\mathbb{Z}_{n}-EQUIVARIANT GOERITZ MATRICES FOR PERIODIC LINKS

Sang Youl LEE

(Received January 20, 2001)

1. Introduction

A link $l^{(n)}$ in S^{3} is said to have period $n(n \geq 2)$ if there is an n-periodic homeomorphism ϕ from S^{3} onto itself such that $l^{(n)}$ is invariant under ϕ and the fixed point set \tilde{f} of the \mathbb{Z}_{n}-action induced by ϕ is homeomorphic to a 1 -sphere in S^{3} disjoint from $l^{(n)}$. By the positive solution of the Smith conjecture [10], \tilde{f} is unknotted and so the homeomorphism ϕ is conjugate to one point compactification of the $(2 \pi / n)$-rotation about the z-axis in \mathbb{R}^{3}. Hence the quotient map $\pi: S^{3} \rightarrow S^{3} / \mathbb{Z}_{n}$ is an n-fold branched cyclic cover branched along $\pi(\tilde{f})=f$, and $l=\pi\left(l^{(n)}\right)$ is also a link in the orbit space $S^{3} / \mathbb{Z}_{n} \cong S^{3}$, which is called the factor link of $l^{(n)}$.

There are several studies about the relationship between polynomial invariants of $l^{(n)}$ and those of $l[5,11,14,15,16]$, and also some numerical invariants $[3,4,9$, 13] (see also references therein). In particular, Gordon-Litherland-Murasugi [4] gave a necessary congruence condition mod 4 on the signature of a knot in S^{3} for it to have odd prime power period n, by using a \mathbb{Z}_{n}-invariant Hermitian form.

Now let $l=k_{1} \cup \cdots \cup k_{\mu}$ be an oriented link in S^{3} of μ components and let f be the oriented trivial knot such that $l \cap f=\emptyset$. For any integer $n \geq 2$, let $\pi: S^{3} \rightarrow S^{3}$ be the n-fold branched cyclic cover branched along f. We denote the preimage $\pi^{-1}(l)$ and $\pi^{-1}\left(k_{i}\right)$ by $l^{(n)}$ and $k_{i}^{(n)}$, respectively. Then $k_{i}^{(n)}=k_{i 1} \cup \cdots \cup k_{i \nu_{i}}$ is a link of ν_{i} components, where ν_{i} is the greatest common divisor of n and $\lambda_{i}=\operatorname{Lk}\left(k_{i}, f\right)$, the linking number of k_{i} and f. We give an orientation to $k_{i}^{(n)}$ inherited from k_{i}. Then $l^{(n)}=k_{1}^{(n)} \cup \cdots \cup k_{\mu}^{(n)}=k_{11} \cup \cdots \cup k_{1 \nu_{1}} \cup \cdots \cup k_{\mu 1} \cup \cdots \cup k_{\mu \nu_{\mu}}$ is an oriented n-periodic link in S^{3} with l as its factor link. Throughout this paper we call such an oriented link $l^{(n)}$ the n-periodic covering link over $l_{1}=l \cup f$. Notice that every link in S^{3} with cyclic period arises in this manner.

Section 2 of the present paper reviews the definitions of Goeritz matrix for a link and its invariants. In Section 3, we characterize a \mathbb{Z}_{n}-equivariant Goeritz matrix for an n-periodic covering link $l^{(n)}$ in terms of its factor link $l \cup f$. In Section 4, we derive a necessary congruence condition mod 4 on the signature of a link for it to be an n-periodic covering link over a certain link. In Section 5, we give a congruence mod p between the reduced Alexander polynomial of an n-periodic covering link $l^{(n)}$ with

[^0]

Fig. 1.
odd prime power period $n=p^{r}(r>0)$ and that of its factor link l, which is a natural generalization of Murasugi's congruence on periodic knots [14, Theorem 2]. Using this generalized congruence, we also generalize Theorem 1.1 in Gordon-LitherlandMurasugi [4]. In Section 6, we show that the \mathbb{Z}_{n}-equivariant Goeritz matrix gives a more practical way to calculate the signature invariant $\tau_{n}(l, \pi)[4,19]$ of a link l in the 2 -fold branched cyclic cover \mathcal{M} of S^{3} branched along a certain link, where $\pi: N_{n} \rightarrow N$ is an n-fold branched cyclic cover of a 4-manifold N branched over a surface F such that $\partial(N, F)=(\mathcal{M}, l)$.

2. Goeritz matrix

Let l be an oriented link in S^{3} and let L be its link diagram in the plane $\mathbb{R}^{2} \subset$ $\mathbb{R}^{3} \cup\{\infty\}$. Color the regions of $\mathbb{R}^{2}-L$ alternately black and white. Denote the white regions by $X_{0}, X_{1}, \ldots, X_{u}$. (We always take the unbounded region to be white and denote it by X_{0}.) Let $C(L)$ denote the set of all crossings of L. Assign an incidence number $\eta(c)= \pm 1$ to each crossing $c \in C(L)$ and define a crossing $c \in C(L)$ to be of type I or type II as indicated in Fig. 1.

Let $g_{i j}=-\sum_{c \in C_{L}\left(X_{i}, X_{j}\right)} \eta(c)$ for $i \neq j$ and $g_{i i}=-\sum_{j \neq i} g_{i j}$, where $C_{L}\left(X_{i}, X_{j}\right)=$ $\left\{c \in C(L) \mid c\right.$ is incident to both X_{i} and $\left.X_{j}\right\}$. Let $G^{\prime}(L)=\left(g_{i j}\right)_{0 \leq i, j \leq u}$. The principal minor $G(L)=\left(g_{i j}\right)_{1 \leq i, j \leq u}$ of $G^{\prime}(L)$ is called the Goeritz matrix of l associated to $L[1,2]$. Let L_{1} and L_{2} be two diagrams of l. Then Kyle [8] showed that $G\left(L_{1}\right)$ and $G\left(L_{2}\right)$ are equivalent, i.e., they can be transformed into each other by a finite number of transformations of the following types and their inverses:
(I) $G \rightarrow U G U^{t}$, where U is a unimodular matrix of integers,
(II) $G \rightarrow\left(\begin{array}{cc}G & 0 \\ 0 & \pm 1\end{array}\right)$,
(III) $G \rightarrow\left(\begin{array}{ll}G & 0 \\ 0 & 0\end{array}\right)$.

In that paper he also showed that a non-singular matrix B equivalent to the Goeritz matrix $G(L)$ associated to any diagram L of a link l is a relation matrix for the torsion group of $H_{1}\left(\mathcal{M}_{2}(l) ; \mathbb{Z}\right)$ of the 2 -fold branched cyclic cover $\mathcal{M}_{2}(l)$ of S^{3} branched along the link l, and that $B^{-1}(\bmod 1)$ is the linking matrix of $\mathcal{M}_{2}(l)$.

Fig. 2.
On the other hand, let $S(L)$ denote the compact surface with boundary L, which is built up out of disks and bands. Each disk lies in $S^{2}=\mathbb{R}^{2} \cup\{\infty\}$ and is a closed black region less a small neighborhood of each crossing. Each crossing gives a small half-twisted band. Let $\beta_{0}(L)$ denote the number of connected components of the surface $S(L)$. Let $C_{\mathrm{II}}(L)=\left\{c_{1}, c_{2}, \ldots, c_{s}\right\}$ denote the set of all crossings of type II in L and let $A(L)=\operatorname{diag}\left(-\eta\left(c_{1}\right),-\eta\left(c_{2}\right), \ldots,-\eta\left(c_{s}\right)\right)$, an $s \times s$ diagonal matrix. Then Traldi [18] defined the modified Goeritz matrix $H(L)$ of l associated to L by $H(L)=$ $G(L) \oplus A(L) \oplus B(L)$, where $B(L)$ denotes the $\left(\beta_{0}(L)-1\right) \times\left(\beta_{0}(L)-1\right)$ zero matrix, and showed that the signature $\sigma(l)$ and the Murasugi nullity $\mathcal{N}(l)$ [12] of an oriented link l in S^{3} are given by the formula: $\sigma(l)=\sigma(H(L))$ and $\mathcal{N}(l)=\mathcal{N}(H(L))+1$, where $\sigma(H(L))$ and $\mathcal{N}(H(L))$ denote the signature and the nullity of the symmetric matrix $H(L)$, respectively.

3. \mathbb{Z}_{n}-equivariant Goeritz matrix

Let $l_{1}=l \cup f$ be an oriented link in S^{3} with an unknotted component f such that $\lambda=L k(l, f)$ is an odd integer. Applying an isotopy deformation if necessary, we can choose an oriented link diagram $L_{1}=L \cup F$ in $\mathbb{R}^{2} \subset \mathbb{R}^{3} \cup\{\infty\}$ which has the form shown in Fig. 2, in which L and F represent the diagrams of l and f, respectively, in the link l_{1} and a_{i} is identified with b_{i} for each $i=1,2, \ldots, m$. Note that $\lambda=$ $L k(l, f)=2 r-m$ and m is an odd integer.

Color the regions of $\mathbb{R}^{2}-L_{1}$ alternately black and white. Without loss of generality we may assume that the surfaces $S\left(L_{1}\right)$ and $S(L)=S\left(L_{1}-F\right)$ are connected and the orientations of l and f are as indicated in Fig. 2. (If not, by applying Reidemeister moves to L_{1}, deform L_{1} to $L_{1}^{\prime}=L^{\prime} \cup F$ so that L_{1}^{\prime} is equivalent to the
diagram L_{1}, which has the required orientation and $S\left(L_{1}^{\prime}\right)$ and $S\left(L^{\prime}\right)=S\left(L_{1}^{\prime}-F\right)$ are connected.) We denote the unbounded white region by X_{0} and denote the other white regions as follows. Let $X_{1}, X_{2}, \ldots, X_{w}$ denote the white regions of L_{1} each of which does not meet the component F. The white regions of L_{1} each of which meets the component F are denoted by $X_{w+1}, X_{w+2}, \ldots, X_{w+(m-1) / 2}, X_{w+(m-1) / 2+1}$, $X_{w+(m-1) / 2+2}, \ldots, X_{w+m-1}$, and $X_{w+m}, X_{w+m+1}, \ldots, X_{w+(3 m-1) / 2}$ as indicated in Fig. 2.

Let $G\left(L_{1}\right)=\left(g_{i j}\right)_{1 \leq i, j \leq w+(3 m-1) / 2}$ be the Goeritz matrix of l_{1} associated to L_{1} and we denote submatrices of $G\left(L_{1}\right)$ as follows: $M=\left(g_{i j}\right)_{1 \leq i, j \leq w}, N_{1}=$ $\left(g_{i j}\right)_{w+1 \leq i, j \leq w+(m-1) / 2}, N_{2}=\left(g_{i j}\right)_{w+(m-1) / 2+1 \leq i, j \leq w+m-1}, \quad P=\left(g_{i j}\right)_{1 \leq i \leq w, w+1 \leq j \leq w+(m-1) / 2}$, $Q=\left(g_{i j}\right)_{1 \leq i \leq w, w+(m-1) / 2+1 \leq j \leq w+m-1}$, and $R_{1}=\left(g_{i j}\right)_{w+1 \leq i \leq w+(m-1) / 2, w+(m-1) / 2+1 \leq j \leq w+m-1}$. In this situation, we obtain the following two lemmas:

Lemma 3.1 ([9]).

$$
V H\left(L_{1}\right) V^{t}=\left(\begin{array}{cc}
M & P-Q \\
P^{t}-Q^{t} & N-R
\end{array}\right) \oplus A(L) \oplus Y\left(\begin{array}{ccc}
I_{a} & O & O \\
O & -I_{b} & O \\
O & O & 2
\end{array}\right) Y^{-1}
$$

where V is a unimodular integral matrix, $N=N_{1}+N_{2}, R=R_{1}+R_{1}^{t}, a-b=-L k(l, f)-$ 1 , and Y is an invertible rational matrix.

Lemma 3.2. The Goeritz matrix of l associated to the link diagram $L\left(=L_{1}-F\right)$ is equivalent to the matrix:

$$
G(L)=\left(\begin{array}{cc}
M & P+Q \\
P^{t}+Q^{t} & N+R
\end{array}\right) .
$$

Proof. Let $L=L_{1}-F$, the diagram in \mathbb{R}^{2} obtained from L_{1} in Fig. 2 by deleting the unknotted component F. Then L is a diagram of the link l. The coloring of L_{1} then induces a coloring of L such that the white regions X_{w+i} and $X_{w+(m-1) / 2+i}$ in L_{1} become the same region in L, denoted by X_{w+i}, for each $i=1,2, \ldots,(m-1) / 2$. Then it is not difficult to see that the matrix $G(L)=\left(g_{i j}\right)_{1 \leq i, j \leq w+(m-1) / 2}$ is of the required form.

Theorem 3.3. Let n be any integer greater than or equal to 3. Then the Goeritz matrix of the n-periodic covering link $l^{(n)}$ over $l_{1}=l \cup f$ is equivalent to the symmetric
block-wise circulant matrix of the form:

$$
G\left(L^{(n)}\right)=\left(\begin{array}{ccccccccccc}
M & P & O & Q & O & O & \cdots & O & O & O & O \\
P^{t} & N & O & R_{1} & O & O & \cdots & O & O & Q^{t} & R_{1}^{t} \\
O & O & M & P & O & Q & \cdots & O & O & O & O \\
Q^{t} & R_{1}^{t} & P^{t} & N & O & R_{1} & \cdots & O & O & O & O \\
O & O & O & O & M & P & \cdots & O & O & O & O \\
O & O & Q^{t} & R_{1}^{t} & P^{t} & N & \cdots & O & O & O & O \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
O & Q & O & O & O & O & \cdots & O & O & M & P \\
O & R_{1} & O & O & O & O & \cdots & Q^{t} & R_{1}^{t} & P^{t} & N
\end{array}\right)
$$

Consequently, $G\left(L^{(n)}\right)$ is a relation matrix for $H_{1}\left(\mathcal{M}_{2}\left(l^{(n)}\right) ; \mathbb{Z}\right)$.
Proof. Let $L_{1}=L \cup F$ be a diagram of l_{1} given by Fig. 2. We may assume that F represents the z-axis $\cup\{\infty\}$ and L lies in an annulus $A \subset \mathbb{R}^{2}$. Let $\varphi_{n}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the n-fold branched cyclic cover branched at the origin and let $L^{(n)}=\varphi_{n}^{-1}(L)$. Then $L^{(n)}$ is an n-periodic diagram in an annulus $A \subset \mathbb{R}^{2}$ of the n-periodic covering link $l^{(n)}$. Also the coloring of $\mathbb{R}^{2}-L$ induces a coloring of $\mathbb{R}^{2}-L^{(n)}$. Let $\tilde{\varphi}_{n}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the $(2 \pi / n)$-rotation of \mathbb{R}^{2} about the origin. We denote the white regions of $\mathbb{R}^{2}-L^{(n)}$ as follows.

For each $i=1,2, \ldots,(m-1) / 2$, let X_{w+i}^{1} denote the white region in $\mathbb{R}^{2}-L^{(n)}$ which meets the line $\theta=0$ in the polar coordinate system of \mathbb{R}^{2} such that $\varphi_{n}\left(X_{w+i}^{1}\right)=$ X_{w+i}. Now let D be the closed domain in A bounded by two half lines $\theta=0$ and $\theta=2 \pi / n$. Then for the white region $X_{i}(i=1,2, \ldots, w)$ of $\mathbb{R}^{2}-L$, we denote the white region $\varphi_{n}^{-1}\left(X_{i}\right) \cap D$ in $\mathbb{R}^{2}-L^{(n)}$ by X_{i}^{1}. Finally, for each $p=2, \ldots, n$ and $i=1,2, \ldots, w+(m-1) / 2, X_{i}^{p}=\tilde{\varphi}_{n}^{p-1}\left(X_{i}^{1}\right)$ and $X_{0}^{0}=\varphi_{n}^{-1}\left(X_{0}\right)$.

For $p, q=0,1, \ldots, n$, let $G_{p q}=\left(g_{i j}^{p q}\right)_{1 \leq i, j \leq w+(m-1) / 2}$ be the matrix defined as follows. If $p \neq q$ or $i \neq j$, then $g_{i j}^{p q}=-\sum_{c \in C_{L^{(n)}}\left(X_{i}^{p}, X_{j}^{q}\right)} \eta(c)$. If $p=q$ and $i=j$, then $g_{i i}^{p p}=-\sum_{q \neq p \text { or } j \neq i} g_{i j}^{p q}$. Then it is not difficult to see that the Goeritz matrix of $l^{(n)}$ associated to $L^{(n)}$ is equivalent to the symmetric block matrix given by $G\left(L^{(n)}\right)=$ $\left(G_{p q}\right)_{1 \leq p, q \leq n}$, where

$$
\begin{aligned}
G_{11} & =\left(\begin{array}{ll}
M & P \\
P^{t} & N
\end{array}\right), G_{12}=\left(\begin{array}{cc}
O & Q \\
O & R_{1}
\end{array}\right), G_{1 n}=\left(\begin{array}{cc}
O & O \\
Q^{t} & R_{1}^{t}
\end{array}\right), \\
G_{1 q} & =\left(\begin{array}{ll}
O & O \\
O & O
\end{array}\right)(3 \leq q \leq n-1), G_{p q}=G_{q p}^{t}, \quad G_{p q}=G_{p+1 q+1}(1 \leq p, q \leq n),
\end{aligned}
$$

and $G_{1 n-i}=G_{1 i+2}^{t}(i=1, \ldots, n-2)$. This completes the proof.

4. Signature and nullity

Lemma 4.1. Let $l_{1}=l \cup f$ be an oriented link in S^{3} with an unknotted component f such that $\lambda=L k(l, f)$ is an odd integer. For any integer $n \geq 2$, let $l^{(n)}$ be the n-periodic covering link over l_{1}. Let $\xi=e^{2 \pi i / n}$, where $i=\sqrt{-1}$, and define the Hermitian matrix

$$
\Lambda_{L_{1}}\left(n: \xi^{j}\right)=\left(\begin{array}{cc}
M & P+\xi^{j} Q \\
P^{t}+\xi^{-j} Q^{t} & N+\xi^{j} R_{1}+\xi^{-j} R_{1}^{t}
\end{array}\right),
$$

where M, N, P, Q, and R_{1} are matrices as in Section 3.
(1) If n is an odd integer, then

$$
\begin{align*}
& \sigma\left(l^{(n)}\right)=n \sigma(l)+2 \sum_{j=1}^{(n-1) / 2} \sigma\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right) \oplus-G(L)\right), \tag{4.1}\\
& \mathcal{N}\left(l^{(n)}\right)=\mathcal{N}(l)+2 \sum_{j=1}^{(n-1) / 2} \mathcal{N}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right) . \tag{4.2}
\end{align*}
$$

(2) If n is an even integer, then

$$
\begin{equation*}
\sigma\left(l^{(n)}\right)=(n-1) \sigma(l)+\sigma(l \cup f)+L k(l, f)+2 \sum_{j=1}^{(n-2) / 2} \sigma\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right) \oplus-G(L)\right) \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{N}\left(l^{(n)}\right)=\mathcal{N}(l)+\mathcal{N}(l \cup f)+2 \sum_{j=1}^{(n-2) / 2} \mathcal{N}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)-1 \tag{4.4}
\end{equation*}
$$

Proof. Let I_{n} denote the $n \times n$ identity matrix and let T and U be the $n \times n$ matrices:

$$
T=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
1 & 0 & 0 & \cdots & 0
\end{array}\right), U=\left(\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \xi & \xi^{2} & \cdots & \xi^{n-1} \\
1 & \xi^{2} & \xi^{4} & \cdots & \xi^{2(n-1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi^{n-1} & \xi^{2(n-1)} & \cdots & \xi^{(n-1)^{2}}
\end{array}\right) .
$$

Let $G\left(L^{(n)}\right)$ be the Goeritz matrix of $l^{(n)}$ given by Theorem 3.3. Then $G\left(L^{(n)}\right)=$ $G_{11} \otimes I_{n}+G_{12} \otimes T+\cdots+G_{1 n} \otimes T^{n-1}$ and $U^{-1} T^{j} U=\operatorname{diag}\left(1, \xi^{j}, \xi^{2 j}, \ldots, \xi^{(n-1) j}\right)(j=1$,
$2, \ldots, n-1)$. Hence, combining Lemma 3.2, we obtain that

$$
\begin{align*}
& \left(I_{n} \otimes U\right)^{-1} G\left(L^{(n)}\right)\left(I_{n} \otimes U\right) \\
& \quad=G_{11} \otimes U^{-1} I_{n} U+G_{12} \otimes U^{-1} T U+\cdots+G_{1 n} \otimes U^{-1} T^{n-1} U \\
& =\operatorname{diag}\left(G_{11}+G_{12}+\cdots+G_{1 n}, G_{11}+\xi G_{12}+\cdots+\xi^{n-1} G_{1 n},\right. \\
& \left.\quad \cdots, G_{11}+\xi^{n-1} G_{12}+\cdots+\xi^{(n-1)^{2}} G_{1 n}\right) \tag{4.5}\\
& \quad=G(L) \oplus\left(\bigoplus_{j=1}^{n-1} \Lambda_{L_{1}}\left(n: \xi^{j}\right)\right) .
\end{align*}
$$

It is clear that $A\left(L^{(n)}\right)=\bigoplus_{j=1}^{n} A(L)$ and $A\left(L^{(n)}\right)$ is nonsingular. Since the surface $S\left(L^{(n)}\right)$ is connected, $B\left(L^{(n)}\right)$ is the empty matrix. It thus follows from (4.5) that $\mathcal{N}\left(l^{(n)}\right)=\mathcal{N}\left(G\left(L^{(n)}\right)\right)+1=\mathcal{N}\left(G(L) \oplus\left(\bigoplus_{j=1}^{n-1} \Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)\right)+1=\mathcal{N}(l)+$ $\sum_{j=1}^{n-1} \mathcal{N}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)$ and

$$
\begin{aligned}
\sigma\left(l^{(n)}\right) & =\sigma\left(H\left(L^{(n)}\right)\right)=\sigma\left(G\left(L^{(n)}\right) \oplus A\left(L^{(n)}\right)\right) \\
& =\sigma\left(\bigoplus_{j=1}^{n}(G(L) \oplus A(L)) \oplus\left(\bigoplus_{j=1}^{n-1}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right) \oplus-G(L)\right)\right)\right) .
\end{aligned}
$$

Therefore we obtain

$$
\begin{equation*}
\sigma\left(l^{(n)}\right)=n \sigma(l)+\sum_{j=1}^{n-1} \sigma\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right) \oplus-G(L)\right) \tag{4.6}
\end{equation*}
$$

Since $\xi^{n-j}=\bar{\xi}^{j}, \Lambda_{L_{1}}\left(n ; \xi^{j}\right)=\Lambda_{L_{1}}\left(n ; \bar{\xi}^{j}\right)^{t}$, i.e., $\Lambda_{L_{1}}\left(n ; \xi^{j}\right)$ is a Hermitian matrix, and hence $\mathcal{N}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)=\mathcal{N}\left(\Lambda_{L_{1}}\left(n ; \xi^{n-j}\right)\right)$ and $\sigma\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)=\sigma\left(\Lambda_{L_{1}}\left(n ; \xi^{n-j}\right)\right)$. Thus assertion (1) follows.

If $n=2$, then it follows from [9] that $\sigma\left(l^{(2)}\right)=\sigma(l)+\sigma(l \cup f)+L k(l, f)$ and $\mathcal{N}\left(l^{(2)}\right)=\mathcal{N}(l)+\mathcal{N}(l \cup f)-1$. If n is an even integer with $n>2$, then, by Lemma 3.1, $\mathcal{N}\left(\Lambda_{L_{1}}\left(n ; \xi^{n / 2}\right)\right)=\mathcal{N}(H(L \cup F))=\mathcal{N}(l \cup f)-1$ and $\sigma\left(\Lambda_{L_{1}}\left(n ; \xi^{n / 2}\right) \oplus A(L)\right)=\sigma(l \cup f)+$ $L k(l, f)$. This implies assertion (2).

Theorem 4.2. Let $l_{1}=l \cup f$ be an oriented link in S^{3} of $\mu+1$ components such that f is unknotted. For any integer $n \geq 2$, let $l^{(n)}$ be the n-periodic covering link over l_{1}. We assume that $\mathcal{N}\left(l^{(n)}\right)=\mathcal{N}(l)$.
(1) If either $L k(l, f)$ and $\mathcal{N}(l)$ are odd or $L k(l, f)$ and $\mathcal{N}(l)$ are even, then

$$
\sigma\left(l^{(n)}\right) \equiv \begin{cases}n \sigma(l) & (\bmod 4) \text { if } n \text { is odd }, \\ (n-1) \sigma(l)+\sigma(l \cup f)+L k(l, f) & (\bmod 4) \text { if } n \text { is even } .\end{cases}
$$

(2) If either $L k(l, f)$ is odd and $\mathcal{N}(l)$ is even or $L k(l, f)$ is even and $\mathcal{N}(l)$ is odd,

Fig. 3.
then

$$
\sigma\left(l^{(n)}\right) \equiv \begin{cases}n \sigma(l)+n-1 & (\bmod 4) \text { if } n \text { is odd } \\ (n-1) \sigma(l)+\sigma(l \cup f)+L k(l, f)+n-2 & (\bmod 4) \text { if } n \text { is even }\end{cases}
$$

Proof.
Case I. $\quad L k(l, f) \equiv 1(\bmod 2)$:
(i) If $\mathcal{N}\left(l^{(n)}\right)=\mathcal{N}(l)$ is odd, then, from (4.2) and (4.4), $\mathcal{N}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)=0$ for each j. Notice that $\mathcal{N}(G(L))=\mathcal{N}(l)-1$ is even and $\Lambda_{L_{1}}\left(n ; \xi^{j}\right) \oplus-G(L)$ is a $(2 w+m-1) \times(2 w+$ $m-1)$ square matrix for each j. Since $2 w+m-1$ is also even, $\sigma\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right) \oplus-G(L)\right)$ must be even. By (4.1) and (4.3), the desired result follows.
(ii) If $\mathcal{N}\left(l^{(n)}\right)=\mathcal{N}(l)$ is even, then, from (4.2) and (4.4), $\mathcal{N}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)=0$ for each j. In this case, $\mathcal{N}(G(L))=\mathcal{N}(l)-1$ is odd and so $\sigma\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right) \oplus-G(L)\right)$ must be odd, say $2 k_{j}+1$ for some $k_{j} \in \mathbb{Z}$. From (4.1) and (4.3), we obtain that

$$
\sigma\left(l^{(n)}\right)= \begin{cases}n \sigma(l)+2 \sum_{j=1}^{(n-1) / 2}\left(2 k_{j}+1\right) & \text { if } n \text { is odd } \\ (n-1) \sigma(l)+\sigma(l \cup f)+L k(l, f)+2 \sum_{j=1}^{(n-2) / 2}\left(2 k_{j}+1\right) & \text { if } n \text { is even }\end{cases}
$$

This implies the desired result.
Case II. $L k(l, f) \equiv 0(\bmod 2):$ Let $l_{2}=l_{1} \sharp h^{-}$denote the connected sum of $l_{1}=l \cup f$ and the left handed Hopf link h^{-}as shown in Fig. 3. It is easy to see that $l_{2}=l_{1} \sharp h^{-}=(l \cup f) \sharp h^{-}$is ambient isotopic to the link $(l \circ u) \cup f$. The link $(l \circ u)^{(n)}$ is also ambient isotopic to the link $l^{(n)} \circ u$. Note that $L k(l \circ u, f)=L k(l, f)-1$ is odd, where $l \circ u$ denotes the split link consisting of l and the unknot u which is one of the components of h^{-}. Observe that $\mathcal{N}(l \circ u)=\mathcal{N}(l)+1, \mathcal{N}\left((l \circ u)^{(n)}\right)=\mathcal{N}\left(l^{(n)} \circ u\right)=\mathcal{N}\left(l^{(n)}\right)+1$ [12, Lemma 6.4].

If $\mathcal{N}\left(l^{(n)}\right)=\mathcal{N}(l)$ is even, then, from (4.2) and (4.4), $\mathcal{N}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)=0$ for each j and $\mathcal{N}\left((l \circ u)^{(n)}\right)=\mathcal{N}(l \circ u)$ is odd. By the argument in (i) above, we have that
$\sigma\left((l \circ u)^{(n)}\right) \equiv$

$$
\begin{cases}n \sigma(l \circ u) & (\bmod 4) \text { if } n \text { is odd } \\ (n-1) \sigma(l \circ u)+\sigma((l \circ u) \cup f)+L k(l \circ u, f) & (\bmod 4) \text { if } n \text { is even. }\end{cases}
$$

Finally, if $\mathcal{N}\left(l^{(n)}\right)=\mathcal{N}(l)$ is odd, then $\mathcal{N}\left((l \circ u)^{(n)}\right)=\mathcal{N}(l \circ u)$ is even. By the argument in (ii) above, we obtain that $\sigma\left((l \circ u)^{(n)}\right) \equiv$

$$
\begin{cases}n \sigma(l \circ u)+n-1 & (\bmod 4) \text { if } n \text { is odd } \\ (n-1) \sigma(l \circ u)+\sigma((l \circ u) \cup f)+L k(l \circ u, f)+n-2 & (\bmod 4) \text { if } n \text { is even }\end{cases}
$$

Note that $\sigma(l \circ u)=\sigma(l), \sigma((l \circ u) \cup f)=\sigma\left((l \cup f) \sharp h^{-}\right)=\sigma(l \cup f)+\sigma\left(h^{-}\right)=\sigma(l \cup f)+1$ [12, Lemma 7.2, 7.4] and $L k(l \circ u, f)=L k(l, f)-1$. This completes the proof.

Theorem 4.3. Let $l=k_{1} \cup \cdots \cup k_{\mu}$ be an oriented link in S^{3} of μ components and let $l_{1}=l \cup f$ be an oriented link in S^{3} of $\mu+1$ components such that f is unknotted. For any integer $n \geq 2$, let $l^{(n)}$ be the n-periodic covering link over l_{1}. Then

$$
\mathcal{N}\left(l^{(n)}\right)= \begin{cases}\mathcal{N}(l)+2 \rho_{1} & \text { if } n \text { is odd } \\ \mathcal{N}(l)+\mathcal{N}(l \cup f)+2 \rho_{2}-1 \text { if } n \text { is even }\end{cases}
$$

where ρ_{1} and ρ_{2} are some integers with the following properties:

$$
\begin{aligned}
& \frac{(1-\mathcal{N}(l))}{2} \leq \rho_{1} \leq \frac{1}{2}\left(\sum_{i=1}^{\mu} \nu_{i}-\mathcal{N}(l)\right) \\
& 1-\frac{\mathcal{N}(l)+\mathcal{N}(l \cup f)}{2} \leq \rho_{2} \leq \frac{1}{2}\left(\sum_{i=1}^{\mu} \nu_{i}-\mathcal{N}(l)-\mathcal{N}(l \cup f)+1\right)
\end{aligned}
$$

where ν_{i} denotes the greatest common divisor of n and $L k\left(k_{i}, f\right)$.
Proof.
Case I. $L k(l, f) \equiv 1(\bmod 2)$. By (4.2) and (4.4), if n is odd, then $\mathcal{N}\left(l^{(n)}\right)=$ $\mathcal{N}(l)+2 \rho_{1}$ for some integer ρ_{1}, and if n is even, then $\mathcal{N}\left(l^{(n)}\right)=\mathcal{N}(l)+\mathcal{N}(l \cup f)+2 \rho_{2}-1$ for some integer ρ_{2}.

Case II. $L k(l, f) \equiv 0(\bmod 2)$. Let $l_{2}=l_{1} \sharp h^{-}$denote the connected sum of $l_{1}=l \cup f$ and the left handed Hopf link h^{-}as shown in Fig. 3. As Case I, if n is odd, then $\mathcal{N}\left((l \circ u)^{(n)}\right)=\mathcal{N}(l \circ u)+2 \rho_{1}$, and if n is even, then $\mathcal{N}\left((l \circ u)^{(n)}\right)=\mathcal{N}(l \circ u)$ $+\mathcal{N}((l \circ u) \cup f)+2 \rho_{2}-1$. Note that $\mathcal{N}(l \circ u)=\mathcal{N}(l)+1, \mathcal{N}\left((l \circ u)^{(n)}\right)=\mathcal{N}\left(l^{(n)} \circ u\right)=$ $\mathcal{N}\left(l^{(n)}\right)+1$, and $\mathcal{N}((l \circ u) \cup f)=\mathcal{N}\left((l \cup f) \sharp h^{-}\right)=\mathcal{N}(l \cup f)+\mathcal{N}\left(h^{-}\right)-1=\mathcal{N}(l \cup f)$ [12, Lemmas 6.3, 6.4]. Since the number of components of $l^{(n)}$ is equal to $\sum_{i=1}^{\mu} \nu_{i}$, $1 \leq \mathcal{N}\left(l^{(n)}\right) \leq \sum_{i=1}^{\mu} \nu_{i}$. So $1 \leq \mathcal{N}(l)+2 \rho_{1} \leq \sum_{i=1}^{\mu} \nu_{i}(n:$ odd $)$ and $1 \leq \mathcal{N}(l)+\mathcal{N}(l \cup f)+$ $2 \rho_{2}-1 \leq \sum_{i=1}^{\mu} \nu_{i}(n$: even). This implies the results.

5. The reduced Alexander polynomial

Let $l=k_{1} \cup \cdots \cup k_{\mu}$ be an oriented link in S^{3} of μ components, let E be the exterior of l, and let $\pi_{1}(E)$ be the link group of l. Let t_{i} be the homology class in $H_{1}(E)$ represented by a meridian of $k_{i}(1 \leq i \leq \mu)$. Then $H_{1}(E)$ is a free abelian group of rank μ generated by t_{1}, \ldots, t_{μ}. Let $\gamma: \pi_{1}(E) \rightarrow H_{1}(E)$ be the Hurewicz epimorphism and let E_{γ} be the universal abelian covering space of E corresponding to the kernel of γ. Then $H_{1}(E)$ acts on E_{γ} as the covering transformation group and so $H_{1}\left(E_{\gamma}\right)$ can be regarded as a module over the integral group ring $\mathbb{Z} H_{1}(E)$ of $H_{1}(E)$. By regarding $H_{1}(E)$ as the multiplicative free abelian group F_{μ} with basis t_{1}, \ldots, t_{μ}, we can identify $\mathbb{Z} H_{1}(E)$ with the Laurent polynomial ring Λ in the variables t_{1}, \ldots, t_{μ}, so that we can regard $H_{1}\left(E_{\gamma}\right)$ as a Λ-module. The 0 -th characteristic polynomial of $H_{1}\left(E_{\gamma}\right)$, i.e., the greatest common divisor of the elements of the 0-th elementary ideal of $H_{1}\left(E_{\gamma}\right)$, is called the Alexander polynomial of l on μ variables, and denoted by $\Delta_{l}\left(t_{1}, \ldots, t_{\mu}\right)$.

Now let $\nu: H_{1}(E) \rightarrow F_{r}$ be an epimorphism from $H_{1}(E)$ to the free abelian group F_{r} of rank r with basis t_{1}, \ldots, t_{r} and let E_{ν} be the covering space over E corresponding to the kernel of the composite homomorphism $\nu \gamma: \pi_{1}(E) \rightarrow F_{r}$. Then $H_{1}\left(E_{\nu}\right)$ can be regarded as a $\mathbb{Z} F_{r}$-module. The reduced Alexander polynomial of l on r variables associated to ν is defined to be the 0 -th characteristic polynomial of the $\mathbb{Z} F_{r}$-module $H_{1}\left(E_{\nu}\right)$ and denoted by $\tilde{\Delta}_{l}\left(t_{1}, \ldots, t_{r}\right)$. If l is a knot, we have $\tilde{\Delta}_{l}(t) \doteq \Delta_{l}(t)$. For $\mu \geq 2$, the relationship between the Alexander polynomial $\Delta_{l}\left(t_{1}, \ldots, t_{\mu}\right)$ and the reduced one $\tilde{\Delta}_{l}\left(t_{1}, \ldots, t_{r}\right)$ is as follow[7, Proposition 7.3.10]:

$$
\begin{cases}\tilde{\Delta}_{l}\left(t_{1}\right) \doteq\left(t_{1}-1\right) \Delta_{l}\left(\nu\left(t_{1}\right), \ldots, \nu\left(t_{\mu}\right)\right) & \text { if } r=1 \tag{5.1}\\ \tilde{\Delta}_{l}\left(t_{1}, \ldots, t_{r}\right) \doteq \Delta_{l}\left(\nu\left(t_{1}\right), \ldots, \nu\left(t_{\mu}\right)\right) & \text { if } r \geq 2\end{cases}
$$

Now let $l_{1}=k \cup f$ be a two component link in S^{3}, where f is unknotted and $L k(k, f)=\lambda$. In [14, Theorem 2], Murasugi showed that the Alexander polynomial $\Delta_{k^{(n)}}(t)$ of the n-periodic covering knot $k^{(n)}$ over $l_{1}=k \cup f$, where $n=p^{r}(r \geq 1)$ and p is an odd prime with $(\lambda, p)=1$, satisfies the congruence:

$$
\begin{equation*}
\Delta_{k^{(n)}}(t) \equiv\left(1+t+\cdots+t^{\lambda-1}\right)^{n-1} \Delta_{k}(t)^{n} \quad(\bmod p) . \tag{5.2}
\end{equation*}
$$

The following theorem is a natural generalization of Murasugi's congruence (5.2) on periodic knots.

Theorem 5.1. Let l be an oriented link in S^{3} of μ components, let $l_{1}=l \cup f$, where f is unknotted, and let $\lambda=L k(l, f)$. Let $l^{(n)}$ be the oriented n-periodic covering link in S^{3} over l_{1} of period $n=p^{r}(r \geq 1)$, where p is an odd prime. Then the reduced Alexander polynomials $\tilde{\Delta}_{l^{(n)}}(t)$ and $\tilde{\Delta}_{l}(t)$, where a meridian of each component of $l^{(n)}$ and l corresponds to t, satisfy the congruence:

$$
\begin{equation*}
\tilde{\Delta}_{l^{(n)}}(t) \equiv\left(1+t+\cdots+t^{\lambda-1}\right)^{n-1} \tilde{\Delta}_{l}(t)^{n} \quad(\bmod p) \tag{5.3}
\end{equation*}
$$

Proof. Let $l=k_{1} \cup \cdots \cup k_{\mu}$ be an oriented link in S^{3} of μ components and let $l^{(n)}=k_{1}^{(n)} \cup \cdots \cup k_{\mu}^{(n)}=k_{11} \cup \cdots \cup k_{1 \nu_{1}} \cup \cdots \cup k_{\mu 1} \cup \cdots \cup k_{\mu \nu_{\mu}}$ be the oriented n-periodic covering link in S^{3} over l_{1}. If $\mu \nu_{\mu}=1$, then the congruence (5.3) is just the Murasugi's congruence (5.2). Assume that $\mu \nu_{\mu} \geq 2$. Let $\tilde{\Delta}_{l^{(n)}}\left(t_{1}, \ldots, t_{\mu}\right)$ be the reduced Alexander polynomial of n-periodic covering link $l^{(n)}$ such that for $1 \leq i \leq \mu$, a meridian of each component of $k_{i}^{(n)}=\pi^{-1}\left(k_{i}\right)$ corresponds to t_{i}. By [16], the following formula holds:

$$
\begin{equation*}
\tilde{\Delta}_{l^{(n)}}\left(t_{1}, \ldots, t_{\mu}\right) \doteq \Delta_{l}\left(t_{1}, \ldots, t_{\mu}\right) \prod_{j=1}^{n-1} \Delta_{l \cup f}\left(t_{1}, \ldots, t_{\mu}, \xi^{j}\right) \tag{5.4}
\end{equation*}
$$

where ξ is a primitive n-th root of 1 . From (5.1),

$$
\left\{\begin{array}{l}
\tilde{\Delta}_{l^{(n)}}\left(t_{1}\right) \doteq\left(t_{1}-1\right) \Delta_{l^{(n)}}\left(t_{1}, \ldots, t_{1}\right) \quad \text { if } \mu=1 \text { and } \mu \nu_{\mu} \geq 2 \tag{5.5}\\
\tilde{\Delta}_{l^{(n)}}\left(t_{1}, \ldots, t_{\mu}\right) \doteq \Delta_{l^{(n)}}\left(t_{1}, \ldots, t_{1}, \ldots, t_{\mu}, \ldots, t_{\mu}\right) \text { if } \mu \geq 2
\end{array}\right.
$$

(1) Let $\mu=1$ and $\mu \nu_{\mu} \geq 2$, i.e., $l_{1}=k_{1} \cup f$ and $l^{(n)}=k_{11} \cup \cdots \cup k_{1 \nu_{1}}$. By Torres condition [17], $\Delta_{k_{1} \cup f}\left(t_{1}, 1\right)=\left(t_{1}^{\lambda}-1\right)\left(t_{1}-1\right)^{-1} \Delta_{k_{1}}\left(t_{1}\right)$. From (5.4) and (5.5), we obtain that

$$
\left(t_{1}^{\lambda}-1\right) \Delta_{k_{1}}\left(t_{1}\right) \Delta_{l^{(n)}}\left(t_{1}, \ldots, t_{1}\right) \doteq \Delta_{k_{1}}\left(t_{1}\right) \prod_{j=0}^{n-1} \Delta_{k_{1} \cup f}\left(t_{1}, \xi^{j}\right)
$$

From [14, Proposition 4.2] and the fact that $\Delta_{k_{1}}(t) \not \equiv 0(\bmod p)$, we have that

$$
\Delta_{l^{(n)}}\left(t_{1}, \ldots, t_{1}\right) \equiv\left(t_{1}^{\lambda}-1\right)^{n-1}\left(t_{1}-1\right)^{-n} \Delta_{k_{1}}\left(t_{1}\right)^{n} \quad(\bmod p)
$$

Therefore, by (5.1), we obtain the congruence:

$$
\tilde{\Delta}_{l^{(n)}}(t) \equiv\left(1+t+\cdots+t^{\lambda-1}\right)^{n-1} \tilde{\Delta}_{k_{1}}(t)^{n} \quad(\bmod p) .
$$

(2) Let $\mu \geq 2$ and denote $\lambda_{i}=L k\left(k_{i}, f\right)$ and so $\lambda=L k(l, f)=\sum_{i=1}^{\mu} \lambda_{i}$. By Torres condition [17], $\Delta_{l \cup f}\left(t_{1}, \ldots, t_{\mu}, 1\right) \doteq\left(t_{1}^{\lambda_{1}} \cdots t_{\mu}^{\lambda_{\mu}}-1\right) \Delta_{l}\left(t_{1}, \ldots, t_{\mu}\right)$. From (5.4) and (5.5), we obtain that

$$
\begin{aligned}
& \left(t^{\lambda}-1\right) \Delta_{l}(t, \ldots, t) \Delta_{l^{(n)}}(t, \ldots, t, \ldots, t, \ldots, t) \\
& \doteq \Delta_{l}(t, \ldots, t) \prod_{j=0}^{n-1} \Delta_{l \cup f}\left(t, \ldots, t, \xi^{j}\right)
\end{aligned}
$$

From [14, Proposition 4.2], we obtain the congruence:

$$
\begin{aligned}
& \Delta_{l}(t, \ldots, t) \Delta_{l^{n}}(t, \ldots, t, \ldots, t, \ldots, t) \\
& \equiv \Delta_{l}(t, \ldots, t)\left(t^{\lambda}-1\right)^{n-1} \Delta_{l}(t, \ldots, t)^{n} \quad(\bmod p) .
\end{aligned}
$$

By (5.1),

$$
\tilde{\Delta}_{l}(t) \tilde{\Delta}_{l^{(n)}}(t) \equiv \tilde{\Delta}_{l}(t)\left(1+t+\cdots+t^{\lambda-1}\right)^{n-1} \tilde{\Delta}_{l}(t)^{n} \quad(\bmod p)
$$

Therefore we have that either $\tilde{\Delta}_{l}(t) \equiv 0(\bmod p)$ or

$$
\tilde{\Delta}_{l^{(n)}}(t) \equiv\left(1+t+\cdots+t^{\lambda-1}\right)^{n-1} \tilde{\Delta}_{l}(t)^{n} \quad(\bmod p)
$$

If $\tilde{\Delta}_{l}(t) \equiv 0(\bmod p)$, then by (5.4) it is obvious that $\tilde{\Delta}_{l^{(n)}}(t) \equiv 0(\bmod p)$. This completes the proof.

Theorem 5.2. Let l be an oriented link in S^{3} of μ components, let $l_{1}=l \cup f$, where f is unknotted, and let $\lambda=L k(l, f)$. Let $l^{(n)}$ be the oriented n-periodic covering link in S^{3} over l_{1} of period $n=p^{r}(r \geq 1)$, where p is an odd prime. Suppose that the reduced Alexander polynomial $\tilde{\Delta}_{l^{(n)}}(t)$ of $l^{(n)}$ satisfies that
(i) $\tilde{\Delta}_{l^{(n)}}(t)$ is not a product of non-trivial link polynomials,
(ii) $\tilde{\Delta}_{l^{(n)}}(t) \not \equiv 0, \pm 1(\bmod p)$.

Then
(1) $\tilde{\Delta}_{l^{(n)}}(t) \equiv\left(1+t+\cdots+t^{\lambda-1}\right)^{n-1}(\bmod p)$.
(2) If $\tilde{\Delta}_{l^{(n)}}(-1) \neq 0$, then
$\sigma\left(l^{(n)}\right) \equiv \begin{cases}0 & (\bmod 4) \text { if } \lambda \text { is odd }, \\ n-1 & (\bmod 4) \text { if } \lambda \text { is even. }\end{cases}$
Proof. (1) From (5.1), (5.4) and (5.5), we obtain that

$$
\begin{equation*}
\tilde{\Delta}_{l^{(n)}}(t) \doteq \tilde{\Delta}_{l}(t) \prod_{j=1}^{n-1} \Delta_{l \cup f}\left(t, \ldots, t, \xi^{j}\right) . \tag{5.6}
\end{equation*}
$$

By condition (i), either $\tilde{\Delta}_{l^{(n)}}(t) \doteq \tilde{\Delta}_{l}(t)$ or $\tilde{\Delta}_{l}(t) \doteq 1$.
If $\tilde{\Delta}_{l^{(n)}}(t) \doteq \tilde{\Delta}_{l}(t)$, then, by Theorem 5.1,

$$
\tilde{\Delta}_{l}(t) \equiv\left(1+t+\cdots+t^{\lambda-1}\right)^{n-1} \tilde{\Delta}_{l}(t)^{n} \quad(\bmod p) .
$$

From condition (ii), we obtain that $\tilde{\Delta}_{l}(t) \not \equiv 0(\bmod p)$. So

$$
1 \equiv\left(1+t+\cdots+t^{\lambda-1}\right)^{n-1} \tilde{\Delta}_{l}(t)^{n-1} \quad(\bmod p)
$$

Hence all the polynomials $1+t+\cdots+t^{\lambda-1}$ and $\tilde{\Delta}_{l}(t)$ are congruent to ± 1 modulo p. Hence $\tilde{\Delta}_{l^{(n)}}(t) \equiv \pm 1(\bmod p)$. This contradicts to condition (ii). Therefore $\tilde{\Delta}_{l}(t) \doteq 1$. By Theorem 5.1, the result follows.
(2) Since $\tilde{\Delta}_{l^{(n)}}(-1) \neq 0$, it follows from (5.6) that $\Delta_{l \cup f}\left(-1, \ldots,-1, \xi^{j}\right) \neq 0$ for each $j=0,1, \ldots, n-1$. So $\mathcal{N}(l)=1=\mathcal{N}\left(l^{(n)}\right)$. Since $\tilde{\Delta}_{l}(t) \doteq 1, \sigma(l)=0$. By Theorem 4.2, the result follows.

6. Applications

Let l be a null-homologous oriented link in a closed oriented 3-manifold \mathcal{M} and let $\pi: \mathcal{M}_{n} \rightarrow \mathcal{M}$ be an n-fold branched cyclic cover of \mathcal{M} branched along l. We shall always assume that each oriented meridian of l corresponds to a fixed generator of the group of covering transformations. Let F be a surface properly embedded in a 4-manifold N with $\partial(N, F)=(\mathcal{M}, l)$ and suppose π extends to a covering $N_{n} \rightarrow N$ branched over F. Then the integer

$$
\tau_{n}(l, \pi)=\sigma\left(N_{n}\right)-n \sigma(N)+\frac{\left(n^{2}-1\right)}{3 n}[F, \partial F] \cdot[F, \partial F]
$$

is an invariant of l and π, where $[F, \partial F] \cdot[F, \partial F]$ denotes algebraic intersection number of homology class $[F, \partial F]$ in $H_{2}(N, \partial N)$.

If \mathcal{M} is a homology 3 -sphere, then Viro [19] shows that $\tau_{n}(l, \pi)$ can be calculated from a Seifert matrix for l. In general, let l be a null-homologous oriented link in a closed oriented 3 -manifold \mathcal{M} and let π_{∞} be an infinite cyclic cover of $\mathcal{M}-l$ such that each oriented meridian of l corresponds to a fixed generator of the group of covering transformations. Then, in [4], the authors observed that this invariant $\tau_{n}(l, \pi)$ can be calculated from a surface $F \subset \mathcal{M}$, called a spanning surface for $\left(l, \pi_{\infty}\right)$, such that $\partial F=l$ and the epimorphism $H_{1}(\mathcal{M}-l) \rightarrow \mathbb{Z}$ which determines π_{∞} is given by intersection number with F.

Now let $l_{1}=l \cup f$ be an oriented link in S^{3} such that f is unknotted and $\lambda=$ $L k(l, f)$ is an odd integer. Let $L_{1}=L \cup F$ be a diagram of $l_{1}=l \cup f$ which has the form as shown in Fig. 2 and let M, N, P, Q, and R_{1} be the matrices defined in the Section 3. For any given integer $n \geq 2$ and $\xi=e^{2 \pi i / n}(i=\sqrt{-1})$, define $\mathcal{S}_{L_{1}}\left(n ; \xi^{j}\right)$ to be the Hermitian matrix given by

$$
\mathcal{S}_{L_{1}}\left(n ; \xi^{j}\right)=\left(\begin{array}{cc}
M & P+\xi^{j} Q \\
P^{t}+\xi^{-j} Q^{t} & N+\xi^{j} R_{1}+\xi^{-j} R_{1}^{t}
\end{array}\right) \oplus\left(\begin{array}{cc}
-M & -P-Q \\
-P^{t}-Q^{t} & -N-R_{1}-R_{1}^{t}
\end{array}\right)
$$

Theorem 6.1. Let $l_{1}=l \cup f$ be an oriented link in S^{3} such that f is unknotted and $\lambda=L k(l, f)$ is an odd integer. Let $\pi_{2}: \mathcal{M}_{2}(l) \rightarrow S^{3}$ be the 2-fold branched cyclic cover branched along l and let $f^{(2)}=\pi_{2}^{-1}(f) \subset \mathcal{M}_{2}(l)$. Then for any integer $n \geq 2$,

$$
\tau_{n}\left(f^{(2)}, \pi\right)=\sum_{j=1}^{n-1} \sigma\left(\mathcal{S}_{L_{1}}\left(n ; \xi^{j}\right)\right)
$$

Proof. By Theorem 3.1 in [4], $\tau_{n}\left(f^{(2)}, \pi\right)=\sigma\left(l^{(n)}\right)-n \sigma(l)+2 \sigma(f)$. Note that $\sigma(f)=0$ since f is unknotted. By (4.6), we have that

$$
\begin{equation*}
\tau_{n}\left(f^{(2)}, \pi\right)=\sigma\left(l^{(n)}\right)-n \sigma(l)=\sum_{j=1}^{n-1} \sigma\left(\mathcal{S}_{L_{1}}\left(n ; \xi^{j}\right)\right) \tag{6.1}
\end{equation*}
$$

This completes the proof.
Example 6.2. Let $\beta=\sigma_{1} \sigma_{1} \sigma_{2} \sigma_{2} \sigma_{1}^{-1} \sigma_{2} \in B_{3}$ be a braid of 3 -strings and let $l_{1}=$ $l \cup f$, where $l=\beta^{\wedge}$ denotes the closed braid with braid axis f (cf. $l=\beta^{\wedge}$ is the prime knot 5_{2}). Then $\lambda=L k\left(\beta^{\wedge}, f\right)=3$ and $M=\left(\begin{array}{cc}-2 & 1 \\ 1 & -3\end{array}\right), P=\binom{1}{0}, Q=\binom{0}{1}, R_{1}=(0)$, and $N=N_{1}+N_{2}=(1)+(-1)=(0)$. For any integer $n \geq 2$,

$$
\mathcal{S}_{L_{1}}\left(n ; \xi^{j}\right)=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -3 & \xi^{j} \\
1 & \xi^{-j} & 0
\end{array}\right) \oplus\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 0
\end{array}\right)
$$

So $\tau_{n}\left(f^{(2)}, \pi\right)=\sum_{j=1}^{n-1} \sigma\left(\mathcal{S}_{L_{1}}\left(n ; \xi^{j}\right)\right)=0$ for any integer $n \geq 2$. Since $\sigma\left(\beta^{\wedge}\right)=2$, it follows from (6.1) that $\sigma\left(\left(\beta^{n}\right)^{\wedge}\right)=n \sigma\left(\beta^{\wedge}\right)=2 n$ for any integer $n \geq 2$. On the other hand, $\mathcal{N}\left(\left(\beta^{n}\right)^{\wedge}\right)=1$ for any integer $n \geq 2$.

Example 6.3. Let $\beta=\sigma_{1} \sigma_{2} \sigma_{2} \sigma_{2} \in B_{3}$ be a braid of 3-strings and let $l_{1}=l \cup f$, where $l=\beta^{\wedge}$ (cf. $l=\beta^{\wedge}$ is the right handed trefoil knot). Then $\lambda=L k\left(\beta^{\wedge}, f\right)=3$ and $M=\left(\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right), P=\binom{1}{0}, Q=\binom{0}{1}, R_{1}=(0)$, and $N=N_{1}+N_{2}=(0)+(-1)=(-1)$. For any integer $n \geq 2$,

$$
\mathcal{S}_{L_{1}}\left(n ; \xi^{j}\right)=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & \xi^{j} \\
1 & \xi^{-j} & -1
\end{array}\right) \oplus\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 1
\end{array}\right) .
$$

So $\tau_{n}\left(f^{(2)}, \pi\right)=-a_{n}(j)-2 b_{n}(j)$, where $a_{n}(j)$ and $b_{n}(j)$ denote the numbers of the integers $j(1 \leq j \leq n-1)$ such that $-1-2 \cos 2 \pi j / n=0$ and $-1-2 \cos 2 \pi j / n>$ 0 , respectively. Since $\sigma\left(\beta^{\wedge}\right)=-2$, it follows from (6.1) that $\sigma\left(\left(\beta^{n}\right)^{\wedge}\right)=-2 n-$ $a_{n}(j)-2 b_{n}(j)$. On the other hand, we obtain from (4.2) and (4.4) of Lemma 4.1 that $\mathcal{N}\left(\left(\beta^{n}\right)^{\wedge}\right)=3$ or 1 according as n is a multiple of 3 or not.

Example 6.4. Let $\beta=\sigma_{1} \sigma_{1} \sigma_{2} \in B_{3}$ be a braid of 3 -strings and let $l_{1}=l \cup f$, where $l=\beta^{\wedge}$ (cf. $l=\beta^{\wedge}$ is the right handed Hopf link). Then $\lambda=L k\left(\beta^{\wedge}, f\right)=3$ and $M=P=Q=(0), R_{1}=(1)$, and $N=N_{1}+N_{2}=(1)+(-1)=(0)$. For any integer $n \geq 2, \mathcal{S}_{L_{1}}\left(n ; \xi^{j}\right)=(2 \cos (2 \pi j / n)) \oplus(-2)$. So $\tau_{n}\left(f^{(2)}, \pi\right)=\sum_{j=1}^{n-1} \sigma\left(\mathcal{S}_{L_{1}}\left(n ; \xi^{j}\right)\right)=$ $\sum_{j=1}^{n-1} \epsilon_{j}-n+1$ and consequently, $\sigma\left(\left(\beta^{n}\right)^{\wedge}\right)=\sum_{j=1}^{n-1} \epsilon_{j}-2 n+1$ for any integer $n \geq 2$, where ϵ_{j} is the sign of the real number $\cos (2 \pi j / n)\left(\epsilon_{j}=0\right.$ if $\left.\cos (2 \pi j / n)=0\right)$. On the other hand, we obtain from (4.2) and (4.4) of Lemma 4.1 that $\mathcal{N}\left(\left(\beta^{n}\right)^{\wedge}\right)=3$ or 1 according as n is a multiple of 4 or not.

Remarks 6.5. (1) Example 6.2, 6.3, and 6.4 show that Theorem 6.1 gives a method to calculate the signature and the nullity of a closed n-periodic braid $\left(\beta^{n}\right)^{\wedge}$ ($n \geq 2$) from the braid $\beta \in B_{2 m+1}(m \geq 0)$.
(2) Let $l=k_{1} \cup \cdots \cup k_{\mu}$ be an oriented link of μ components and let $l_{1}=l \cup f$ be an oriented link in S^{3} such that f is unknotted and $\lambda=L k(l, f)$ is an odd integer. For any integer $n \geq 2$, let $l^{(n)}$ be the n-periodic covering link over l_{1}. Suppose that $\Delta_{l \cup f}\left(-1, \ldots,-1, \xi^{j}\right) \neq 0$ for each $j=0,1, \ldots, n-1$. Let $\Lambda_{L_{1}}\left(n ; \xi^{j}\right)$ be the matrix in Lemma 4.1. Then, from (4.5), we obtain the followings:
(i) Let $\mathcal{O}\left[H_{1}(\mathcal{M})\right]$ denote the order of $H_{1}(\mathcal{M})$ with integral coefficients. Then

$$
\begin{equation*}
\mathcal{O}\left[H_{1}\left(\mathcal{M}_{2}\left(l^{(n)}\right)\right)\right]=\mathcal{O}\left[H_{1}\left(\mathcal{M}_{2}(l)\right)\right] \prod_{j=1}^{n-1}\left|\operatorname{det}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)\right| . \tag{6.2}
\end{equation*}
$$

More precisely, if n is odd, then

$$
\mathcal{O}\left[H_{1}\left(\mathcal{M}_{2}\left(l^{(n)}\right)\right)\right]=\mathcal{O}\left[H_{1}\left(\mathcal{M}_{2}(l)\right)\right] \prod_{j=1}^{(n-1) / 2}\left|\operatorname{det}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)\right|^{2}
$$

If n is even, then

$$
\mathcal{O}\left[H_{1}\left(\mathcal{M}_{2}\left(l^{(n)}\right)\right)\right]=\frac{1}{2} \mathcal{O}\left[H_{1}\left(\mathcal{M}_{2}(l)\right)\right] \mathcal{O}\left[H_{1}\left(\mathcal{M}_{2}(l \cup f)\right)\right] \prod_{j=1}^{(n-2) / 2}\left|\operatorname{det}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)\right|^{2},
$$

where $\left|\operatorname{det}\left(\Lambda_{L_{1}}\left(n ; \xi^{j}\right)\right)\right|$ is the absolute value of the determinant of the Hermitian matrix $\Lambda_{L_{1}}\left(n ; \xi^{j}\right)$.
(ii) It follows from (6.2), [6, Theorem 1] and [16, Theorem 2] that

$$
\prod_{j=1}^{n-1}\left|\operatorname{det}\left(\Lambda_{L_{1}}\left(n: \xi^{j}\right)\right)\right|=\prod_{j=1}^{n-1}\left|\Delta_{l \cup f}\left(-1, \ldots,-1, \xi^{j}\right)\right| .
$$

Acknowledgement. I am grateful to the referee for careful reading the manuscript and suggesting several improvements.

References

[1] L. Goeritz: Knoten und quadratische Formen, Math. Z. 36 (1933), 647-654.
[2] C.McA. Gordon and R.A. Litherland: On the signature of a link, Invent. Math. 47 (1978), 53-69.
[3] C.McA. Gordon and R.A. Litherland: On a theorem of Murasugi, Pacific J. Math. 82 (1979), 69-74.
[4] C.McA. Gordon, R.A. Litherland and K. Murasugi: Signatures of covering links, Can. J. Math. 33 (1981), 381-394.
[5] J.A. Hillman: New proofs of two theorems on periodic knots, Archiv Math. 37 (1981), 457-461.
[6] F. Hosokawa and S. Kinoshita: On the homology group of branched covering spaces of links, Osaka Math. J. 12 (1960), 331-355.
[7] A. Kawauchi: A Survey of Knot Theory, Birkhäuser, 1996.
[8] R.H. Kyle: Branched covering spaces and quadratic forms of links, Ann. of Math. 59 (1954), 539-548.
[9] S.Y. Lee and C.-Y. Park: On the modified Goeritz matrices of 2-periodic links, Osaka J. Math. 35 (1998), 529-537.
[10] J. Morgan and H. Bass: The Smith Conjecture, Academic Press, Inc., 1984.
[11] Y. Miyazawa: Conway polynomials of periodic links, Osaka J. Math. 31 (1994), 147-163.
[12] K. Murasugi: On a certain numerical invariants of link types, Trans. Amer. Math. Soc. 117 (1965), 387-422.
[13] K. Murasugi: On the signature of links, Topology 9 (1970), 283-298.
[14] K. Murasugi: On periodic knots, Comm. Math. Helv. 35 (1971), 529-537.
[15] K. Murasugi: Jones polynomials of periodic links, Pacific J. Math. 131 (1988), 319-329.
[16] M. Sakuma: On the polynomials of periodic links, Math. Ann. 257 (1981), 487-494.
[17] G. Torres: On the Alexander polynomial, Ann. of Math. 57 (1953), 57-89.
[18] L. Traldi: On the Goeritz matrix of a link, Math. Z. 188 (1985), 203-213.
[19] O.Ja. Viro: Branched coverings of manifolds with boundary and link invariants, I, Math. USSR Izvestija 7 (1973), 1239-1256.

Department of Mathematics, Pusan National University, Pusan 609-735
Korea
e-mail: sangyoul@pusan.ac.kr

[^0]: This work was supported by Korea Research Foundation Grant. (KRF-2001-015-DP0038).

