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1. Introduction

Between 1970 and 1990 many authors studied the ergodic properties of abso-
lutely continuous invariant measures for a piecewise2 uniformly expanding map
of the unit interval ([2], [4], [5], [6], [7], [11], [12] and [14], see also the references
of [10]). First, Lasota and Yorke [6] proved the existence ofsuch a measure with den-
sity of bounded variation by making use of the so-called Perron-Frobenius operator

: 1( )→ 1( ) for defined by

=
∫

−1(·)

for ∈ 1( ), where 1( ) denotes the usual 1-space with respect to the Lebesgue
measure on the unit interval and (/ )

∫

−1(·) denotes the Radon-Nikodym
derivative of the complex valued measure 7→

∫

−1 . In this case, it can be
shown that also acts on the space , where is the totality of elements in

1( ) with versions of bounded variation.
In what follows, an invariant measure means an invariant probability measure, and

the terminology absolutely continuous invariant measure is written as a.c.i.m. for short.
After [6], a piecewise 2 map of the interval saitisfying ess inf| | > 1 for

some is called a Lasota-Yorke map (an LY map for short). The ergodic decompo-
sition of an a.c.i.m. is discussed in Li and Yorke [7]. Wagner[14] shows that each
ergodic component is decomposed into a finite number of mixing components. More
precisely, there exist a finite number of a.c.i.m.’sµ1 . . . µ such that any a.c.i.m. can
be represented as an affine combination of them. The support of each µ is de-
composed into a finite number of subsets0 . . . −1 such that = +1

a.e. (mod ) and the measure-theoretic dynamical systems (µ ) are mixing,
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whereµ = µ| for = 1 . . . . Bowen [2] shows that each mixing compo-
nent ( µ ) is Bernoulli and gives sufficient conditions for that has a unique
a.c.i.m.µ and ( µ) itself is Bernoulli. We call such a map a Bernoulli Lasota-Yorke
map (a BLY map for short) in the sequel.

The central limit problems of LY maps are studied in [4], [5],[9], [11] and so on.
In particular, for a BLY map and for a real valued function of bounded variation,
we can see that the limit variance

σ ( )2 = lim
→∞

1
∫
( −1∑

=0

◦ −
∫

µ

)2

µ

exists, whereµ is the unique a.c.i.m. In addition, ifσ ( )2 is positive, we can show
the central limit theorem
(1.1)

lim
→∞

sup
∈R

∣
∣
∣
∣
∣

({

1√
σ ( )

( −1∑

=0

◦ −
∫

µ

)

≤
})

− 1√
2π

∫

−∞
− 2/2

∣
∣
∣
∣
∣

= 0

In [5], [9], and [11] the perturbed Perron-Frobenius operators ( ) : → de-
fined by 7→ (exp(

√
−1 ) ) play important roles in the study of the limit theo-

rems, where is a comlex parameter. If is small, the first eigenvalue λ ( ) of
(the eigenvalue of maximal modulus) depends analytically on . We note that the limit
variance and the first eigenvalue are related by the formula

(1.2) σ ( )2 = −
2λ

2
(0)

In this paper we introduce a natural metric to the space2 of piecewise 2

maps of the unit interval so that the curvatures of the graphsof two maps become
close to each other if maps themselves are close to each otherin 2. Temporarily,
we call the piecewise 2 metric and the topology induced by , the piecewise2

topology. Our main purpose is to show the stability of the ergodic properties men-
tioned above under a small perturbation in the piecewise2 topology. Precisely we
shall prove the following:

Theorem 1.1. Let 0 be a BLY map satisfyingess inf| 0| > 2. Then there ex-
ists δ > 0 such that any piecewise2 map with ( 0) < δ is a BLY map.

Theorem 1.2. Let 0 be a BLY map satisfyingess inf| 0| > 2 and let be
a real valued function of bounded variation. Then there exist δ0 ∈ (0 δ) and 0 > 0
such that the mapping 7→ λ (·) from { ∈ 2 : ( 0) < δ0} into the Fŕechet
space of analytic functions on{ ∈ C : | | < 0} is continuous, whereλ ( ) is the first
eigenvalue of the perturbed Perron-Frobenius operator( ).
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The assumptions of Bernoullicity and ess inf| | > 2 in these theorems seems to
be very technical at first sight. But we will show by examples that they are essential
for the theorems to be valid in the end of Section 4.

Combining the formulas (1.1) and (1.2) with Theorem 1.2, we obtain:

Corollary 1.1. Under the same assumptions asTheorem 1.2, 7→ σ ( )2 is a
continuous function on{ ∈ 2 : ( 0) < δ0}. In particular, if the central limit
theorem(1.1) holds for { ◦ 0 }∞=0, then so does for{ ◦ }∞=0 for any in a
neighborhood of 0.

The primitive version of Theorem 1.1 was known to the author in 1983. But
in those days it seemed not to be interesting for him. The present form of Theo-
rem 1.1 and the assertions in Theorem 1.2 are inspired by a question asked by Pro-
fessor Hiroshi Sugita of Kyushu University in 1995. It was concerned with the stabil-
ity of the invariant density and the limit central theorem under the small deterministic
or random perturbation of one dimensional dynamical systems. In general, we do not
expect such a sort of stability. For example, the logistic map 4 = 4 (1− ) has a
unique a.c.i.m. with density 1/(π

√
(1− ) ). But for any ǫ > 0 there exists a subset

ǫ of [4 − ǫ 4] with positive Lebesgue measure such that = (1− ) has no
a.c.i.m. for any ∈ ǫ (see [13]). In contrast with this, any family of LY maps is al-
ways guaranteed to have an a.c.i.m. Therefore, it seems meaningful and interesting to
study how invariant densities and their limit theorems depend on the parameter change
in the case of the family of LY maps. Especially it seems that there is no result that
is concerned with the stability of the non degeneracy of the limit variance before this
work.

In Section 2, we define the piecewise2 metric and mention some basic prop-
erties of the metric space ( 2 ). The Lasota-Yorke type inequality and the Krylov-
Bogolioubov type inequalty are described in Section 3. The forms of these inequalities
are more general than we need, but they must be useful for the study of random it-
erations as in [8]. Section 4 and Section 5 are devoted to the proofs of Theorem 1.1
and Theorem 1.2. which depend heavily on two inequalities inSection 3. We shall
give two examples in Section 6, which show that our results can not be obtained by
a direct application of the general perturbation theory of linear operators and how the
metric is appropriate to measure the difference between LY maps in the ergodic the-
oretical point of view. Finally in Appendix, we prove the Lasota-Yorke type inequality
and Krylov-Bogolioubov type inequality for reader’s convenience.

2. PiecewiseC2 metric

First of all we define the space 2 = 2[0 1] of piecewise 2 maps from
the unit interval into itself. Our investigations are carried out by using the Lebesgue
measure on [0 1]. Therefore, it will be more convenient to modify the usual defini-
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tion of piecewise 2 maps the same as we consider -space in the case of integrable
functions.

DEFINITION 2.1. An almost everywhere defined map : [0 1]→ [0 1] is said to
be a piecewise 2 map if there exists a partitionP = {[ −1 ]} =1 of [0 1] satisfying
the following conditions:
(1) 0 = 0 < · · · < = 1.
(2) |( −1 ) coincides with a 2 map [ −1 ] almost everywhere on the closed in-
terval [ −1 ] for each .
(3) P is minimal in the sense of the refinement among all the partitions satisfying (1)
and (2) above. Namely, if a partitionQ = {[ −1 ]} =1 satisfies (1) and (2),Q turns
out to be a refinement ofP . We call the partitionP the defining partition of .

The number and the defining partition in the above are uniquely determined by
. So we often write them as ( ) andP( ).

Let and be piecewise 2 maps with defining partitionsP( ) = {[ −1 ]} ( )
=1

and P( ) = {[ −1 ]} ( )
=1 . We identify with if ( ) = ( ), = , and

|( −1 ) = |( −1 ) hold for = 1 . . . ( ). In the same way as in the case of
-space, we define the space 2 of piecewise 2 maps by the totality of the equiv-

alent classes under the identification in the above and we treat each equivalent class as
if it is one of its version.

REMARK 2.1. If ∈ 2 is given, it determines the following stuffs.
(a) The defining partitionP( ).
(b) A family { } ∈P( ) of 2 maps, where : → [0 1] are the 2 extensions to

of 2 version of |int .
(c) The number ( ) of elements inP( ).
Conversely, if there exist a partitionP = {[ −1 ]} =1 with 0 = 0 < · · · < = 1 and
a family of 2 maps [ −1 ] : [ −1 ] → [0 1], = 1 . . . such that if ≥ 2, there
is no 2 map on [ −1 +1] such that |[ −1 ] = [ −1 ] and |[ +1] = [ +1] ,
then we have an element ∈ 2 so thatP( ) = P .

We would like to consider only elements in 2 whose n-fold iterations can be
defined as elements in 2.

DEFINITION 2.2. An element in 2 is said to be nondegenerate if ( )6= 0
holds for any ∈ and for any ∈ P( ), where ’s are as in Remark 2.1 and
denotes the derivative of a function .

If ∈ 2 is nondegenerate, it is obvious that :→ is a homeomor-
phism for each ∈ P( ). Therefore, we can define the -fold iteration of as fol-
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lows:
For a while we writeP( ) = { ( )} =1. For each ( (0) ( 1) . . . ( −1)) ∈

P( ) , we consider the set

( 0 . . . −1) = ( 0) ∩ −1
( 0) ( 1) ∩ · · · ∩ −1

( 0) · · · −1
( −2) ( −1)

If
∫

( 0 . . . −1) 6= ∅, we put

( 0 ... −1) = ( −1) · · · ( 0)

Then Q = { ( 0 . . . −1)} ( 0 ... −1):int ( 0 ... −1)6=∅ turns out to be a partition of
[0 1] into closed intervals and determines an element in2 so that ( 0 ... −1) =

( 0 ... −1). It is natural to denote by and call it the -fold iteration of .Note
thatQ is not necessarily the defining partitionP( ) of since it does not always sat-
isfy the minimality condition (3) in Definition 2.1. For example consider the map

=







2 +
1
2

(

∈
[

0
1
4

))

2

(

− 1
4

) (

∈
[

1
4

3
4

))

2

(

− 3
4

) (

∈
[

3
4

1

])

The defining partition of is{ (1) = [0 1/4] (2) = [1/4 3/4] (3) = [3/4 1]}.
From the construction above, (1 3) = [1/8 1/4] and (2 1) = [1/4 3/8]. But we see
that (1 3) = 4( −1/8) and (2 1) = 4( −1/8). This shows thatQ does not always
satisfy the minimality condition.

For the sake of later convenience, we denote by for each∈ P( ). The
inverse ( )−1 : → is denoted by − .

DEFINITION 2.3. A nondegenerate element is called a Lasota-Yorke map (an LY
map for short) if there exists a positive integer such that ess inf | | > 1.

REMARK 2.2. If is a nondegenerate element in 2, so is . Conversely, if
∈ 2 has a version˜ for which we can define -fold iteratioñ almost ev-

erywhere and˜ becomes a version of a nondegenerate element in2, then it is
not hard to see that itself is nondegenerate. Thus we can define an LY map as
an element in 2 having a version˜ such that the -fold iteratioñ is defined
almost everywhere,̃ becomes a version of a nondegenerate element in2, and
ess inf| ˜ | > 1 holds for some .

Next we introduce a metric to 2. Let be an element in 2 and P( ) =
{[ −1 ]} =1 the defining partition of as in Definition 2.1. For any positive integer
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, define a map : [0 1]→ [0 1] and nonnegative number ( ) by

=

{

[ −1 ] ◦ α if 1 ≤ ≤
0 if >

and

( ) =

{

− −1 if 1 ≤ ≤
0 if >

whereα : [0 1]→ [ −1 ] is a linear map given byα = ( − −1) + −1.
For and in 2, we define : 2 × 2→ R by

( ) = | ( )− ( )| +
∞∑

=1

‖ − ‖ 2 +
∞∑

=1

| ( )− ( )|

where‖ ‖ 2 denotes the usual 2 norm given by

‖ ‖ 2 = max
∈[0 1]

| ( )| + max
∈[0 1]

| ( )| + max
∈[0 1]

| 2 ( )|

It is easy to see that is a metric on the space2. We call it the piecewise 2 met-
ric. We summarize the basic properties of the metric as the following proposition.

Proposition 2.1. (1) The metric space( 2 ) is separable but not complete.
(2) For > 0, let 2( ) denote the totality of elements in 2 with ( ) ≥ 2
such that

| ( +)− ( −)| + | ( +)− ( −)| + | 2 ( +)− 2 ( −)| ≥

holds for each with1≤ ≤ ( )−1, where0 = 0 < · · · < ( ) = 1 are the division
points as inDefinition 2.1. Then ( 2( ) ) becomes a complete metric space.
(3) If a sequence ∈ 2 converges to in 2 as goes to∞, then con-
verges to almost everywhere. Moreover, for any point 6= ( ) ( = 0 1 . . . ( )),
there exists a neighborhood of where converges to in2 topology.
(4) For any > 0, the set{ ∈ 2 : ess inf| | > } is an open set in 2. In
particular, the totality of nondegenerate elements is an open set in2.
(5) On the subspace consisting of nodegenerate elements, we can define the map 7→

for any positive integer . But it is not continuous at every nondegenerate .

Proof. (1) The separability is an easy consequence of the separability of the Ba-
nach space (2[0 1] ‖·‖ 2). In fact, as a countable dense subset we can take the total-
ity of elements in 2 such that the division points ’s are rational and|[ −1 ] ’s
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are polynomials with rational coefficients. The following example shows that ( 2 )
is not complete. For ≥ 2, consider the sequence given by

=







if ∈
[

0
1
2

)

− 1
if ∈

[
1
2

1

]

Then is a Cauchy sequence in 2. If the limit exists, the unique candidate is
the identity. But we have ( ) = 2 and ( ) = 1. Therefore ( )≥ 1. This implies
that the limit does not exist.

(2) First we note that if is a Cauchy sequence in 2, the number of divi-
sion points ( ) are independent of (say ) for sufficiently large and ( ) con-
verges to a point for each = 0. . . . Therefore we see that there exists∈ 2

such that , , 2 converge to , , 2 uniformly on any compact set
in [0 1] \ { 0 1 . . . }, respectively. The example above, however, shows that the
points possibly become regular points of i.e. ( )< ( ). The condition on

2( ) removes such a possibility. Therefore we can show the validity of the asser-
tion (2).

The assertions (3), and (4) are easy exercises. For (5), we just give an example
showing that 7→ 2 is not continuous. Consider the maps and with≥ 2
defined by

=







+
1
2

if ∈
[

0
1
2

)

−2( − 1) if ∈
[

1
2

1

] =







(

1 +
2
)

+
1
2
− 1

if ∈
[

0
1
2

)

−2( − 1) if ∈
[

1
2

1

]

Clearly ( )→ 0 as → ∞, But ( 2 2) ≥ 1 since ( 2) = 4 and ( 2) = 3.

3. Perturbed Perron-Frobenius operators for LY maps

In the present section, we briefly describe some basic results on the perturbed
Perron-Frobenius operators for LY maps ([10], see also [5] and [11]). To begin with,
we recall a general definition of the Perron-Frobenius operator. Let ( B µ) be a
probability space. For 1≤ ≤ ∞, (µ) denotes the usual -space with -norm
‖ · ‖ µ. Let : → be a nonsingular transformation, i.e. isB/B-measurable
and µ( −1 ) = 0 for any ∈ B with µ( ) = 0. The Perron-Frobenius operator

µ : 1(µ)→ 1(µ) for with respect toµ is defined by

µ =
µ

∫

−1(·)
µ
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for each ∈ 1(µ), where the right hand side denotes the Radon-Nikodym derivative
of the complex valued measure 7→

∫

−1 µ with respect toµ. Then it is easy to
show that µ is characterized by the identity

(3.1)
∫

( 1 ◦ ) · 2 µ =
∫

1 · µ 2 µ

for any 1 ∈ ∞(µ) and for any 2 ∈ 1(µ). The following assertions are the conse-
quences of the identity (3.1) (see [8], [10] for the proof).

Proposition 3.1. (1) µ = µ for any positive interger .
(2) µ(( 1 ◦ ) 2) = 1 µ 2 for any 1 ∈ ∞(µ) and for any 2 ∈ 1(µ).
(3) If µ is -invariant, µ( | − B) = ( µ ) ◦ for any ∈ 1(µ), where

µ( | − B) is the conditional expectation of with respect to the subσ-algebra
− B of B.

(4) For ∈ 1(µ), µ = if and only if is a density function of aµ-absolutely
continuous invariant complex valued measure for .

Proposition 3.2. Let be an element in 1(µ) with ≥ 0, µ = , and
∫

µ = 1. Put ν = µ. For ∈ 1(ν) and for a measurable functionϕ with modu-
lus 1, the following are equivalent to one another.
(i) ◦ = ϕ in 1(ν).
(ii) ν (ϕ ) = in 1(ν).
(iii) µ(ϕ ) = in 1(µ).

For a real valued bounded measurable function and∈ C, the perturbed Perron-
Frobenius operator µ ( ) : 1(µ)→ 1(µ) is defined by

µ ( ) = µ

(
exp(
√
−1 )

)

for each ∈ 1(µ). By the assertion (2) in Proposition 2.1, we see that

(3.2) µ ( ) = µ

(

exp

(

√
−1

−1∑

=0

◦
) )

holds. Since µ preserves the value of the integral by the equation (3.1), the formula
(3.2) yields

∫

exp

(

√
−1

−1∑

=0

◦
)

µ =
∫

µ ( ) µ

Therefore one can imagine that the asymptotic behavior of the characteristic function
of the partial sum

∑ −1
=0 ◦ as goes to∞ with respect to the measureµ and

the spectral properties of the perturbed Perron-Frobeniusoperators are closesly related.



PIECEWISE 2 PERTURBATION OF LASOTA-YORKE MAPS 215

Since we work on the unit interval with the Lebesgue measure in the sequel,
we write instead of . Since any LY map is nonsingular with respect to the
Lebesgue measure , we can define the Perron-Frobenius operator for it with respect
to . Moreover if is the -fold iteration of an LY map with defining partition
P( ) = { } and denotes the 2 version of | , we have

(3.3) ( ) =
∑

∈P( )

χ ( )| ( − )|−1 ( − ) -a.e.

where the notation − is the same as we introduced just before Definition 2.3 and
χ denotes the indicator function of the set . As mentioned in Introduction, if
is an LY map, acts on the space of measurable functions with version of
bounded variation as well as1( ). For ∈ we put

∨

= inf
{ ˜∨

˜ : ˜ is a function of bounded variation which is a version of
}

where ˜∨ ˜ is the total variation of ˜ . Then

‖ ‖ = ‖ ‖ +
∨

becomes a Banach norm of for each 1≤ ≤ ∞. Since we have‖ ‖∞ ≤
∨

+ ‖ ‖1 for ∈ , we can show‖ ‖ 1 ≤ ‖ ‖ ∞ ≤ 2‖ ‖ 1. Therefore
we employ‖ ‖ 1 as the norm of and write it by‖ ‖ .

We need some notations in order to describe the Lasota-Yorketype inequality,
which plays an important role in the study of the spectral properties of the perturbed
Perron-Frobenius operators. Let be an LY map. For simplicity, we assume that
ρ = ρ( ) < 1, whereρ is given by 1/ρ = ess inf| | . Set

= ( ) = ess sup

∣
∣
∣
∣

2

( )2

∣
∣
∣
∣

= sup
∈P( )

sup
∈

∣
∣
∣
∣

2 ( )
( ( ))2

∣
∣
∣
∣

We put

= ( ) = min
∈P( )

( )

Then we have the following:

Lemma 3.1 (Lasota-Yorke type inequality).Let be an LY map withρ < 1. Let
be a positive integer. Assume that0 . . . −1 are functions of bounded variation



216 T. MORITA

with modulus not greater than ≥ 1. Then we have

∨
(( −1∏

=0

◦
) )

≤2

(

1 +
−1∑

=0

∨
)

ρ
∨

+ 2

((

1 +
−1∑

=0

∨
)

1
+

(

2 +
−1∑

=0

∨
) )

‖ ‖1

for any ∈ .

We need another inequality of Krylov-Bogolioubov type. To describe it we intro-
duce the following notations. For each positive integer and∈ P( ), choose a
point ∈ . We define a bounded linear operator : → by

( ) =
∑

∈P( )

¯( )χ ( )

where ¯ is a version of such that it is right continuous on [0 1)and satisfies ¯(1) =
¯(1−). Note that

∨
= ˜∨¯ holds. Then we have:

Lemma 3.2 (Krylov-Bogolioubov type inequality). Let be an LY map with
ρ < 1. Let be a positive integer. Assume that0 . . . −1 are functions of bounded
variation with modulus not greater than ≥ 1. Then we have

∥
∥
∥
∥
∥

(( −1∏

=0

◦
) )

−
(( −1∏

=0

◦
) )∥

∥
∥
∥
∥

≤
(

5 + 2 + 2
−1∑

=0

∨
)

ρ
∨

for any ∈ .

We shall prove Lemma 3.1 and Lemma 3.2 later in Appendix for reader’s conve-
nience.

REMARK 3.1. The versions of Lasota-Yorke type inequality and Krylov-
Bogolioubov type inequality are more general than we need inthe present work.
But if one considers random iteration of nondegenerate mapsas in [8], he or she can
recognize that the present forms of these inequalities are more useful. In this paper,
we just apply these inequalities to the case when0 = 1 = · · · = −1 = exp(

√
−1 )
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and being a real valued element in . In such a case, we have

∨

( )

≤2
(

1 + | | | |‖ ‖∞

∨ )

( | |‖ ‖∞ ρ)
∨

+ 2

((

1 + | | | |‖ ‖∞
∨ ) 1

+
(

2 + | | | |‖ ‖∞
∨ ) )

| |‖ ‖∞ ‖ ‖1

and

‖ ( ) − ( ) ‖ ≤
(

5 + 2 + 2 | | | |‖ ‖∞

∨ )

( | |‖ ‖∞ ρ)
∨

We notice that

( ) =
∑

∈P( )

¯( ) ( )χ

holds. Thus ( ) is an operator of finite rank, therefore a compact operator.
This implies that ( ) is a quasicompact operator on with the essential spec-
tral radius not greater than| |‖ ‖∞ ρ. Hence the spectrum in the domain{λ :
|λ| > | |‖ ‖∞ ρ} consists of isolated eigenvalues with finite multiplicity.(see [1]).

Our main concern is the following class of LY maps.

DEFINITION 3.1. A Lasota-Yorke map is called a Bernoulli Lasota-Yorke map
(a BLY map for short) if it has a unique a.c.i.m.µ = µ and the measure-theoretic
dynamical system ( µ) is Bernoulli.

In the following proposition, we enumerate the properties of BLY maps and their
perturbed Perron-Frobenius operators which we need in the later investigations. Proofs
can be found in [4], [5], [8], and [12]. We have to note that theLasota-Yorke type
inequality and the Krylov-Bogolioubove type inequality play importnat roles in these
references too.

In the sequel, ∈ is real valued.L( ) denotes the Banach space of bounded
linear operators on a Banach space with operator norm. Sinceis fixed, we write

( ) instead of ( ).

Proposition 3.3. (1) Let be an LY map and the Perron-Frobenius opera-
tor for . Then is Bernoulli if and only if1 is a unique eigenvalue with modulus1
of : 1( )→ 1( ) and it is simple.
(2) The mappingC ∋ 7→ ( ) ∈ L( ) is analytic.
From now on, we assume that is a BLY map.
(3) For ∈ R \ {0}, the spectral radius of ( ) as an element inL( ) is less than
1.
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(4) There existsτ = τ ( ) > 0 such that the spectral decomposition

(3.4) ( ) =λ ( ) ( ) + ( )

satisfying the following properties is valid for any∈ C with | | < τ .
(4-i) ( )2 = ( ) and ( ) ( ) = ( ) ( ) = .
(4-ii) λ (·), (·), and (·) are anlytic in { : | | < τ}. λ ( ) is the first eigen-
value, i.e. the eigenvalue with maximal modulus, of ( ) ∈ L( ) and ( ) is
the projection onto the one dimensional eigenspace corresponding toλ ( )
(4-iii) There exist > 0 and ′ > 0 with + ′ < 1 independent of such that
|λ ( ) − 1| < ′ and the spectrum of ( ) ∈ L( ) except for the eigenvalue
λ ( ) is contained in thedisc{ : | | < }. Moreover, ( ) and ( ) is written
in terms of the Dunford integral by

( ) =
1

2π
√
−1

∫

(|λ−1|= ′)
(λ − ( ))−1 λ

( ) =
1

2π
√
−1

∫

(|λ|= )
λ (λ − ( ))−1 λ

In particular, the spectral radius of ( ) ∈ L( ) is not greater than .
(4-iv) = (0)1 is the density of the unique a.c.i.m.µ of and the following
formulas hold.

λ
(0) =

√
−1
∫

µ and
2λ

2
(0) =−σ ( )2

whereσ ( )2 is the limit variance mentioned in Introduction.
(4-v) If = 0 the spectral decomposition(3.4) and the assertion(4-i) are valid for

(0) = as an element inL( 1( )).

4. Auxiliary lemmas

We shall prove some lemmas in this section. As a consequence we can easily
prove Theorem 1.1. But in order to prove Theorem 1.2 we need more investigations.

Lemma 4.1. Let 0 be an LY map satisfyingess inf| 0| > 2 and a real
valued function of bounded variation. Then there exist1 > 0, δ1 > 0, > 0, and
0< α < 1 such that the following assertions are valid whenever∈ 2 and ∈ C
satisfy ( 0) < δ1 and | | < 1, respectively.
(1) The spectrum of ( ) in {λ ∈ C : |λ| > α/2} consists of isolated eigenvalues
with finite multiplicity.

∨

( ) ≤ α
∨

+ ‖ ‖1(2)

holds for any ∈ .
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Proof. By the definition of the metric , if ( 0) is small enough, is also
an LY map with ess inf| 0| > 2. Moreover,ρ( ), ( ), and ( ) which appeared
in the inequalities in Remark 3.1 become close toρ( 0), ( 0), and ( 0), respec-
tively. Hence we can choose1 > 0, δ1 > 0, > 0, and 0< α < 1 with the desired
properties.

Next we show a sort of uniform estimate on the total variationof eigenfunctions
of the perturbed Perron-Frobenius operators for being close to 0.

Lemma 4.2. Let 0 be an LY map satisfyingess inf| 0| > 2 and a real
valued function of bounded variation. The numbers1 > 0, δ1 > 0, > 0, and
0 < α < 1 are the same as inLemma 4.1. If ( ) = λ holds for some ∈ ,

with ( 0) < δ1, ∈ C with | | < 1, and λ ∈ C with |λ| > α, then we have
∨ ≤ ‖ ‖1 for some positive constant depending on1 > 0, δ1 > 0, > 0,
and 0< α < 1 but not on , , , and λ.

Proof. For the sake of simplicity, we put =λ−1 ( ). Applying Lemma 4.1
repeatedly we have

∨

≤|λ−1α|
∨

+ |λ−1|
(
‖ −1 ‖1 + |λ−1α|‖ −2 ‖1 + · · · + |λ−1α| −1‖ ‖1

)

Therefore = implies

∨

≤ |λ−1α|
∨

+
|λ−1|

1− |λ−1α| ‖ ‖1

Hence the desired inequality holds with =|λ−1|/(1− |λ−1α|).

Now we can prove:

Lemma 4.3. Let 0 be a BLY map satisfyingess inf| 0| > 2. Then there ex-
ist δ2 ∈ (0 δ1) and 1 ∈ (α 1) such that ( 0) < δ2 implies that1 is the unique
eigenvalue of contained in the region{λ ∈ C : |λ| ≥ 1}.

Proof. Note that the modulus of any eigenvalue of is not greater than 1. If
the lemma is not valid, we can choose LY maps∈ 2, functions ∈ , and
complex numbersλ 6= 1 such that

= λ ‖ ‖ = 1 and |λ | → 1 ( →∞)

where = .
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In virtue of Helly’s selection theorem, we may assume that there exist ∈
and λ with |λ| = 1 such that → a.e. and in 1( ) and λ → λ as → ∞ by
taking subsequences if necessary. Clearly we get0 = λ , where 0 = 0 .

We claim that = 0. First, by Proposition 3.3 (1),λ = 1, i.e. 0 = since 0 is
Bernoulli. Since preserves the value of the integration, wesee

∫

=
∫

= λ
∫

for each ≥ 1. This yields
∫

= 0. Consequently we have
∫

= 0. Since the
eigenspace of 0 corresponding to 1 is one dimensional, we can see that = 0.

On the other hand, from Lemma 4.2, we have

1 = ‖ ‖ =
∨

+ ‖ ‖1 ≤ ( + 1)‖ ‖1

But the claim implies that the right hand side goes to 0 as→∞. Now we arrive at
a contradiction.

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Assume that0 is a BLY map. In virtue of the assertion
(1) in Proposition 3.3 and Lemma 4.3, it suffices to show the following.

CLAIM . There existsδ3 ∈ (0 δ2) such that if ( 0) < δ3, 1 is a simple eigen-
value of : → .

Note that if 1 is not simple, we can choose at least two ergodica.c.i.m.’s. Thus if
Claim is not true, we can find sequences∈ 2, ∈ , and ∈ such that

( 0)→ 0 ( →∞) = 0

≥ 0
∫

= 1 = and ≥ 0
∫

= 1 =

where = . Since we see
∨ ≤ and

∨ ≤ from Lemma 4.2, we can
apply Helly’s theorem to and . Therefore choosing a subsequence if necessary,
we may assume that there exist ∈ such that → and → a.e. and in

1( ) as →∞. Then it is easy to show that

0 = 0 = and
∫

=
∫

= 1

where 0 = 0.
Since 0 is Bernoulli, we conclude that = =0, where 0 is the density of the

unique a.c.i.m. of 0. Hence we must have

2 = ‖ − ‖1 → ‖ − ‖1 = 0 ( →∞)
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This is a contradiction.

Corollary 4.1. Let 0 be a BLY map withess inf| 0| > 2 having a unique
a.c.i.m.µ0 with density 0. If ∈ 2 converges to 0 in 2 as → ∞, then
for any large enough, turns out to be a BLY map having a unique a.c.i.m.µ

with density ∈ and converges to 0 a.e. and in 1( ).

Proof. There exists 0 such that ( 0) < δ3 for any ≥ 0. In addition,
∨ ≤ holds for any ≥ 0 from Lemma 4.2. Therefore by Helly’s theorem,
any subsequence contains a subsequence converges to some∈ a.e. and in

1( ). Clearly
∫

= 1 and 0 = are true. This implies =0. Thus we reach
the desired result.

REMARK 4.1. We need the condition ess inf| 0| > 2 to prove Lemma 4.1. From
the proof one can easily recognize that the assertions in Lemma 4.1 are still valid if

0 is an LY map satisfying

There exists a positive integer such that ess inf| 0 | > 2 and the mapping

7→ is continuous at 0
(A)

Hence we can see that any result in the present section can be obtained if we replace
the condition ess inf| 0| > 2 by (A).

The rest of the present section is devoted to giving exampleswhich show that
the conditions Bernoullicity and ess inf| | > 2 are essential. The following exam-
ple shows that without ess inf| 0| > 2, the Bernoullicity is not necessarily stable by

2 perturbation.

EXAMPLE 4.1. For any sufficiently smallǫ ≥ 0, we set

ǫ =







4
1− 4ǫ

if ∈
[

0
1− 4ǫ

4

)

−2 +
3− 4ǫ

2
if ∈

[
1− 4ǫ

4
1− 2ǫ

2

)

2 − 1
2

if ∈
[

1− 2ǫ
2

3
4

)

−2 +
5
2

if ∈
[

3
4

1

]

Note that ǫ restricted to [1/2 1] is the so-called tent map for anyǫ. It easy to see
that ( ǫ 0) → 0 as ǫ → 0. If ǫ > 0 is small enough, we haveǫ[1− 2ǫ/2 1/2] =
[1− 2ǫ/2 1/2] and ǫ[1/2 1] = [1/2 1]. Therefore ǫ can not be a BLY.
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On the other hand, 0 is shown to be a BLY as follows.0 restricted to [1/2 1]
is the tent map. Thus it is mixing. Since it is obvious that almost every point in
[0 1/2] is attracted by the interval [1/2 1], 0 restricted to [1/2 1] is the unique mix-
ing component of 0.

If ess inf| 0| > 2 were satisfied, such a phenomenon could not happen by The-
orem 1.1. But we have ess inf| 0| = 2 in the present case.

The assumption of Bernoullicity in Theorem 1.1 means that0 has a unique mix-
ing component. Therefore we may regard the assertion in Theorem 1.1 as the stability
on the number of mixing components under 2 perturbation. If 0 is an LY map
with more than one mixing components, it is natural to ask whether such a stability
result holds or not. More precisely, is there a neghborhood of 0 in the 2 topology
whose members have the same number of mixing components as0 ? Next we show
that if we do not impose the Bernoullicity condition on0, we can not obtain the sta-
bility of number of mixing components even if the slope condition ess inf| 0| > 2.
is satisfied. We recall one of Bowen’s criterion in [2, Theorem 2] for convenience.

Proposition 4.1 (Bowen [2]). Let be an LY map with defining partitionP . If
the conditions thatess inf| | > 2 and ( )→ 1 ( →∞) holds for each ∈ P
are satisfied, then turns out to be a BLY map.

EXAMPLE 4.2. For sufficiently smallǫ ≥ 0 we define ǫ by

ǫ =







3(1 + 2ǫ) if ∈
[

0
1
6

)

−3(1 + 2ǫ) + 1 + 2ǫ if ∈
[

1
6

1
3

)

3 − 1 if ∈
[

1
3

2
3

)

−3(1 + 2ǫ) + 3− 4ǫ if ∈
[

2
3

5
6

)

3(1 + 2ǫ) − 2− 6ǫ if ∈
[

5
6

1

)

Put (1) = [0 1/6], (2) = [1/6 1/3], (3) = [1/3 2/3], (4) = [2/3 5/6], and
(5) = [5/6 1). Clearly these intervals form the defining partitionP( ǫ) for any ǫ ≥ 0

and we have (ǫ 0)→ 0 asǫ→ 0.
We can easily see that0[0 1/2] = [0 1/2], 0[1/2 1] = [1/2 1] and 0 pre-

serves the Lebesgue measure . Since ess inf| 0| = 3, Bowen’s criterion implies
that ( 0 2 |[0 1/2]) and ( 0 2 |[1/2 1]) are mixing componets. Thus0 has exactly two
mixing components. On the other hand, we can show thatǫ is a BLY map for any
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ǫ > 0 i.e. it has only one mixing component. This means that for anLY map with
more than one mixing components, we do not always find anǫ0 > 0 such that any
element in theǫ0-neighborhood of has the same number of mixing components as

even if satisfies ess inf| | > 2.
It remains to show that ǫ (ǫ > 0) is BLY. We verify that ( ǫ ( )) → 1

( →∞) for each = 1 2. . . 5. For (3) this is trivial. We consider (1).ǫ (1) =
[0 1/2] ∪ [1/2 1/2 + ǫ). It is easy to see that (ǫ [1/2 1/2 + ǫ)) ⊃ [1/2 1] for some
. Therefore we have +1

ǫ (1) = [0 1]. For (2), (4), and (5) we can obtain the
desired result in the same way. Since ess inf| ǫ| = 3(1 + 2ǫ) > 2, ǫ is BLY in virtue
of Bowen’s criterion.

5. Continuity of the first eigenvalue of LT(t) and Proof of Theorem 1.2

Throughout the section,0 is a BLY map satisfying the condition ess inf| 0| >
2 unless otherwise stated. The numbers1 and δ3 are the same as in Lemma 4.3 and
Claim in Proof of Theorem 1.1, respectively. Recall that if ( 0) < δ3, we are in
the following situation. In the region{λ ∈ C : |λ| ≥ 1}, there is no spectrum of
∈ L( ) except for the simple eigenvalue 1. Thus we can choose2 > 0 with

1 + 2 < 1 independent of so that the punctured disc{λ : |λ − 1| ≤ 2} \ {1} is
contained in the resolvent set of .

Put ={λ ∈ C : |λ| ≥ 1 |λ−1| ≥ 2}. We need the following technical lemma.

Lemma 5.1. There existsδ4 ∈ (0 δ3) such that

β = sup
: ( 0)<δ4

sup
λ∈
‖(λ − )−1‖ <∞

Proof. We know that the set is contained in the resolvent set of ∈ L( )
and

sup
λ∈
‖(λ − )−1‖ <∞

is valid for each fixed with ( 0) < δ3. Note that we can replace supλ∈ by
sup , where = ∩ {λ ; |λ| ≤ 2} because of the following reason.

Combining Lemma 4.1 and the fact‖ ‖1 = 1, we have

∨

≤ α
∨

+
1− α‖ ‖1

for any ∈ 2 with ( 0) < δ3 < δ1. It follows that

‖ ‖ ≤ α + 1 +
1− α ≤

+ 2− α
1− α
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This yields

‖(λ − )−1‖ ≤
∞∑

=0

‖ ‖
|λ| +1

≤ + 2− α
1− α

if |λ| ≥ 2.
To obtain the desired result, we have to show that we can choose δ4 ∈ (0 δ3) such

that

inf
: ( 0)<δ4

inf
λ∈

inf
:‖ ‖ =1

‖(λ − ) ‖ > 0

If we can not find such aδ4, there exist ∈ 2, ∈ with ‖ ‖ = 1, λ ∈
such that

( 0)→ 0 and = (λ − ) → 0 in ( →∞)

where = . Apply Lemma 4.1 to =λ−1 + λ−1 , we have

∨

≤ |λ−1|
∨

+ |λ−1|α
∨

+ |λ−1|‖ ‖1

This yields

(5.1)
∨

≤ |λ−1|
1− |λ−1|α

(∨

+ ‖ ‖1

)

Next, since‖ ‖ = 1, we can apply Helly’s theorem to . Thus we may assume
that there exist ∈ and λ ∈ such that → a.e. and in 1( ) and λ → λ

as →∞. Clearly,

(λ − ) → (λ − 0)

a.e. and in 1( ) as →∞, where 0 = 0 .
On the other hand the left hand side in the above converges to 0in by our

assumption. Hence we see0 = λ . Since 0 ∈ L( ) can not have an eigenvalue
with |λ| ≥ 1, the choice of 2 implies = 0. Combining this fact with the inequality
(5.1), we conclude that

∨ → 0 as →∞. Consequently we can get

1 = ‖ ‖ =
∨

+ ‖ ‖1 → 0 ( →∞)

This is a contradiction.

Next we give a uniform bound for the resolvent operators of the perturbed Perron-
Frobenius operators ( ) with ( 0) < δ4 for any with sufficiently small absolute
value.
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Lemma 5.2. There exists 2 ∈ (0 1) such that if ( 0) < δ4, the set is
contained in the resolvent set of ( ) ∈ L( ) for any ∈ C with | | < 2. In
particular, we can choose2 so that

sup
: ( 0)<δ4

sup
:| |< 2

sup
λ∈
‖(λ − ( ))−1‖ ≤ 2β

holds.

Proof. Recall the following elementary fact (see [3, VII-6]).
Let and be bounded linear operators on a Banach spaceX . Assume that

is invertible and‖( − ) −1‖ < 1. Then is invertible and −1 can be expressed
by −1 =

∑∞
=0

−1(( − ) −1) .
We show that we can choose2 so that if | | < 2, we can apply this fact to =

λ − and =λ − ( ) for any λ ∈ . To this end we estimate‖ ( )− ‖ .
We can easily show that for any∈ C and for any ∈

‖
( √

−1 − 1
)
‖1 ≤

( | |‖ ‖ − 1
)
‖ ‖1

∨(
(

√
−1 − 1)

)
≤
( | |‖ ‖ − 1

)∨

+ | |
( | |‖ ‖ − 1

)∨

‖ ‖1

Thus we have

‖
( √

−1 − 1
)
‖ ≤

( | |‖ ‖ − 1
) (

1 + | |
∨ )

‖ ‖ = γ( )‖ ‖

Therefore it follows that

‖( ( )− ) ‖ ≤ ‖ ‖ ‖(
√
−1 − 1) ‖ ≤ ‖ ‖ γ( )‖ ‖

On the other hand, by Lemma 4.1, if ( 0) < δ4 < δ1, we have‖ ‖ ≤ +1 in
the same way as in the proof of Lemma 5.1. Hence if (0) < δ4 and λ ∈ , we
obtain

‖( ( )− )(λ − )−1‖ ≤ ‖ ‖ γ( )β ≤ ( + 1)γ( )β

in virtue of Lemma 5.1.
Notice thatγ( ) ↓ 0 as ↓ 0. Therefore we can choose2 ∈ (0 1) so that| | < 2

implies ( + 1)γ( )β < 1/2. Then we have the desired results

In virtue of Lemma 5.2, we see that if ( 0) < δ4 and | | < 2, we can define
the projections

(5.2)

( ) =
1

2π
√
−1

∫

(|λ−1|= 2)
(λ − ( ))−1 λ

( ) =
1

2π
√
−1

∫

(|λ|= 1)
(λ − ( ))−1 λ
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by using the Dunford integral. In addition we have
(5.3)
‖ ( )‖ ≤ 2β 2 ‖ ( )‖ ≤ 2β 2 and ‖ ( ) ‖ = ‖ ( ) ( )‖ ≤ 2β +1

1

In particular,

‖(λ − ( ))−1− (λ − ))−1‖ =‖(λ − ( ))−1( − ( ))(λ − ))−1‖
≤2β2( + 1)γ( )

and

(5.4) ‖ ( )− ‖ ≤ 2 2β
2( + 1)γ( )

hold. Therefore we can show the following:

Lemma 5.3. There exists 3 ∈ (0 2) such that if ∈ 2 satisfies
( 0) < δ4, the mapping{ ∈ C : | | < 3} ∋ 7→ ( ) ∈ L( ) is analytic

and dim ( ) = 1.

Proof. The assertion in analyticity is obvious. Thus we haveonly to prove the
second assertion. Recall the fact that if1 and 2 are projections on a Banach space
X satisfying‖ 1− 2‖ < min(‖ 1‖−1 ‖ 2‖−1), then dim 1X = dim 2X holds.

Therefore if we choose3 < 2 so small thatγ( 3) satisifiesβ( + 1)γ( 3) < 1, we
get the desired result by the inequalities (5.3) and (5.4).

We have seen that the spectral decomposition (3.4) in Proposition 3.3 is valid si-
multaneously in with ( 0) < δ4 and with | | < 3 in the following sense.

Proposition 5.1. Let 0 be a BLY map satisfyingess inf| 0| > 2. Then there
exist 1 > 0, 2 > 0, 3 > 0 and δ4 > 0 with 1 + 2 < 1 such that whenever ∈ 2

and ∈ C satisfy ( 0) < δ4 and | | < 3, the perturbed Perron-Frobenius operator
( ) ∈ L( ) has the spectral decomposition

( ) = λ ( ) ( ) + ( )

where ( ) defined by(5.2) is the projection onto the one dimensional eigenspace
corresponding to the first eigenvalueλ ( ) of ( ) and ( ) satisfies the estimate in
(5.3). Moreover, {λ (·)} : ( 0)<δ4 is a normal family of analytic functions in{ ∈ C :
| | < 3} satisfying

sup
: ( 0)<δ4

sup
:| |< 3

|λ ( )| ≤ 1 + 2
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Proof. The proposition is an easy consequence of Propositon3.3 and the obser-
vation in the above. Note that the last assertion follows from Montel’s theorem.

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. LetH be the Fréchet space of analytic functions in
{ : | | < 3}. We show that{ : ( 0) < δ4} ∋ 7→ λ (·) ∈ H is continuous.
We just prove the continuity at the center0 since we can prove the continuity at the
other points in the same way.

In virtue of Proposition 5.1,{λ (·) : ( 0) < δ4} is relatively compact inH. It
remains to show that ifλ (·) = λ (·) converges toλ(·) uniformly on any compact set
in { : | | < 3} as ( 0) → 0, we haveλ( ) = λ0( ) for any with | | < 3, where
λ0(·) = λ 0(·).

Let ∈ satisfy

( ) = λ ( ) and ‖ ‖ = 1

where ( ) = ( ). By Helly’s theorem, we may assume that there exists ∈
such that → a.e. and in 1( ). Thus we have 0( ) = λ( ) , where 0( ) =

0( ). If we can show that 6= 0, |λ( )| ≤ 1 + 2 implies this must coincides with
λ0( ) by Lemma 5.2.

On the other hand
∨ ≤ ‖ ‖1 is valid for each by Lemma 4.2. It follows

that

1 = ‖ ‖ =
∨

+ ‖ ‖1 ≤ ( + 1)‖ ‖1

Thus we see‖ ‖1 ≥ 1/( + 1). Consequently,‖ ‖1 ≥ 1/( + 1). Hence we arrive
at the desired result.

REMARK 5.1. It is not hard to see that all the results in the present section are
true for 0 satisfying the assumption (A) in Remark 5.1

6. Examples

In this section we cite two examples which illustrate how themetric is appro-
priate to measure the difference between an LY map and the other element in 2

from a viewpoint of the ergodic theory of a.c.i.m.’s.
By Corollary 4.1 if converges to a BLY map0 with ess inf| 0| > 2 in the

metric as → ∞, then is a BLY map for sufficiently large and the invariant
density of converges to the invariant density0 of 0 a.e. and in 1( ). The
first example shows that even if is assumed to be a continuous BLY map for any
≥ 0, ‖ − 0‖∞ ( →∞) does not always imply the convergence of the invariant

density.
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EXAMPLE 6.1. Consider the following maps with≥ 4.

=







3 if ∈
[

0
1
3

)

−3

(

− 2
3

)

if ∈
[

1
3

2
3

)

3

(

− 2
3

)

if ∈
[

2
3

1
)

3( − 1)
− 3

(

− 1
)

+
1

if ∈
[

1 1
3

)

−3

(

− 2
3

)

if ∈
[

1
3

2
3

)

3

(

− 2
3

)

if ∈
[

2
3

1

]

0 =







3 if ∈
[

0
1
3

)

−3

(

− 2
3

)

if ∈
[

1
3

2
3

)

3

(

− 2
3

)

if ∈
[

2
3

1

]

Then ‖ − 0‖∞ ≤ 3/ . is a BLY map with unique a.c.i.m.µ = |[0 1/ ] and

0 is a BLY with unique a.c.i.m.µ0 = . Clearly, µ → δ0 weakly as ( → ∞). On
the other hand we can see ( 0) ≥ 3 for ≥ 4 since ( ) = 6 and (0) = 3.

Next, when one gives a glance at our result, one may consider the possibility of
the phenomenon as lim( 0)→0 ‖ − 0‖ = 0. If such a phenomenon could oc-
cur in general, our results would be no interest and would be easy consequences of
the general perturbation theory for linear operators. The second example shows that
lim ( 0)→0 ‖ − 0‖ 6= 0 in general. This means that the topology induced by
the metric is not so large that it can make the map7→ ∈ L( ) continuous
while it is large enough to distinguish the ergodic properties of a.c.i.m. of 0 from
those of .

EXAMPLE 6.2. Let ǫ ≥ 0 be small enough. We consider the maps:

ǫ =







3(1− ǫ) + ǫ if ∈
[

0
1
3

)

3

(

− 1
3

)

if ∈
[

1
3

2
3

)

3

(

− 2
3

)

if ∈
[

2
3

1

]
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Clearly we have (ǫ 0) ≤ 2ǫ and we can apply Theorem 1.1 and Theorem 1.2 to
this family. Choose ǫ = χ[0 ǫ] ∈ . Then

(
ǫ
− 0) ǫ( ) = χ[ǫ 1]( )

1
3(1− ǫ)χ[0 ǫ]

(

3(1− ǫ) −
ǫ

3(1− ǫ)

)

− 1
3
χ[0 ǫ]

(

3

)

=
1

3(1− ǫ)χ[ǫ 4ǫ−3ǫ2]( )− 1
3
χ[0 3ǫ]( )

yields

∨(
(

ǫ
− 0) ǫ

)
=

3− ǫ
3(1− ǫ) and ‖(

ǫ
− 0) ǫ‖1 =

2ǫ
3

Thus we have

‖
ǫ
− 0‖ ≥

(
3− ǫ

3(1− ǫ) +
2ǫ
3

)
1

1 + ǫ
=

3 + ǫ− 2ǫ2

3(1− ǫ2)
→ 1 (ǫ ↓ 0)

since ‖ ǫ‖ = 1 + ǫ holds for any smallǫ > 0. Hence one can not say that our
theorems are easy consequences of the general perturbationtheory of linear operators
in [3, VII-6].

Appendix

We prove Lemma 3.1 and Lemma 3.2 (cf. [1], [6], and [9]). Let bean LY map
with ess inf| | > 1. The notationsρ, , and are the same as in Section 3. Note
that it is not hard to show that

ρ( ) ≤ ρ and ( )≤

Let P = P( ) be the defining partition of . For each ∈ P , is an element
in specified later. For = 0. . . − 1, let be an element in satisfying
‖ ‖∞ ≤ for some ≥ 1. In what follows if we consider an element in ,
we choose a version which is right continuous on [0 1) and leftcontinuous at 1. For
simplicity, we put =

∏ −1
=0 ( ).

We note that in the sequel we use the notations sup and inf to denote the supre-
mum and the infimum taken over all∈ , respectively. First of all we show that

sup
1

| | ≤
(

+
1

( )

)

( )(A.1)

holds for any ∈ P . In fact, by Mean Value Theorem, we have

∣
∣
∣
∣

1
| ( )| −

1
| ( )|

∣
∣
∣
∣
≤ sup

∣
∣
∣
∣

2

( )2

∣
∣
∣
∣
| − | ≤ ( ) ( ) ≤ ( )



230 T. MORITA

for any , ∈ and for any ∈ P . Thus we have

sup
1

| | ≤ ( ) + inf
1

| | ≤
(

+
1

( )

)

( )

since

( ) =
∫

| | ≤ sup| | ( )

Now we carry out the estimation as follows.

∨ ∑

∈P

(
χ ( − )| ( − )|−1 ( − )

)

≤
∑

∈P

∨(
( − )| ( − )|−1 ( − )

)
+

∑

∈P

(
| ( )| |−1( ) ( )| + | ( )| |−1( ) ( )|

)

≤
∑

∈P

∨(
| |−1

)
+

+
∑

∈P

(
| ( )| |−1( ) ( )| + | ( )| |−1( ) ( )|

)

≤2
∑

∈P

∨(
| |−1 )

+ 2
∑

∈P

(
1
( )

∫

| || |−1 |
)

=2

(
∑

∈P
+
∑

∈P

)

(A.2)

where = [ ] and
∨

denots the total variation on . Note that in the third
inequality in the above, we have used the fact that

| ( )| + | ( )| ≤ | ( )− ( )| + | ( )− ( )| + 2| ( )| ≤
∨

[ ]

+ 2| ( )|

holds for any ∈ [ ].
Next, using

∨ ≤ −1∑ −1
=0

∨
, we have

≤
∫

| || |
∣
∣
∣
∣

2

( )2

∣
∣
∣
∣

+
∨

( ) sup(| |−1)

≤
∫

| | +

(

−1
−1∑

=0

∨

· sup| | +
∨

)

sup(| |−1)

≤
∫

| | +
−1∑

=0

∨

· sup| | sup(| |−1) + ρ
∨

(A.3)
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and

≤ sup(| |−1)
1
( )

∫

| |(A.4)

If we put = for any , then the inequalities (A.3) and (A.4) become

≤
∫

| | +
−1∑

=0

∨
(
∨

+
1
( )

∫

| |
)

sup(| |−1)

+ ρ
∨

≤
∫

| | + ρ

( −1∑

=0

∨
)
∨

+

( −1∑

=0

∨
)(

+
1
)∫

| | + ρ
∨

≤ ρ

(

1 +
−1∑

=0

∨
)
∨

+

((

1 +
−1∑

=0

∨
)

+
1

−1∑

=0

∨
)

∫

| |

(A.5)

and

≤ sup(| |−1)
1
( )

∫

| | ≤
(

+
1
)∫

| |(A.6)

In the above we have used the inequalities sup≤ ∨
+ (1/ ( ))

∫
| | and

(A.1) to obtain the first inequality and the second inequality, respectively. (A.1) is also
used in the last inequality. Since the identity

( −1∏

=0

( ) ·
)

=
∑

∈P
χ ( − )| ( − )|−1 ( − )

holds, we obtain the Lasota-Yorke type inequality by combining (A.2), (A.5), and
(A.6).

Finally, we put = ( )− in (A.3) and (A.4), where is a point in chosen
beforehand. Then we have

≤ ρ
∨

+ ρ
−1∑

=0

∨

·
∨

+ ρ
∨

(A.7)

and

≤ ρ
∨

(A.8)
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In addition, we have

∫
∣
∣
∣
∣
∣

(( −1∏

=0

( )

) )

−
(( −1∏

=0

( )

) )∣
∣
∣
∣
∣

≤
∫ −1∏

=0

| ( )( − )|

≤
∑

∈P

∫

| − | ≤ ρ
∑

∈P

∨

≤ ρ
∨

(A.9)

Since
(( −1∏

=0

( )

) )

−
(( −1∏

=0

( )

) )

=
∑

∈P
χ ( − )| ( − )|−1( ( − )− ( ))

holds, we can reach the Krylov-Bogolioubov type inequalityin virtue of (A.2), (A.7),
(A.8), and (A.9).
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