 1 2) ∈ | 1 = 2} and
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p = ( ˆ ( 1) ˆ ( 2)).
The following lemma is an essential tool for proving the converse of Proposi-

tion 2.

Lemma 9. There exists a strictly decreasing continuous function

λ1 : [0 ∞)→ (0 arcsinh 1]

which has the following properties: Let [ω] be an arbitrary non-trivial element of
Isot( 2) satisfying (2a) and (2c) of Main Theorem,and [ ] an arbitrary element of

( ˙ ). Then

ˆ ( )( ) > λ1( 0) 0 = ( ˙ )([ ] 〈ω| ˙ 〉([ ]))(4.1)

for any non-trivial closed geodesic loop on̂( ) with base point ∈ 1 ( )∪ 2 ( ).

Proof. For any > 0, we set

λ1( ) = sup{ > 0 | arcsinh 1> λ0( λ0( ))}(4.2)

Then by (3.2), we haveλ1( 0) ≤ sup{ > 0 | arcsinh 1> λ0( 0 )} ≤ arcsinh 1. Let
be an arbitrary non-trivial closed geodesic loop with base point ∈ 1 ( ) ∪ 2 ( ) on
ˆ ( ).

If [ ] ∈ π1( ˆ ( ) ) is hyperbolic but not simple hyperbolic, then̂( )( ) ≥
4 arcsinh 1> λ1( 0) by Lemma 7 of Yamada [15].

In the case where [ ]∈ π1( ˆ ( ) ) is parabolic or simple hyperbolic, we will
obtain (4.1) by contradiction. Assume that

ˆ ( )( ) ≤ λ1( 0)(4.3)

It is sufficient to consider the case of∈ 1 ( ). Take a point 1 ∈ with 1 ( 1) = ,
and set

0 = ω (· 1)−1( )

Then 0 is a closed curve on̂ ( ) with base pointˆ ( 1), and is freely homotopic to
on ˆ ( ).

For any ∈ , let ( ) be a closed geodesic loop with base point1 ( ) on ˆ ( )
homotopic to ω ( 0 ) rel the base point. By Lemma 6, we have

ˆ ( )( ( )) ≤ λ0( 0 ˆ ( )( )) ∈(4.4)
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Thus, by (4.2), (4.3) and (4.4), we obtain

ˆ ( )( ( )) < 2 arcsinh 1 ∈(4.5)

This yields

1 ( ) ∈ C( 2 arcsinh 1)⊂ ˆ ( ) ∈(4.6)

If [ ] is a simple hyperbolic element ofπ1( ˆ ( ) ), then Lemma 3 implies that the
set C( 2 arcsinh 1) is conformally equivalent to an annulus. On theother hand, if
[ ] is a parabolic element ofπ1( ˆ ( ) ), then Lemma 4 asserts that the domain
C( 2 arcsinh 1) is conformally equivalent to a punctured disk.Thus, 1 ( ) is included
in a collar or a cusp of̂ ( ).

Next, we consider the string2 . For any ∈ , let M be the set of all closed
geodesic loops on̂ ( ) with base point 2 ( ), and an element ofM which min-
imizes the hyperbolic length on̂( ) among all elements ofM . By (4.6) and condi-
tions (2a), (2c) of Main Theorem, there exist a point2 ∈ satisfying

max{ ˆ ( )( ( )) | ∈ } ≥ ˆ ( )(
2)(4.7)

Indeed, suppose that there is no such a2. Set

0 = min

{
2 arcsinh 1 0 + 0

2

}

where 0 = max{ ˆ ( )( ( )) | ∈ } and 0 = min{ ˆ ( )( ) | ∈ }. If [ ] is a simple

hyperbolic element ofπ1( ˆ ( ) ), then the setC( 0) is conformally equivalent to
an annulus. A boundary component ofC( 0) is an admissible closed curve on
ˆ ( ) satisfying ∩ ( 1 ( ) ∪ 2 ( )) = ∅. Thus condition (2a) of Main Theorem does
not hold. On the other hand, if [ ] is a parabolic element ofπ1( ˆ ( ) ), then the set
C( 0) is conformally equivalent to a once-punctured disk. Let bethe boundary
curve of C( 0). Then ∩ ( 1 ( ) ∪ 2 ( )) = ∅ and ω ( ) is freely homotopic to
on (˙ ). It follows from Lemma 8 that the string1 of ω is parallel to a puncture
of , and condition (2c) of Main Theorem does not hold. Hence, in both cases, we
obtain a contradiction to an assumption of Lemma 9.

Set 0 = ω (· 2)−1( 2). Then 0 is a closed curve on̂ ( ) with base point
ˆ ( 2). For any ∈ , let ( ) be a closed geodesic loop with base point2 ( ) homo-
topic to ω ( 0 ) on ˆ ( ) rel the base point. By Lemma 6, we haveˆ ( )( ( )) ≤
λ0( 0 ˆ ( )( 2)) for any ∈ . Thus, (4.3), (4.4) and (4.7) together yield

ˆ ( )( ( )) ≤ λ0( 0 max{ ˆ ( )( ( ′)) | ′ ∈ })
≤ λ0( 0 λ0( 0 ˆ ( )( )))

< 2 arcsinh 1 ∈
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This gives

2 ( ) ∈ C( 2 arcsinh 1) ∈(4.8)

By (4.6) and (4.8), we get the contradiction to condition (2a) of Main Theorem.

4.5. Now, we state the converse of Proposition 2.

Proposition 3. If a non-trivial element[ω] ∈ Isot( 2) satisfies conditions(2a),
(2b) and (2c) of Main Theorem,then 〈ω| ˙ 〉 is hyperbolic as an element ofMod(˙ ).

Proof. By Proposition 1, it is sufficient to find an elementτ0 ∈ ( ˙ ) such that
(〈ω| ˙ 〉) = ( ˙ )(τ0 〈ω| ˙ 〉(τ0)). This is done as follows.

By definition, there exists a sequence{[ ]}∞=1 in ( ˙ ) satisfying

(〈ω| ˙ 〉) = lim
→∞

( ˙ )([ ] 〈ω| ˙ 〉([ ]))

We set

0 = max{ ( ˙ )([ ] 〈ω| ˙ 〉([ ])) | = 1 2 . . .}(4.9)

Let ω = ω be the extremal quasiconformal self-map of (˙ ) isotopic to ̂ ◦ ω−1 ◦
̂ −1| ( ˙ ). Then we have (ω ) = exp( ( ˙ )([ ] 〈ω| ˙ 〉([ ]))). Denote by ω the
canonical isotopy from id tôω .

We claim the following:

CLAIM . There exists a positive number (0) depending only on 0 such that

( ˙ )( ) > ( 0)(4.10)

for any and any admissible simple closed geodesic on (˙ ).

The claim yields Proposition 3 as follows (cf. Theorem 4 of Bers [1] and Theo-
rem 2 of Kra [10]): By the assertion of the claim and Lemma 4 of Bers [1], selecting
if need be a subsequence from{ }∞=1, we can take a sequence{θ }∞=1 ⊂ Mod(˙ ) so
that τ = θ ([ ]) converges to a pointτ∞ of ( ˙ ). Set

χ = θ ◦ 〈ω| ˙ 〉 ◦ θ −1 ∈ Mod(˙ )

Then by (4.9), we have

( ˙ )(τ∞ χ (τ )) ≤ ( ˙ )(τ∞ τ ) + ( ˙ )(τ χ (τ ))
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= ( ˙ )(τ∞ τ )

+ ( ˙ )(θ ([ ]) θ ◦ 〈ω| ˙ 〉([ ]))

= ( ˙ )(τ∞ τ ) + ( ˙ )([ ] 〈ω| ˙ 〉([ ]))

≤ ( ˙ )(τ∞ τ ) + 0

Therefore, we may assume by taking a subsequence if necessary that the sequence
χ (τ ) converges to a pointτ ′∞ of ( ˙ ). This follows from the fact that (̇) is of fi-
nite dimensional and is complete with respect to the Teichm¨uller distance ( ˙ ). Hence,
the triangle inequality asserts that{χ (τ∞)}∞=1 converges toτ ′∞. Selecting if need be a
subsequence, we can find an elementχ of Mod(˙ ) and a number 0 such thatχ = χ
for all > 0, because Mod(̇) acts properly discontinuously on (˙ ). This yields

(〈ω| ˙ 〉) = lim
→∞

( ˙ )([ ] 〈ω| ˙ 〉([ ]))

= lim
→∞

( ˙ )(θ ([ ]) θ ◦ 〈ω| ˙ 〉([ ]))

= lim
→∞

( ˙ )(τ χ (τ ))

= ( ˙ )(τ∞ χ(τ∞))

Sinceχ = χ = θ ◦ 〈ω| ˙ 〉 ◦ θ −1 for all > 0, we have (〈ω| ˙ 〉) = ( ˙ )(τ0 〈ω| ˙ 〉(τ0))
for τ0 = θ 0+1

−1(τ∞). By Proposition 1,〈ω| ˙ 〉 is hyperbolic.
To complete the proof of Proposition 3, we need to prove the claim. Set

( 0) = min{λ1( 0) λ2( 0)}

whereλ1 is the function defined in Lemma 9 andλ2( 0) = sup{ > 0 | λ1( 0)/3 >

λ0( 0 )}.
For any , let be an admissible simple closed geodesic on (˙ ) which min-

imizes the hyperbolic length among all admissible simple closed geodesics on (˙ ).
We will prove ( ˙ )( ) > ( 0).

First we consider the case where is also admissible as a closed curve on ̂ ( ).

By condition (2a) of Main Theorem, we can take a point∈ ∩( 1 ( )∪ 2 ( )) De-
note by a closed geodesic loop with base point homotopic to rel on ˆ ( ).
Then Lemma 9 gives

( 0) ≤ λ1( 0) < b ( )( ) ≤ b ( )( ) ≤ ( ˙ )( )(4.11)

Next we consider the case where is not admissible as a closed curve on ̂ ( ).
In this case, we can take a domain⊂ ̂ ( ) which is bounded by and is topo-
logically a disk or a once-punctured disk. Since is admissible as a closed curve on

( ˙ ), the domain satisfies one of the following conditions.
(a) is topologically a once-punctured disk and∩ { ̂ ( 1) ̂ ( 2)} 6= ∅.
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̂ ( 1)

C( 2 arcsinh 1)

a puncture of̂ ( )

Fig. 3. A figure of case (a).

(b) is topologically a disk including{ ̂ ( 1) ̂ ( 2)}.
First, let us consider case (a). Without loss of generality,we may assume that̂ ( 1) ∈

. Suppose that

( ˙ )( ) ≤ λ1( 0)

Then we have b ( )( ) ≤ ( ˙ )( ) ≤ λ1( 0) ≤ arcsinh 1. Thus is included in a

cuspC( 2 arcsinh 1) of̂ ( ). Take a simple closed geodesic loop on̂ ( ) with
base point̂ ( 1) such that is included inC( 2 arcsinh 1) and is freely homotopic
to on C( 2 arcsinh 1) (see Fig. 3). We obtainb ( )( ) ≤ b ( )( ) < ( ˙ )( ) ≤ λ1( 0)

This contradicts Lemma 9, and we conclude that

( ˙ )( ) > λ1( 0) ≥ ( 0)(4.12)

Next we consider case (b) (see Fig. 4). Assume that

( ˙ )( ) ≤ λ2( 0)(4.13)

Since b ( )(
̂ ( 1) ̂ ( 2)) ≤ b ( )( ) ≤ ( ˙ )( ), the assumption (4.13) yieldsb ( )(

̂ ( 1) ̂ ( 2)) ≤ λ2( 0)
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̂ ( 1)

̂ ( 2)

α

α′

Fig. 4. A figure of case (b).

Thus, by Lemma 6, we obtainb ( )( 1 ( ) 2 ( )) ≤ λ0( 0 λ2( 0)) ≤
1
3
λ1( 0)(4.14)

for all ∈ . On the other hand, by Lemma 9, we have min{ inj( ̂ ( ) 1 ( )) | ∈
} > λ1( 0)/2. Let ⊂ ̂ ( ) be the circle of radiusλ1( 0)/2 centered at 1 ( ).

By (4.14), the circle bounds a disk of̂ ( ) including { 1 ( ) 2 ( )} for each ∈
. Set = 0 = 1. Thenω ( ) is freely homotopic to on (̇) by the homotopy
∋ 7→ ω ◦ ω (· )−1( ). Hence satisfies (1a) and (1b) of Lemma 8. This

contradicts condition (2b) of Main Theorem, and we concludethat

( ˙ )( ) > λ2( 0) ≥ ( 0)(4.15)

From inequalities (4.11), (4.12) and (4.15), we have inequality (4.10) for all and
all admissible simple closed geodesic on (˙ ). The claim is now proved.

4.6. By the following two propositions, we obtain statement (1) of Main The-
orem, which is necessary and sufficient condition for the Bers type of 〈ω| ˙ 〉 to be
parabolic.

Proposition 4. Let [ω] be a non-trivial element ofIsot( 2). If 〈ω| ˙ 〉 is parabolic
as an element ofMod(˙ ), then conditions(1a) and (1b) of Main Theorem hold.

Proof. For any [ ]∈ ( ˙ ), we denote the canonical isotopy between id andω

by ω , whereω is the extremal quasiconformal self-map of (˙ ) isotopic to ˆ ◦
ω−1 ◦ ˆ−1| ( ˙ ).

Set ={ ∈ ˆ ( ) | ˆ ( )( ˆ ( )) < arcsinh(1/2)}. If is not a disk, then by
the collar theorem (4.4.6 of Buser [4]) and hyperbolic trigonometry, it is included in
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ˆ ( 1)
ˆ ( 2)

C (collar)

ˆ ( 1)
ˆ ( 2)

C (cusp)

a puncture ofˆ ( )

Fig. 5. Case that is a trivial loop onC.

a collar with central closed geodesic of length≤ 2 arcsinh 1 or in a cusp of̂ ( ). On
the other hand, since〈ω| ˙ 〉 is parabolic, Lemma 2 and Lemma 5 together assert that
there is a point [ ] of (̇ ) such that ( )⊂ for = 1, 2. Thus condition (1a) of
Main Theorem holds.

First we consider the case where0 is a disk of ˆ ( ) for some 0 ∈ {1 2}. We
may assume that0 = 1. In this case, the closed curve1 is trivial in ˆ ( ) and so
ω| \{ 1} is isotopic to the identity on \ { 1}. Thus, we can take an isotopy′ω : ×
→ such that ′ω(· 0) = id, ′

ω(· 1) = ω, and ′
ω( 1 ) = 1 for any ∈ . Set

′ ( ) = ′
ω( ) and ′

ω = ( ′1
′
2). Then [ ′ω] is a pure braid induced fromω. Since

〈ω| ˙ 〉 is parabolic, Theorem 2 of Kra [10] implies that the closed curve ′
2 is either a

parabolic or a simple hyperbolic element ofπ1( \ { 1} 2). Hence, we conclude by
Lemma 8 that the strings1 and 2 are parallel or separable.

Next, we consider the case where there exists a domainC ⊂ ˆ ( ) such that
(1) C is either a collar with the central closed geodesic of length≤ 2 arcsinh 1 or a
cusp of ˆ ( ), and
(2) ⊂ C
for each = 1, 2.

If C1 6= C2, then by the collar theorem, we haveC1 ∩ C2 = ∅ and conclude that1

and 2 are separable.
In the case ofC1 = C2, we setC = C1 = C2. There exists an orientation pre-

serving self-homeomorphismω′ of ( ˙ ) such thatω′ is isotopic toω on (˙ ) and
is the identity on (̇ ) \ C. Since 〈ω| ˙ 〉 ∈ Mod(˙ ) is parabolic, the restricted map
ω′ |C\{ ˆ ( 1) ˆ ( 2)} is reducible. Thus there exists an admissible simple closedcurve

of C \{ ˆ ( 1) ˆ ( 2)} such thatω′ ( ) is freely homotopic to onC \{ ˆ ( 1) ˆ ( 2)}.
If is a trivial loop on C, then by Lemma 8, the strings1 and 2 are parallel

(see Fig. 5).
If is a non-trivial loop onC, then C \ consists of two components with

ˆ ( ) ∈ ( = 1, 2), and each is conformally equivalent to an annulus or a
once-punctured disk (see Fig. 6). By Baer-Zieschang theorem (A.3 of Buser [4]), we
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ˆ ( 1)
ˆ ( 2)

C (collar)

ˆ ( 1)
ˆ ( 2)

C (cusp)

a puncture ofˆ ( )

1
2

1

2

Fig. 6. Case that is a non-trivial loop onC.

may assume thatω′ ( ) = for any ∈ .
Assume that is conformally equivalent to an annulus for each= 1, 2. Then,

by Proposition A.13 of Buser [4], eachω′ | is isotopic to the -th power of the

Dehn twist with an isotopy fixing∂ pointwise. Sinceω′ : ˆ ( ) → ˆ ( ) is isotopic
to the identity of ˆ ( ), we obtain 1 = − 2. Consequently, we can construct an iso-
topy ω′ : ˆ ( )× → ˆ ( ) such that
(1) ω′ (· 0) = id,
(2) ω′ (· 1) =ω′ , and
(3) ω′ ( ) = for any ∈ .
Hence we conclude that the strings1 and 2 are separable.

In the case where is conformally equivalent to a once-punctured disk for some
= 1 or 2, we obtain similarly that the strings1 and 2 are separable.

4.7. Finally, we prove the converse of Proposition 4.

Proposition 5. If a non-trivial element[ω] ∈ Isot( 2) satisfies conditions(1a)
and (1b) of Main Theorem,then 〈ω| ˙ 〉 is parabolic as an element ofMod(˙ ).

Proof. Let [ ω] be the pure braid induced from [ω]. Assume that ω = ( 1 2)
satisfies conditions (1a) and (1b) of Main Theorem.

If 1 and 2 are separable, then we can find a representative (′
1
′
2) ∈ [ ω] and a

system{ 1 . . . 0} of disjoint non-trivial simple closed curves on such that there
exist two components 1 and 2 of \ ( 1 ∪ · · · ∪ 0) satisfying ′

1( ) ⊂ 1 and
′
2( ) ⊂ 2. We can take a subset{ ′

1 . . . ′
1
} ( 1 ≤ 0) of { 1 . . . 0} such that

(1) { ′
1 . . . ′

1
} is an admissible curve system of˙ , i.e., each ′ is an admissible

simple closed curve oḟ and no ′ is freely homotopic to a curve ′ ( 6= ) on ˙ ,
and
(2) there exist two components′1 and ′

2 of \ ( ′
1∪· · ·∪ ′

1
) satisfying ′

1( ) ⊂ ′
1

and ′
2( ) ⊂ ′

2.
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We may assume thatω| ˙\( ′

1∪
′

2) = id. For each = 1, 2, the domain ′ has a finite
topological type ( ) satisfying either 2− 2 + > 0 or ( ) = (0 2). Let ′′

be a Riemann surface of analytically finite type ( ), and a homeomorphism of
′ onto ′′. Set ω = ◦ ω| ′ ◦ −1. If ( ) = (0 2), thenω | ′′\{ ( )} is

a sense preserving homeomorphism isotopic to the identity on ′′ \ { ( )}. If the
topological type ( ) of ′ satisfies 2 − 2 + > 0, then by condition (1a) and
Theorem 2 of Kra [10], the element〈ω | ′′\{ ( )}〉 ∈ Mod( ′′ \ { ( )}) is the
identity or parabolic. Hence we conclude that〈ω| ˙ 〉 is parabolic.

Next, we consider the case where the strings1 and 2 are parallel. Deforming, if
necessary, the closed pathω = ( 1 2) and its base point in \ continuously, we
may assume, by condition (1a) of Main Theorem, that there exists a domainC of
such that
(1) C is either a collar, a cusp, or topologically a disk of , and
(2) 2( ) ⊂ C.
There exists a number0 > 0 such that, for each ∈ , the set (0) = { ∈ |

( 2( ) ) = 0} is a circle centered at2( ) with ( 0) ⊂ C. Set = 0( 0) =

1( 0). By Lemma 7, we may assume that (1( ) 2( )) < 0/2 for all ∈ , and
then conclude thatω( ) is freely homotopic to oṅ . Hence〈ω| ¨ 〉 is parabolic as
an element of Mod(̇).

Now Proposition 1 through 5 together yield our Main Theorem.

5. Examples of Main Theorem

Let us illustrate a few examples of Main Theorem. Set =C \ {0 1 2}, where
C is the complex plane. Then is a Riemann surface of type (0 4). Let [ω] be an
element of Isot( 2) which induces a pure braid [ω] = [( 1 2)], where 1 and 2 are
strings of ω.

First consider a pure braid [ω] in (a) of Fig. 7. Then [ω] satisfies condi-
tions (2a), (2b) and (2c) of Main Theorem, so〈ω| ˙ 〉 is hyperbolic.

If [ ω] is illustrated in (b), then it satisfies conditions (2b) and(2c). On the other
hand, there exists an admissible simple closed curve on suchthat does not
intersect the images of1 and 2. Thus the pure braid [ω] is not essential, and〈ω| ˙ 〉
is not hyperbolic. Actually〈ω| ˙ 〉 is pseudo-hyperbolic, because condition (1a) is not
satisfied.

Fig. (c) shows an example of [ω] satisfying condition (2a), but does not satisfy
condition (2c). Hence〈ω| ˙ 〉 is not hyperbolic, in fact it is pseudo-hyperbolic, because
condition (1a) is not satisfied.

Fig. (d) illustrates an example of [ω] which satisfies neither condition (2a)
nor (2c). Therefore〈ω| ˙ 〉 is not hyperbolic. On the other hand, it satisfies condi-
tions (1a) and (1b). Hence it is parabolic.
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Fig. 7. The pure braidsω induced fromω.
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Mathématique41 (1982), 234–248.

Yoichi Imayoshi
Department of Mathematics, Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558-0022, Japan
e-mail: imayoshi@sci.osaka-cu.ac.jp

Manabu Ito
Department of Mathematics, Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558-0022, Japan

Current Address:
10-20-101, Hirano-kita 1 chome, Hirano-ku
Osaka 547-0041, Japan
e-mail: cbj89070@pop02.odn.ne.jp

Hiroshi Yamamoto
Department of Mathematics, Osaka City University
Sugimoto, Sumiyoshi-ku, Osaka 558-0022, Japan
e-mail: yadamo@sci.osaka-cu.ac.jp


