PERFECT ISOMETRIES AND THE ISAACS CORRESPONDENCE

Lucia SANUS

(Received May 21, 2001)

1. Introduction

Suppose that S and G are finite groups such that S acts on G coprimely. Let B an S invariant p-block of G such that S centralizes some defect group D of B. In [10], Watanabe proved that whenever S is solvable, then there is a perfect isometry between B and the set of the Glauberman correspondents of the characters in B. Horimoto in [2] proved the case where S is nonsolvable.

Now, let G be a group of odd order. Let q be a prime and Q a Sylow q-subgroup of G. By $\operatorname{Irr}_{q^{\prime}}(G)$, we denote the set of irreducible characters of G which have degree not divisible by q. When G is a solvable group of odd order, M. Isaacs constructed a natural one-to-one correspondence

$$
{ }^{*}: \operatorname{Irr}_{q^{\prime}}(G) \rightarrow \operatorname{Irr}_{q^{\prime}}\left(\mathbf{N}_{G}(Q)\right)
$$

which depends only on G and Q (see [3]).
In this paper, we show that there is also a perfect isometry between a block B where all irreducible characters of this have degree not divisible by q and the set of Isaacs correspondents of the characters in B. This complements the work by A. Watanabe and H. Horimoto.

Theorem A. Suppose that G is a finite group of odd order and p and q are distinct prime numbers. Let B be a p-block of G such that every irreducible character of B has q^{\prime}-degree. Let D be a defect group of B. Then there exists a unique p-block B^{*} of $\mathbf{N}_{G}(Q)$, for some $Q \in \operatorname{Syl}_{q}(G)$, with defect group D such that $\operatorname{Irr}\left(B^{*}\right)=\left\{\chi^{*} \mid\right.$ $\chi \in \operatorname{Irr}(B)\}$. Moreover, there exists a perfect isometry R such that $R(\chi)=\chi^{*}$ for $\chi \in \operatorname{Irr}(B)$.

Some of the results of this paper were obtained while I was visiting Ohio University. I would like to thank the Mathematics Department for its hospitality. I would also like to thank G. Navarro for many helpful suggestions.

[^0]
2. Preliminaries

In this section, we review the Isaacs correspondence and we prove some properties of this. We present the Isaacs correspondence for the prime p as it was defined in [3]. Let P be a Sylow p-subgroup of G.

Theorem 2.1 (Isaacs). Suppose that G is a group of odd order. Suppose that $G=K H$, where $K, L \triangleleft G, K \cap H=L$ and K / L is abelian. Suppose that $H=L \mathbf{N}_{G}(P)$. Let $\theta \in \operatorname{Irr}(L)$ be P-invariant. If $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$ lies over θ, then

$$
\chi_{H}=\chi^{(H)}+2 \Delta+\beta,
$$

where $\chi^{(H)}$ has p^{\prime}-degree and lies over θ and no irreducible constituent of β lies over θ. Moreover the map $\chi \mapsto \chi^{(H)}$ is a bijection between $\operatorname{Irr}_{p^{\prime}}(G \mid \theta)$ and $\operatorname{Irr}_{p^{\prime}}(H \mid \theta)$.

Proof. This is Theorem 10.6 of [3].
Lemma 2.2. Let G be a group of odd order. Suppose that $H=\mathbf{O}^{p^{\prime} p}(G)^{\prime} \mathbf{N}_{G}(P)$. Let $\mathbf{O}^{p^{\prime}}(G) \subseteq J \subseteq G$. Let $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$ and let $\theta \in \operatorname{Irr}_{p^{\prime}}(J)$. Then all irreducible constituents of χ_{J} have p^{\prime}-degree and

$$
\left[\chi_{J}, \theta\right]=\left[\left(\chi^{(H)}\right)_{J \cap H}, \theta^{(H \cap J)}\right] .
$$

In particular, if $\theta^{G}=\chi$, then

$$
\left(\theta^{(H \cap J)}\right)^{H}=\chi^{(H)} .
$$

Proof. Follows from Lemma 2.9 of [9].
Suppose that $G=G_{0}$ and write $G_{i+1}=\mathbf{O}^{p^{\prime} p}\left(G_{i}\right)^{\prime} \mathbf{N}_{G}(P)$. The Isaacs correspondence *: $\operatorname{Irr}_{p^{\prime}}(G) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathbf{N}_{G}(P)\right)$ is obtained by using Theorem 2.1 with respect to the chain

$$
G=G_{0}>G_{1}>G_{2}>\cdots>G_{n}=\mathbf{N}_{G}(P) .
$$

First of all, we review some properties of the Isaacs correspondence.
Theorem 2.3. Let G be a group of odd order. Suppose that H is a subgroup of G containing $\mathbf{O}^{p^{\prime} p}(G)^{\prime} \mathbf{N}_{G}(P)$. Let $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$. Then $\left(\chi^{(H)}\right)^{*}=\chi^{*}$.

Proof. This is Theorem 2.3 of [9].
Theorem 2.4. Let G be a group of odd order. Suppose that $P \subseteq J \subseteq G$ and let $\xi \in \operatorname{Irr}(J)$ such that $\xi^{G}=\chi \in \operatorname{Irr}(G)$. Let $\xi^{*} \in \operatorname{Irr}\left(\mathbf{N}_{J}(P)\right)$ and $\chi^{*} \in \operatorname{Irr}\left(\mathbf{N}_{G}(P)\right)$ be the

Isaacs correspondents of ξ and χ, respectively. Then $\left(\xi^{*}\right)^{\mathbf{N}_{G}(P)}=\chi^{*}$.

Proof. This is Theorem A of [9].
A key tool for proving our main result is the following.

Theorem 2.5. Let G be a group of odd order and let $M \triangleleft G$. Suppose that $\chi \in$ $\operatorname{Irr}_{p^{\prime}}(G)$ and $\theta \in \operatorname{Irr}_{p^{\prime}}(M)$ is P-invariant. Then
(a) $\left[\chi_{M}, \theta\right] \neq 0$ if and only if $\left[\left(\chi^{*}\right)_{\mathbf{N}_{M P}(P)}, \varphi^{*}\right] \neq 0$ for some $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$.
(b) If $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$, then

$$
I_{G}(\theta) \cap \mathbf{N}_{G}(P)=I_{\mathbf{N}_{G}(P)}\left(\left(\varphi^{*}\right)_{\mathbf{N}_{M}(P)}\right) .
$$

Moreover, if χ_{θ} is the Clifford correspondent of χ over θ and $\left[\left(\chi^{*}\right) \mathbf{N}_{M P(P)}, \varphi^{*}\right] \neq 0$, then χ_{θ}^{*} is the Clifford correspondent of $\chi^{*} \operatorname{over}\left(\varphi^{*}\right) \mathbf{N}_{M}(P)$.

Notice that $\left(\varphi^{*}\right) \mathbf{N}_{M}(P) \in \operatorname{Irr}\left(\mathbf{N}_{M}(P)\right)$ since $\mathbf{N}_{M}(P)$ is a normal subgroup of $\mathbf{N}_{M P}(P)$ of p-index. As an inmediate consequence of this theorem, we have the following result.

Corollary 2.6. Let G be a group of odd order and let $P \subseteq M \triangleleft G$. Suppose that $\chi \operatorname{Irr}_{p^{\prime}}(G)$ and $\theta \in \operatorname{Irr}_{p^{\prime}}(M)$. Then
(a) $\left[\chi_{M}, \theta\right] \neq 0$ if and only if $\left[\left(\chi^{*}\right)_{\mathbf{N}_{M}(P)}, \theta^{*}\right] \neq 0$.
(b) We have that

$$
I_{G}(\theta) \cap \mathbf{N}_{G}(P)=I_{\mathbf{N}_{G}(P)}\left(\theta^{*}\right)
$$

Moreover, if χ_{θ} is the Clifford correspondent of χ over θ, then χ_{θ}^{*} is the Clifford correspondent of χ^{*} over θ^{*}.

Proof. Follows from Theorem 2.5.
First of all, we prove the Theorem 2.5 for the correpondence described in Theorem 2.1.

Proposition 2.7. Let G be a group of odd order and let $\mathbf{O}^{p^{\prime} p}(G) \subseteq M \triangleleft G$. Suppose that $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$ and $\theta \in \operatorname{Irr}_{p^{\prime}}(M)$ is P-invariant. If $H=\mathbf{O}^{p^{\prime} p}(G)^{\prime} \mathbf{N}_{G}(P)$, then
(a) $\left[\chi_{M}, \theta\right] \neq 0$ if and only if $\left[\left(\chi^{(H)}\right)_{H \cap M P}, \varphi^{(H \cap M P)}\right] \neq 0$ for some $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$.
(b) If $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$, then

$$
I_{G}(\theta) \cap H=I_{H}\left(\left(\varphi^{(H \cap M P)}\right)_{H \cap M}\right) .
$$

Moreover, if χ_{θ} is the Clifford correspondent of χ over θ and $\left[\left(\chi^{(H)}\right)_{H \cap M P}, \varphi^{(H \cap M P)}\right] \neq$ 0 , then $\chi_{\theta}^{\left(H \cap I_{G}(\theta)\right)}$ is the Clifford correspondent of $\chi^{(H)} \operatorname{over}\left(\varphi^{(H \cap M P)}\right)_{H \cap M}$.

Proof. Since $M P \triangleleft G$, we have that every irreducible constituent of $\chi_{M P}$ has p^{\prime}-degree. And, by Lemma 2.2 we have that $\left[\chi_{M P}, \varphi\right]=\left[\left(\chi^{(H)}\right)_{H \cap M P}, \varphi^{(H \cap M P)}\right]$. Hence, the part (a) follows.

Now, suppose that $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$. Let $\xi \in \operatorname{Irr}\left(\mathbf{O}^{p^{\prime} p}(G)^{\prime}\right)$ be a P-invariant character which lies under θ and hence, under φ. By Theorem 2.1, we have that

$$
\varphi_{H \cap M P}=\varphi^{(H \cap M P)}+2 \Delta+\beta
$$

where $\varphi^{(H \cap M P)}$ has p^{\prime}-degree and lies over ξ and no irreducible constituent of β lie over ξ (and hence over any of the H-conjugate of ξ). Write $\alpha=\left(\varphi^{(H \cap M P)}\right)_{H \cap M}$. We have that

$$
\theta_{H \cap M}=\varphi_{H \cap M}=\left(\varphi^{(H \cap M P)}\right)_{H \cap M}+2 \Delta_{H \cap M}+\beta_{H \cap M}=\alpha+2 \Delta_{H \cap M}+\beta_{H \cap M}
$$

Let $h \in I_{G}(\theta) \cap H$. Since α and α^{h} are irreducible constituents of θ with odd multiplicity lying over ξ, it follows that $\alpha^{h}=\alpha$. And $h \in I_{H}(\alpha)$. Now, suppose that $h \in I_{H}(\alpha)$ Notice that if $h \in I_{H}\left(\varphi^{(H \cap M P)}\right)=I_{G}(\varphi) \cap H$ then $h \in I_{G}(\theta)$. Thus, we may assume that $h \notin I_{H}\left(\varphi^{(H \cap M P)}\right)$. Hence, by Gallagher's lemma, we have that $\left(\varphi^{(H \cap P M)}\right)^{h}=\varphi^{(H \cap P M)} \lambda$ for some linear character $\lambda \in \operatorname{Irr}(H \cap P M / H \cap M)$ (we can also see $\lambda \in \operatorname{Irr}(P M / M)$). By Lemma 2.2, we deduce that $\varphi^{h}=\varphi \lambda$. Then $\theta^{h}=(\varphi \lambda)_{M}=\theta$. Therefore, $h \in I_{G}(\theta) \cap H$ and the first part of (b) is proven.

Now, suppose that χ_{θ} be the Clifford correspondent of χ over θ and assume that $\left[\left(\chi^{(H)}\right)_{H \cap M P}, \varphi^{(H \cap M P)}\right] \neq 0$. Write $I=I_{G}(\theta)$. By the first part of (b) we have that $\chi_{\theta}^{(H \cap I)} \in \operatorname{Irr}_{p^{\prime}}\left(I_{H}(\alpha) \mid \alpha\right)$. By Lemma 2.2, it follows that $\chi^{(H)}=\left(\chi_{\theta}^{(H \cap I)}\right)^{H}$. Therefore $\chi_{\theta}^{(H \cap I)}$ is the Clifford correspondent of $\chi^{(H)}$ over α, as desired.

As consequence we have the following result which is a particular case of Theorem 2.5.

Proposition 2.8. Let G be a group of odd order and let $\mathbf{O}^{p^{\prime} p}(G) \subseteq M \triangleleft G$. Suppose that $\chi \in \operatorname{Irr}_{p^{\prime}}(G)$ and $\theta \in \operatorname{Irr}_{p^{\prime}}(M)$ is P-invariant. Then
(a) $\left[\chi_{M}, \theta\right] \neq 0$ if and only if $\left[\left(\chi^{*}\right)_{\mathbf{N}_{M P}(P)}, \varphi^{*}\right] \neq 0$ for some $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$.
(b) If $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$, then

$$
I_{G}(\theta) \cap \mathbf{N}_{G}(P)=I_{\mathbf{N}_{G}(P)}\left(\left(\varphi^{*}\right)_{\mathbf{N}_{G}(P) \cap M}\right) .
$$

Moreover, if χ_{θ} is the Clifford correspondent of χ over θ and $\left[\left(\chi^{*}\right)_{\mathbf{N}_{M P}(P)}, \varphi^{*}\right] \neq 0$, then χ_{θ}^{*} is the Clifford correspondent of $\chi^{*} \operatorname{over}\left(\varphi^{*}\right) \mathbf{N}_{G}(P) \cap M$.

Proof. We argue by induction on $|G|$. Let $H=\mathbf{O}^{p^{\prime} p}(G)^{\prime} \mathbf{N}_{G}(P)$. If $H=G$, then there is nothing to prove, and thus we suppose that $H<G$. Let $\chi^{(H)} \in$ $\operatorname{Irr}_{p^{\prime}}(H)$ the correspondent of χ by the correspondence of Theorem 2.1. We have that $\chi^{*}=\left(\chi^{(H)}\right)^{*} \in \operatorname{Irr}_{p^{\prime}}\left(\mathbf{N}_{G}(P)\right)$ by Theorem 2.3. By Proposition 2.7 we have that $\left[\chi_{M}, \theta\right] \neq 0$ if and only if $\left[\left(\chi^{(H)}\right)_{H \cap M P}, \varphi^{H \cap M P}\right] \neq 0$ for some $\varphi \in \operatorname{Irr}(M P \mid \theta)$. Since $H \cap M P \triangleleft H$, by induction, we have that $\left[\left(\chi^{(H)}\right)_{H \cap M P}, \varphi^{(H \cap M P)}\right] \neq 0$ if and only if $\left[\left(\chi^{*}\right)_{\mathbf{N}_{M P}(P)}, \varphi^{*}\right] \neq 0$. And (a) follows.

Now, let $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$. By Proposition 2.7, we know that

$$
I_{G}(\theta) \cap H=I_{H}\left(\left(\varphi^{(H \cap M P)}\right)_{H \cap M}\right) .
$$

Since $H \cap M \triangleleft H$ by induction (applied to $\left(\varphi^{(H \cap M P)}\right)_{H \cap M}$) we have that

$$
I_{H}\left(\left(\varphi^{(H \cap M P)}\right)_{H \cap M}\right) \cap \mathbf{N}_{G}(P)=I_{\mathbf{N}_{G}(P)}\left(\left(\varphi^{*}\right)_{\mathbf{N}_{G}(P) \cap M}\right) .
$$

Hence,

$$
I_{G}(\theta) \cap \mathbf{N}_{G}(P)=I_{\mathbf{N}_{G}(P)}\left(\left(\varphi^{*}\right)_{\mathbf{N}_{G}(P) \cap M}\right)
$$

as desired.
Now, suppose that χ_{θ} be the Clifford correspondent of χ over θ and assume that $\left[\left(\chi^{*}\right)_{\mathbf{N}_{M P}(P)}, \varphi^{*}\right] \neq 0$. Notice that $\left[\left(\chi^{(H)}\right)_{H \cap M P}, \varphi^{(H \cap M P)}\right] \neq 0$. Write $I=$ $I_{G}(\theta)$. By Proposition 2.7, we have that $\chi_{\theta}^{(H \cap I)}$ is the Clifford correspondent of $\chi^{(H)}$ over $\left(\varphi^{(H \cap M P)}\right)_{H \cap M}$. And, by induction (applied to $\left(\varphi^{*}\right)_{\mathbf{N}_{G}(P) \cap M}$) we have that $\chi_{\theta}^{*}=$ $\left(\chi_{\theta}^{(H \cap I)}\right)^{*}$ is the Clifford correspondent of $\chi^{*}=\left(\chi^{(H)}\right)^{*}$ over $\left(\varphi^{*}\right)_{\mathbf{N}_{G}(P) \cap M}$, as desired.

Now, we are ready to prove Theorem 2.5.
Proof of Theorem 2.5. We argue by induction on $|G|$. Write $N=\mathbf{N}_{G}(P)$. Let T be the inertia group of θ in G. We may assume that $K=\mathbf{O}^{p^{\prime} p}(G) \nsubseteq M$. Otherwise $K P=\mathbf{O}^{p^{\prime}}(G) \subseteq T$ and the result follows by Proposition 2.8.

Let $K M / R$ be a chief factor of G such that $M \subseteq R<K M$. It follows that $K \nsubseteq R$, and hence $R N<G$. Now $K /(K \cap R)$ is an abelian p^{\prime}-chief factor of G. Thus, $K^{\prime} \subseteq K \cap R \subseteq R$. Hence, $K^{\prime} N \subseteq R N$, and $\chi^{(R N)} \in \operatorname{Irr}_{p^{\prime}}(R N)$ is defined. Since $N \subseteq R N$, it follows that $\chi^{(R N)}$ lies over all P-invariant irrdeucible characters of χ_{M}. Hence, $\left[\chi_{M}, \theta\right] \neq 0$ if and only if $\left[\left(\chi^{(R N)}\right)_{M}, \theta\right] \neq 0$. By induction, we have that $\left[\left(\chi^{(R N)}\right)_{M}, \theta\right] \neq 0$ if and only if $\left[\left(\chi^{*}\right)_{\mathbf{N}_{M P}(P)}, \varphi^{*}\right] \neq 0$ for some $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$, and (a) follows.

Now, let $\varphi \in \operatorname{Irr}_{p^{\prime}}(M P \mid \theta)$, by induction we have that

$$
I_{R N}(\theta) \cap N=I_{N}\left(\left(\varphi^{*}\right)_{N \cap M}\right)
$$

Hence,

$$
I_{G}(\theta) \cap N=I_{N}\left(\left(\varphi^{*}\right)_{N \cap M}\right)
$$

as desired. Now, let χ_{θ} be the Clifford correspondent of χ over θ. Since $N \subseteq R N$, it follows that $\chi^{(R N)}$ lies over θ. Let $\delta \in \operatorname{Irr}(T \cap N R \mid \theta)$ be the Clifford correspondent of $\chi^{(R N)}$ over θ. We have that $\chi^{(R N)}=\delta^{N R}$. By Theorem 2.4, it follows that $\chi^{*}=$ $\left(\chi^{(R N)}\right)^{*}=\left(\delta^{N R}\right)^{*}=\left(\delta^{*}\right)^{N}$.

Now, it follows that $\mathbf{O}^{p^{\prime} p}(T)^{\prime}(N \cap T) \subseteq T \cap R N$. Hence by Theorem 2.3, we have that $\chi_{\theta}^{*}=\left(\chi_{\theta}^{(R N \cap T)}\right)^{*}$. We want to show that $\delta=\chi_{\theta}^{(R N \cap T)}$. For this, we prove that $\left[\left(\chi_{\theta}\right)_{T \cap N R}, \delta\right]$ is odd. We have that $\left[\left(\chi_{\theta}\right)_{T \cap N R}, \delta\right]=\left[\chi_{T \cap N R}, \delta\right]=\left[\chi_{N R}, \delta^{N R}\right]$ which is odd. And by induction it follows that χ_{θ}^{*} is the Clifford correspondent of χ^{*} over $\left(\varphi^{*}\right)_{N \cap M}$, where $\left[\left(\chi^{*}\right)_{\mathbf{N}_{M P}(P)}, \varphi^{*}\right] \neq 0$

3. Some perfect isometries

Let p be a prime, and let R be the ring of algebraic integers in \mathbb{C}. We let $U=$ $\{\alpha / m \mid \alpha \in \mathrm{R}, m \in \mathbb{Z}-p \mathbb{Z}\}$ be the ring of p-local integers. We fix (K, \mathcal{D}, F) a p-modular system, where K is algebraically closed and $U \subseteq \mathcal{D}$ (see [5]).
M. Broué introduced the notion of a perfect isometry in [1]. Suppose that G and H are finite groups, and let B and b a block of G and H, respectively. An isometry : $\mathbb{Z}[\operatorname{Irr}(B)] \rightarrow \mathbb{Z}[\operatorname{Irr}(b)]$ is perfect if the following two conditions are satisfied:
(i) for all $g \in G, h \in H$, we have that

$$
\frac{1}{\left|\mathbf{C}_{G}(g)\right|} \sum_{\chi \in \ln (B)} \chi(g) \hat{\chi}(h) \quad \text { and } \quad \frac{1}{\left|\mathbf{C}_{H}(h)\right|} \sum_{\chi \in \operatorname{lr}(B)} \chi(g) \hat{\chi}(h)
$$

belong to \mathcal{D};
(ii) if $\sum_{\chi \in \operatorname{Irr}(B)} \chi(g) \hat{\chi}(h) \neq 0$, then g is p-regular if and only if h is p-regular.

The following lemma is well-known and, together with weak block orthogonality, guarantees that the identity is a perfect isometry.

Lemma 3.1. Suppose that B is a p-block of G. Then

$$
\frac{1}{\left|\mathbf{C}_{G}(g)\right|} \sum_{\chi \in \operatorname{lrr}(B)} \chi(g) \chi(h) \in U
$$

for $g, h \in G$.
Proof. If $e_{\chi} \in \mathbb{C} G$ is the central idempotent associated to $\chi \in \operatorname{Irr}(G)$ and $f_{B}=\sum_{\chi \in \operatorname{Irr}(B)} e_{\chi}$, just compute the coefficient of \hat{L} in $f_{B} \hat{K}$, where K is the conjugacy class of g, L is the conjugacy class of h^{-1} and \hat{X} is the sum of the elements of $X \subseteq G$. Now apply that the coefficients of f_{B} lie in U (see the proof of Corollary 3.8 of [7]).

It is not difficult to see that the composition of perfect isometries is a perfect isometry. (see, for instance, Lemma 1 of [10].)

Another example of perfect isometry is given by the Fong-Reynolds correspondence.

Lemma 3.2. Let $N \triangleleft G$ and let b be a p-block of N. Let $T(b)$ be the stabilizer of b in G. Suppose that B^{G} is the Fong-Reynolds correspondent of $B \in \operatorname{Bl}(T(b) \mid b)$. Then the map $\operatorname{Irr}(B) \rightarrow \operatorname{Irr}\left(B^{G}\right)$ given by $\psi \mapsto \psi^{G}$ defines a perfect isometry for B and B^{G}.

Proof. Let T be $T(b)$. Let $g \in G$ and $t \in T$. First we show that if

$$
\sum_{\psi \in \operatorname{Irr}(B)} \psi^{G}(g) \psi(t) \neq 0
$$

then g is p-regular if and only if t is p-regular. Notice that if no G-conjugate of g lies in T, then $\psi^{G}(g)=0$. Hence we have that some G-conjugate of g lies in T. Let g_{1}, \ldots, g_{t} be representatives for the classes of T contained in the G-conjugacy class of g. By using the formula of page 64 of [4], we have that

$$
\begin{aligned}
\sum_{\psi \in \operatorname{Irr}(B)} \psi^{G}(g) \psi(t) & =\sum_{\psi \in \operatorname{Irr}(B)}\left(\left|\mathbf{C}_{G}(g)\right| \sum_{i=1}^{t} \frac{\psi\left(g_{i}\right)}{\left|\mathbf{C}_{T}\left(g_{i}\right)\right|}\right) \psi(t) \\
& =\sum_{i=1}^{t} \frac{\left|\mathbf{C}_{G}(g)\right|}{\left|\mathbf{C}_{T}\left(g_{i}\right)\right|}\left(\sum_{\psi \in \operatorname{Irr}(B)} \psi\left(g_{i}\right) \psi(t)\right) .
\end{aligned}
$$

If this is nonzero, then g is p-regular if and only if t is p-regular by weak block orthogonality applied in T.

Now, we prove that

$$
\frac{1}{\left|\mathbf{C}_{G}(g)\right|} \sum_{\psi \in \operatorname{lrr}(B)} \psi^{G}(g) \psi(t) \quad \text { and } \quad \frac{1}{\left|\mathbf{C}_{T}(t)\right|} \sum_{\psi \in \operatorname{lrr}(B)} \psi^{G}(g) \psi(t)
$$

are elements of U. As above, we may assume that some G-conjugate of g lies in T. By Lemma 3.1, and using the same notation as before, we have that

$$
\frac{1}{\left|\mathbf{C}_{G}(g)\right|} \sum_{\psi \in \operatorname{Irr}(B)} \psi^{G}(g) \psi(t)=\sum_{i=1}^{t} \frac{1}{\left|\mathbf{C}_{T}\left(g_{i}\right)\right|} \sum_{\psi \in \operatorname{Irr}(B)} \psi\left(g_{i}\right) \psi(t) \in U
$$

Also,

$$
\frac{1}{\left|\mathbf{C}_{T}(t)\right|} \sum_{\psi \in \operatorname{Irr}(B)} \psi^{G}(g) \psi(t)=\sum_{i=1}^{t} \frac{\left|\mathbf{C}_{G}(g)\right|}{\left|\mathbf{C}_{T}\left(g_{i}\right)\right|}\left(\frac{1}{\left|\mathbf{C}_{T}(t)\right|} \sum_{\psi \in \operatorname{Irr}(B)} \psi\left(g_{i}\right) \psi(t)\right) \in U
$$

by using Lemma 3.1 and the fact that

$$
\frac{\left|\mathbf{C}_{G}(g)\right|}{\left|\mathbf{C}_{T}\left(g_{i}\right)\right|}=\frac{\left|\mathbf{C}_{G}\left(g_{i}\right)\right|}{\left|\mathbf{C}_{T}\left(g_{i}\right)\right|}
$$

is an integer.

Our next goal is to find certain perfect isometries associated to normal p^{\prime}-sections of groups.

If H is a subgroup of G and $\theta \in \operatorname{Irr}(H)$, we denote by $\operatorname{Irr}(G \mid \theta)$ the set of irreducible constituents of θ^{G}.

Theorem 3.3. Suppose that K is a normal p^{\prime}-subgroup of G. Let $H \subseteq G$ with $K H=G$ and write $L=K \cap H$. Suppose that $\theta \in \operatorname{Irr}(K)$ is G-invariant and such that $\theta_{L} \in \operatorname{Irr}(L)$. Let G^{0} be the set of p-regular elements of G. If $\chi, \psi \in \operatorname{Irr}(G \mid \theta)$, then

$$
\sum_{x \in G^{0}} \chi(x) \psi\left(x^{-1}\right)=|K: L| \sum_{y \in H^{0}} \chi(y) \psi\left(y^{-1}\right) .
$$

Lemma 3.4. Suppose that K is a normal subgroup of G. Let $H \subseteq G$ with $K H=G$ and write $L=K \cap H$. Suppose that $\theta \in \operatorname{Irr}(K)$ is G-invariant and such that $\theta_{L} \in \operatorname{Irr}(L)$. Let $h \in H$. Then if $\chi, \psi \in \operatorname{Irr}(G \mid \theta)$, we have

$$
\sum_{k \in K} \chi(k h) \psi\left((k h)^{-1}\right)=|K: L| \sum_{l \in L} \chi(l h) \psi\left((l h)^{-1}\right) .
$$

Proof. Consider the group $W=K\langle h\rangle$. Note that $V=W \cap H=L\langle h\rangle$. Since θ is W-invariant, there is some $\hat{\theta} \in \operatorname{Irr}(W)$ extending θ. Hence

$$
\chi_{W}=\hat{\theta} \Delta_{\chi}
$$

where Δ_{χ} is a character of W / K by Gallagher's theorem (Corollary 6.17 of [4]). Also, by the same reason, we have that

$$
\psi_{W}=\hat{\theta} \Delta_{\psi},
$$

where Δ_{ψ} is a character of W / K. Now,

$$
\begin{aligned}
\sum_{k \in K} \chi(k h) \overline{\psi(k h)} & =\sum_{k \in K} \hat{\theta}(k h) \Delta_{\chi}(h) \overline{\hat{\theta}(k h) \Delta_{\psi}(h)} \\
& =\Delta_{\chi}(h) \overline{\Delta_{\psi}(h)} \sum_{k \in K} \hat{\theta}(k h) \overline{\hat{\theta}(k h)}=|K| \Delta_{\chi}(h) \overline{\Delta_{\psi}(h)},
\end{aligned}
$$

by Lemma 8.14.c of [4]. Now, we have that

$$
\chi_{V}=\hat{\theta}_{V}\left(\Delta_{\chi}\right)_{V},
$$

where $\left(\Delta_{\chi}\right)_{V}$ is a character of V / L, and

$$
\psi_{V}=\hat{\theta}_{V}\left(\Delta_{\psi}\right)_{V}
$$

where $\left(\Delta_{\psi}\right)_{V}$ is a character of V / L. Arguing as before and using that $\hat{\theta}_{V} \in \operatorname{Irr}(V)$, we get

$$
\sum_{l \in L} \chi(l h) \overline{\psi(l h)}=|L| \Delta_{\chi}(h) \overline{\Delta_{\psi}(h)} .
$$

This proves the lemma.
Proof of Theorem 3.3. If $x \in G$, notice that x is p-regular iff all the elements in $K x$ are p-regular. This follows from the fact that x is p-regular iff $K\langle x\rangle$ is a p^{\prime}-group. By the same argument (in H with L), we may write

$$
H^{0}=\bigcup_{t \in \mathcal{T}} L t,
$$

as a disjoint union. We claim that

$$
G^{0}=\bigcup_{t \in \mathcal{T}} K t
$$

is also a disjoint union. If $x \in G^{0}$, then $x=k h$ for some $k \in K$ and $h \in H$. Since $K\langle x\rangle$ is a p^{\prime}-group, it follows that $h \in H^{0}$. Hence, $h=l t$ for some $t \in \mathcal{T}$ and $l \in L$. Hence $x \in K t$. Also, if $z \in K t \cap K s$ for $t, s \in \mathcal{T}$, then $t s^{-1} \in K \cap H=L$ and $L t=L s$. Hence $t=s$, as claimed. Now the result follows from Lemma 3.4.

Corollary 3.5. Suppose that K is a normal p^{\prime}-subgroup of G. Let $H \subseteq G$ with $K H=G$ and write $L=K \cap H$. Suppose that $\theta \in \operatorname{Irr}(K)$ is G-invariant and such that $\theta_{L} \in \operatorname{Irr}(L)$. Let B be a block of G such that $\operatorname{Irr}(B) \subseteq \operatorname{Irr}(G \mid \theta)$. Then there is a unique block b of H such that $\operatorname{Irr}(b)=\left\{\chi_{H} \mid \chi \in \operatorname{Irr}(B)\right\}$. In this case, restriction defines a perfect isometry between B and b.

Proof. By Lemma 10.5 of [3], we have that restriction defines a bijection $\operatorname{Irr}(G \mid \theta)$ onto $\operatorname{Irr}\left(H \mid \theta_{H}\right)$. By Theorem 3.3 above and Theorem 3.19 of [7], we have that $b=\left\{\chi_{H} \mid \chi \in \operatorname{Irr}(B)\right\}$ is a block of H. Now, Lemma 3.1 and weak block orthogonality guarantee that restriction is a perfect isometry between B and b.

Our last result in this section, is to find a perfect isometry associated to certain odd fully ramified sections of a group.

A five-tuple $(G, K, L, \theta, \varphi)$ is a character five if K / L is a normal abelian section of G and φ is a G-invariant irreducible character of L fully ramified with respect to K / L; that is to say, $\varphi^{K}=e \theta$ with $e^{2}=|K / L|$ for some $\theta \in \operatorname{Irr}(K)$.

If $(G, K, L, \theta, \varphi)$ is a character five, the good elements of G with respect to the character five are defined in Definition 3.1 of [3], and are relevant for our purposes here.

The following is one of the key tools when studying character theory of groups of odd order.

Theorem 3.6. Let $(G, K, L, \theta, \varphi)$ be a character five. Assume that $|G: K|$ or $|K: L|$ is odd. Then there exists a character $\psi \in \operatorname{Char}(G / K)$ and $H \subseteq G$ be such that:
(a) $H K=G$ and $H \cap K=L$.
(b) The equation $\chi_{H}=\psi_{H} \hat{\chi}$, for $\chi \in \operatorname{Irr}(G \mid \theta)$ and $\hat{\chi} \in \operatorname{Irr}(H \mid \varphi)$ defines a bijection between these sets of characters.
(c) If $|G: L|$ is odd, then χ and $\hat{\chi}$ correspond above if and only if $\left[\chi_{H}, \hat{\chi}\right]$ is odd.
(d) Every element of H is good with respect to $(G, K, L, \theta, \varphi)$.
(e) $|\psi(g)|^{2}=\left|\mathbf{C}_{K / L}(g)\right|$ for $g \in G$.
(f) If $\chi \in \operatorname{Irr}(G \mid \theta)$, then $\chi(g)=0$ unless g lies in some G-conjugate of H.
(g) H^{a} is G-conjugate to H for all automorphism a of G fixing K, L, θ and φ.

Proof. See Theorem 9.1 of [3]. Part (d), which is not explicitly stated in [3], can be found in Theorem 3.2 of [6].

We shall refer to such subgroups H in Theorem 3.6 as the good complements with respect to $(G, K, L, \theta, \varphi)$.

The next theorem is also in [2]. Here, we show another proof of this.

Theorem 3.7. Assume the hypotheses and notation of Theorem 3.6, and suppose that K is a p^{\prime}-group. Let B be a p-block of G with $\operatorname{Irr}(B) \subseteq \operatorname{Irr}(G \mid \theta)$. Then there is a unique p-block of H such that $\{\hat{\chi} \mid \chi \in \operatorname{Irr}(B)\}=\operatorname{Irr}(b)$ is a p-block of H. Also, the map $\chi \mapsto \hat{\chi}$ is an isometry between B and b.

Proof. If $\chi, \mu \in \operatorname{Irr}(G \mid \theta)$, first we claim that

$$
\sum_{x \in G^{0}} \chi(x) \overline{\mu(x)}=|K: L| \sum_{x \in H^{0}} \chi(x) \overline{\mu(x)}
$$

Arguing as in the proof of Theorem 3.3, we may write

$$
G^{0}=\bigcup_{t \in \mathcal{T}} K t
$$

as disjoint union, where

$$
H^{0}=\bigcup_{t \in \mathcal{T}} L t
$$

is also a disjoint union. Now, since the elements of H are good, by Corollary 3.3 of [3], we have that

$$
\left|\mathbf{C}_{K / L}(h)\right| \sum_{x \in K h} \chi(x) \overline{\mu(x)}=|K: L| \sum_{x \in L h} \chi(x) \overline{\mu(x)} .
$$

By Theorem 3.6,

$$
|K: L| \sum_{x \in L h} \chi(x) \overline{\mu(x)}=|K: L \| \psi(h)|^{2} \sum_{x \in L h} \hat{\chi}(x) \overline{\hat{\mu}(x)},
$$

and our claim easily follows.
Now, by Theorem 3.19 of [7], we have that there is a unique p-block b of H such that $\{\hat{\chi} \mid \chi \in \operatorname{Irr}(B)\}=\operatorname{Irr}(b)$ is a p-block of H.

Now, if $g \in G$ and $h \in H$, we let

$$
\alpha(g, h)=\sum_{\chi \in \operatorname{Irr}(B)} \chi(g) \hat{\chi}(h) .
$$

We wish to prove that

$$
\frac{1}{\left|\mathbf{C}_{G}(g)\right|} \alpha(g, h) \quad \text { and } \quad \frac{1}{\left|\mathbf{C}_{H}(h)\right|} \alpha(g, h)
$$

lie in U and that if $\alpha(g, h) \neq 0$, then g is p-singular if and only if h is p-singular. By Theorem 3.6 (f), we may assume that $g \in H$. Hence,

$$
\alpha(g, h)=\psi(g) \sum_{\chi \in \operatorname{Irr}(B)} \hat{\chi}(g) \hat{\chi}(h) .
$$

From here, weak block orthogonality in H, and the fact that the character ψ is never zero, we deduce that whenever $\alpha(g, h) \neq 0$, then g is p-singular if and only if h is p-singular. Also, we have that

$$
\frac{1}{\left|\mathbf{C}_{H}(h)\right|} \alpha(g, h)=\frac{\psi(g)}{\left|\mathbf{C}_{H}(h)\right|} \sum_{\chi \in \operatorname{Irr}(B)} \hat{\chi}(g) \hat{\chi}(h) \in U
$$

by Lemma 3.1. Finally,

$$
\begin{aligned}
\frac{1}{\left|\mathbf{C}_{G}(g)\right|} \alpha(g, h) & =\frac{1}{\left|\mathbf{C}_{G}(g)\right|} \sum_{\chi \in \operatorname{lrr}(B)} \chi(g) \hat{\chi}(h)=\frac{1}{\psi(h)} \frac{1}{\left|\mathbf{C}_{G}(g)\right|} \sum_{\chi \in \operatorname{Irr}(B)} \chi(g) \chi(h) \\
& =\frac{\bar{\psi}(h)}{\left|\mathbf{C}_{K / L}(h)\right|} \frac{1}{\left|\mathbf{C}_{G}(g)\right|} \sum_{\chi \in \operatorname{Irr}(B)} \chi(g) \chi(h),
\end{aligned}
$$

by Theorem 3.6 (e). This element belongs to U by Lemma 3.1 and the fact that K / L is a p^{\prime}-group.

4. Proof of Theorem A

Lemma 4.1. Let G be a solvable group. Let $P \in \operatorname{Syl}_{p}(G)$ and $Q \in \operatorname{Syl}_{q}(G)$ with $p \neq q$. If $P \subseteq \mathbf{N}_{G}(Q)$, then $\mathbf{O}^{q^{\prime} q}(G) \subseteq \mathbf{O}_{p^{\prime}}(G)$.

Proof. It suffices to prove $Q \subseteq \mathbf{O}_{p^{\prime}}(G)$. We have that $\mathbf{O}_{p^{\prime} p}(G) \subseteq P \mathbf{O}_{p^{\prime}}(G)$. Since $P \subseteq \mathbf{N}_{G}(Q)$, it follows that

$$
\left[\frac{\mathbf{O}_{p^{\prime} p}(G)}{\mathbf{O}_{p^{\prime}}(G)}, \frac{Q \mathbf{O}_{p^{\prime}}(G)}{\mathbf{O}_{p^{\prime}}(G)}\right]=\left[\mathbf{O}_{p}\left(\frac{G}{\mathbf{O}_{p^{\prime}}(G)}\right), \frac{Q \mathbf{O}_{p^{\prime}}(G)}{\mathbf{O}_{p^{\prime}}(G)}\right]=1 .
$$

By Hall-Higman's lemma 1.2.3, it follows that $Q \subseteq \mathbf{O}_{p^{\prime}}(G)$, as desired.
In order to prove Theorem A, we need the following result.
Theorem 4.2. Let p, q be primes, let G be a finite $\{p, q\}$-separable group, and let B be a p-block of G such that all of its ordinary irreducible characters have degree not divisible by q. Then a defect group of B normalizes some Sylow q-subgroup of G.

Proof. This is Theorem A of [8].
We are ready to prove Theorem A.
Proof of Theorem A. We argue by induction on $|G|$. By Theorem 4.2, let Q be a Sylow q-subgroup G such that $D \subseteq \mathbf{N}_{G}(Q)$. Let N be a normal p^{\prime}-subgroup of G. Let $\chi \in \operatorname{Irr}(B)$. We have that $\chi \in \operatorname{Irr}_{q^{\prime}}(G)$. Now, let θ be an Q-invariant irreducible constituent of χ_{N}. Then $\operatorname{Irr}(B) \subseteq \operatorname{Irr}(G \mid \theta)$, because the block B covers the block $\{\theta\}$, as desired. Write $T=I_{G}(\theta)$, the stabilizer of θ in G. We claim that we may assume that θ is G-invariant. Otherwise, by the Fong-Reynolds correspondence (Theorem 9.14 of [7]), there exists a unique block b of T covering θ such that $\operatorname{Irr}(B)=\left\{\psi^{G} \mid \psi \in\right.$ $\operatorname{Irr}(b)\}$ and such that D is a defect group of b. We have that $b \subseteq \operatorname{Irr}_{q^{\prime}}(T \mid \theta)$. Since $|T|<|G|$, by induction we have that there exists a unique block b^{*} of $T \cap \mathbf{N}_{G}(Q)$ with defect group D, with

$$
\operatorname{Irr}\left(b^{*}\right)=\left\{\chi^{*} \mid \chi \in \operatorname{Irr}(b)\right\}
$$

and such that the map $\psi \mapsto \psi^{*}$ is an isometry. Now, by Theorem 2.5, it follows that there is $\varphi \in \operatorname{Irr}(N Q \mid \theta)$ such that $\operatorname{Irr}\left(b^{*}\right) \subseteq \operatorname{Irr}\left(I_{\mathbf{N}_{G}(Q)}\left(\alpha^{*}\right) \mid \alpha^{*}\right)$ where $\alpha^{*}=\varphi_{\mathbf{N}_{G}(Q) \cap N}^{*}$. We also know that $\left(\chi^{*}\right)^{\mathbf{N}_{G}(Q)}=\left(\chi^{G}\right)^{*}$ for every $\chi \in \operatorname{Irr}(T \mid \theta)$ by Theorem 2.4. By the Fong-Reynolds correspondence, we conclude that $\left(b^{*}\right)^{\mathbf{N}_{G}(Q)}=\left\{\left(\chi^{*}\right)^{\mathbf{N}_{G}(Q)} \mid \chi \in\right.$ $\operatorname{Irr}(b)\}=B^{*}$ is a block of $\mathbf{N}_{G}(Q)$ with defect group D. Also, in this case, by using twice Lemma 3.2 and the fact that composition of perfect isometries is a perfect isometry, the proof of the theorem is complete.

Now, by the previous paragraph applied to $\mathbf{O}_{p^{\prime}}(G)$ and Theorem 10.20 of [7], we have that $B=\operatorname{Irr}(G \mid \theta)$ and that D is a Sylow p-subgroup of G, where $\theta \in \operatorname{Irr}\left(\mathbf{O}_{p^{\prime}}(G)\right)$. Hence, we have that $D \subseteq \mathbf{N}_{G}(Q)$. By Lemma 4.1, it follows that $\mathbf{O}_{p^{\prime}}(G) \mathbf{N}_{G}(Q)=G$. In particular, we have that $\mathbf{O}_{p^{\prime}}(G) \cap \mathbf{N}_{G}(Q)=\mathbf{O}_{p^{\prime}}\left(\mathbf{N}_{G}(Q)\right)$. Let $\theta^{*} \in \operatorname{Irr}_{q^{\prime}}\left(\mathbf{O}_{p^{\prime}}\left(\mathbf{N}_{G}(Q)\right)\right)$ be the Isaacs correspondent of θ. By Corollary 2.6, we have that α^{*} is $\mathbf{N}_{G}(Q)$-invariant. Hence, by Theorem 10.20 of [7] it follows that $\operatorname{Irr}\left(\mathbf{N}_{G}(Q) \mid \alpha^{*}\right)$ is a block of $\mathbf{N}_{G}(Q)$ with defect group D. By Corollary 2.6, we have that the Isaacs correspondence maps $\operatorname{Irr}(G \mid \theta)$ onto $\operatorname{Irr}\left(\mathbf{N}_{G}(Q) \mid \alpha^{*}\right)$.

Write $K=\mathbf{O}^{q^{\prime} q}(G) \subseteq \mathbf{O}_{p^{\prime}}(G)$. If K is trivial, then $G=\mathbf{N}_{G}(Q)$ and there is nothing to prove. Thus we suppose that K is not trivial. Let K / L be a chief factor of G. By coprime action, notice that $\mathbf{C}_{K / L}(Q)=1$ (because K / L is abelian and $[K / L, Q]=K / L)$. Hence, $L \mathbf{N}_{G}(Q)$ is a complement of K / L in G. Notice that $L \mathbf{N}_{G}(Q)$ is the unique complemet of K / L containing Q. Let $\xi \in \operatorname{Irr}(K)$ and $\epsilon \in \operatorname{Irr}(L)$ be Q-invariant characters such that $\operatorname{Irr}(B)$ covers $\{\xi\}$ and $\{\epsilon\}$. We already know that we may assume that ξ and ϵ are G-invariant. Hence, by the going down theorem (Theorem 6.18 of [4]), we will have that either $\xi_{L}=\epsilon$ or that ϵ is fully ramified with respect to K / L.

Suppose that $\xi_{L}=\epsilon$. Notice that if $\chi \in \operatorname{Irr}(G \mid \xi)$, then $\left(\chi_{L \mathbf{N}_{G}(Q)}\right)^{*}=\chi^{*}$ by Theorem 2.1. In this case, the theorem follows by induction applied in $L N$ and Corollary 3.5 .

Suppose now that $\xi_{L}=e \epsilon$ with $e^{2}=|K: L|$. By Theorem 3.6 (g) we may assume that there is a good complement H which contains Q and by uniqueness, we have that $L \mathbf{N}_{G}(Q)=H$ is a good complement, in the language of Theorem 3.6. In this case, the theorem follows from Theorem 3.7, Theorem 3.3 and the inductive hypothesis.

References

[1] M. Broué: Isométries parfaites, types de blocks, catégories dérivées, Astérisque. 181-182 (1990), 61-92.
[2] H. Horimoto: On correspondence between blocks of finite groups induced from the Isaacs correpondence, Hokkaido Math. J. 30 (2001), 65-74.
[3] I.M. Isaacs: Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594-635.
[4] I.M. Isaacs: Character Theory of Finite Groups, Dover, New York, 1994.
[5] H. Nagao and T. Tsushima: Representations of Finite Groups, Academic Press, New York, 1987.
[6] G. Navarro: Constituents of the product of characters in odd order groups, J. reine angew. Math 461 (1995), 1-11.
[7] G. Navarro: Characters and Blocks of Finite Groups, Cambridge University Press, 1998.
[8] G. Navarro and T. Wolf: Characters degrees and Blocks of Finite Groups, J. reine angew. Math 531 (2001), 141-146.
[9] L. Sanus: Induction and character correspondences in groups of odd order, J. Algebra 249 (2002), 186-195.
[10] A. Watanabe: The Glauberman character correspondence and perfect isometries for blocks of
finite groups, J. Algebra 216 (1999), 548-565.

Departament d’Àlgebra Facultat de Matemàtiques Universitat de València 46100 Burjassot. València SPAIN
e-mail: lucia.sanus@uv.es

[^0]: Research partially supported by DGICYT.

