
Yamamuro, K.
Osaka J. Math.
40 (2003), 187–206

GROWTH OF SAMPLE FUNCTIONS
OF SELFSIMILAR ADDITIVE PROCESSES

KOUJI YAMAMURO

(Received September 5, 2001)

1. Introduction and results

A stochastic process{ : ≥ 0} on R , which is defined on a probability space
( F ), is said to be a selfsimilar additive process with exponent> 0 if it satis-
fies the following conditions:
(i) { } and { } have the same finite-dimensional distributions for every> 0,
(ii) 1 − 0 2 − 1 . . . − −1 are independent for any and any choice of
0≤ 0 < 1 < 2 < · · · < ,
(iii) alomost surely is right continuous in≥ 0 and has left limits in > 0.
We can derive the sample function behavior of selfsimilar additive processes with ex-
ponent from those with exponent 1 by using their selfsimilarity. Hence, throughout
this paper we only consider a selfsimilar additive process{ } on R1 with exponent
1. The distribution of 1 is self-decomposable. Thus its Lévy measure is represented
as ( )/| | , where ( ) is nonnegative decreasing on (0∞) and nonegative increas-
ing on (−∞ 0), and

∫

R1(1∧ | |2) ( )/| | < ∞. We use the words “increase” and
“decrease” in the wide sense in this paper. From now on we suppose that both the
Gaussian covariance and the drift of{ } are zero and

∫

| |≤1 ( ) < ∞, that is,
that the characteristic function of1 is represented as

ˆ
1( ) =

∫

R1
1( ) = exp

[∫

R1

( − 1)
( )
| |

]

where ( ) ≥ 0, ( ) is decreasing on (0∞) and increasing on (−∞ 0), and
∫

R1(1∧ | |) ( )/| | <∞. Here we denoted the distribution of1 by 1 .
We have investigated recurrence-transience for selfsimilar additive processes

(see [11], [16], and [17]). However, the attempt has not beencompletely successful
so far. In order to achieve this aim, we need to get imformation about their sample
function behavior. Hence we study growth of their sample functions as time tends to
infinity. There is a precedent for this study, but it only deals with increasing selfsimilar
additive prcesses (see [14]). Even in the case of Lévy processes onR1, growth of sam-
ple functions is not known under general assumption, but some papers deal with the
case of subordinators and of symmetric Lévy processes (forexample, see [5], [6], [9],
and [7]). In order to solve this kind of problems, we need to develop some techniques,
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and we shall suggest useful tools. One is to use the fisrt Borell-Cantelli lemma and
the generalization of the second Borell-Cantelli lemma. The other is to use the distri-
bution of the hitting times with respect to{ } to apply these lemmas. We can find
them being applied to strictly stable processes (see Corollary 11.3 and Theorem 11.5
in [8]). We note that strictly stable processes are only Lévy processes which are self-
similar additive processes. These tools might be more useful in the future. In addition,
we shall devise some method which does not need the Borell-Cantelli lemmas.

We state the limsup behavior of the selfsimilar additive processes{ }.

Theorem 1.1. Let ( ) be an increasing positive measurable function on[1 ∞)
and let ( )/ be increasing. Suppose that( ) > 0 for all ∈ R1 \ {0},

lim sup
| |→∞

(ρ0 )
( )

< 1 for someρ0 > 1(1.1)

and

(1.2) lim inf
| |→∞

(ρ )
( )

> 0 for everyρ > 1

If

∫ ∞

1

{ (
( )
)

+

(

− ( )
)}

< ∞ (resp. =∞)(1.3)

then we have

(1.4) lim sup
→∞

| |
( )

= 0 (resp. =∞) a.s.

Corollary 1.1. In the same setting as inTheorem 1.1,there does not exist a
function ( ) such that

lim sup
→∞

| |
( )

= 1 a.s.

EXAMPLE. If | |α ( ) is slowly varying at±∞ for someα ≥ 0, then (1.2) holds.
In particular, ifα > 0, we have lim| |→∞ (ρ0 )/ ( ) < 1 for any ρ0 > 1. This means
that (1.1) holds. Such important examples are strictly stable processes with indexα,
where 0< α < 1.

REMARK 1.1. The paper [14] deals with the case where ( ) = 0 on (−∞ 0)
with respect to this problem. It has the assumption that ( )∈ OR. This assumption
corresponds to the condition ( ) + (− ) ∈ OR in the case where ( )> 0 for all
∈ R1 \ {0}. Our conditions (1.1) and (1.2) are stronger than it.
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REMARK 1.2. In [15] recently Toshiro Watanabe has shown the following: Sup-
pose thatµ is an infinitely divisible distribution with Lévy measureν. Let µ∗( ) =
µ({ ∈ R : | | > }) and ν∗( ) = ν({ ∈ R : | | > }). If ν∗( ) ∈ OR, then it
follows that 0< lim inf →∞ µ∗( )/ν∗( ) ≤ lim sup →∞ µ∗( )/ν∗( ) <∞.

Using this, we can show the same result as Theorem 1.1 in the case where the
characteristic function of 1 is represented as

1 = exp

[

−2−1 2 +
∫

R1

( − 1− 1{| |≤1}( ))
( )
| | + γ

]

Here ≥ 0 andγ ∈ R1.

Let λ = (0+) + (0−). If λ <∞, then we define the function ( ) on (0∞) by

( ) = ( ∧ 1)λ exp

[
∫ 1

∧1

λ− ( )− (− )
]

= exp

[

−
∫ 1

∧1

( ) + (− )
]

We state the liminf behavior of the selfsimilar additive processes{ }.

Theorem 1.2. Let 0 < λ < ∞. Suppose that ( ) is a strictly increas-
ing positive measurable function on[1 ∞), and that ( )/ is decreasing. Further-
more, in the case whereλ ≥ 1, we suppose the following additional condition:
lim sup→∞ ( α)/ ( )α <∞ for someα > 1.

If

∫ ∞

1

(
( )
)

= ∞ (resp.<∞)(1.5)

then we have

lim inf
→∞

| |
( )

= 0 (resp. =∞) a.s.(1.6)

Corollary 1.2. In the same setting as inTheorem 1.2,there does not exist a
function ( ) such that

lim inf
→∞

| |
( )

= 1 a.s.

REMARK 1.3. With respect to this problem the paper [14] assume that () = 0
on (−∞ 0) but does not that lim sup→∞ ( α)/ ( )α < ∞ for someα > 1 in the
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case whereλ ≥ 1. It is important progress that we do not assume the support of ( )
is contained in either (−∞ 0] or [0 ∞).

REMARK 1.4. Let ( ) = 2− −1. Then, from Theorem 1.2, we can obtain that
{ } is transient in the case where 0< λ < ∞. This fact has been already shown
in [16].

REMARK 1.5. If ( )/ is increasing, then it follows that

∞ ≥ lim sup
→∞

| | ≥ 0 lim sup
→∞

| |
( )

If ( )/ is decreasing, then it follows that

lim inf
→∞

| |
( )
≥ 1 lim inf

→∞
| | ≥ 0

Here 0 and 1 are positive constants. Therefore our results show how different sam-
ple function behavior of a selfsimilar additive process is from the strong law of large
numbers.

To give an example, letα > 1, and let ( ) = −α ∧ 2 if > 0 and let ( ) =
| |−α ∧ 1 if < 0. Choosing ( ) = , we have lim sup→∞ | |/ ( ) = ∞ a.s. from
Theorem 1.1 and lim inf→∞ | |/ ( ) = 0 a.s. from Theorem 1.2. By the way, if{ }
is a Lévy process whose distribution at time 1 is identical with 1, then we have

lim
→∞

=
∫

R1
1( ) =

∫

R1

( )
| | =

α

α− 1
(21−α−1 − 1) a.s.

by virtue of [10] Theorem 36.5.

2. Proof of Theorem 1.1

First, we prepare some lemmas.

Lemma 2.1. Let ǫ > 0. Then it follows that

(

sup
0≤ ≤

| | > 3ǫ

)

≤ 3 sup
0≤ ≤

(
| | > ǫ

)
(2.1)

Proof. Let 1, 2 . . . be independent random variables. Put =
∑

=1

for ≥ 1. Then it follows that

(

max
1≤ ≤

| | > 3ǫ

)

≤ 3 max
1≤ ≤

(| | > ǫ)
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Indeed, this is shown by using [10, p. 126] Lemma 20.2. Hence,as is right con-
tinuous and{ } has independent increments, we can obtain (2.1).

The following lemma is found in [4, p. 574].

Lemma 2.2. Let be a distribution function on[0 ∞). Suppose that is abso-
lutely continuous with density . Then if the function7→ exp{ ( )/(1− ( ))} ( )
is integrable on[0 ∞), then is subexponential.

The following lemma is found in [3] or in [4, p. 581].

Lemma 2.3. For infinitely divisible on[0 ∞) with Lévy measureν, it follows
that ν(1 ]/ν(1 ∞) is subexponential if and only iflim →∞(1− ( ))/ν( ∞) = 1.

Lemma 2.4. Suppose that ( ) > 0 for all ∈ R1 \ {0}. If we have

lim inf
→∞

(ρ0 )
( )

> 0(2.2)

for someρ0 > 1, then it follows that

1 ≤ lim inf
→∞

( 1 > )
∫∞

2 ( ) −1
(2.3)

and

1 ≤ lim inf
→∞

( 1− ρ−1
0
> )

∫∞
2 ( ( )− (ρ0 )) −1

(2.4)

In particular, if ρ0 = 2, then we have

lim sup
→∞

( 1 > )
∫∞

2−1 ( ) −1
< ∞(2.5)

REMARK. Let > 0. We note that the lemma holds again with (− ) in place of
( ) with respect to (− 1 > ).

Proof. Let 1 have the decomposition 1 = 1 + 2 + 3 such that

ˆ
1( ) = exp

[∫ ∞

1
( − 1) ( ) −1

]

ˆ
2( ) = exp

[
∫ 1

−1
( − 1) ( )| |−1

]
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ˆ
3( ) = exp

[
∫ −1

−∞
( − 1) ( )| |−1

]

Now we notice that

( 1 > ) ≥ ( 1 > 2 ) ( 2 + 3 > −2−1 )(2.6)

( 1 > ) ≤ ( 1 > 2−1 ) + ( 2 > 2−1 )(2.7)

Here (2.7) was shown since3 ≤ 0 a.s. From (2.6) we obtain that

( 2 + 3 > −2−1 ) ≤ ( 1 > )
( 1 > 2 )

(2.8)

=
( 1 > )

∫∞
2 ( ) −1

×
∫∞

2 ( ) −1

( 1 > 2 )

From (2.2) we have

∫ ∞

1
exp

{

( )
∫∞ ( ) −1

}

( )
∫∞

1 ( ) −1

≤
∫ ∞

1
exp

{

( )

(ρ0 )
∫ ρ0 −1

}

( )
∫∞

1 ( ) −1

≤ const.×
∫ ∞

1

( )
∫∞

1 ( ) −1
<∞

Hence the distribution function
∫

1 ( ) −1 /
∫∞

1 ( ) −1 on [1 ∞) is subexpo-
nential by virtue of Lemma 2.2. Therefore, as→ ∞ in (2.8), we can get (2.3) by
Lemma 2.3.

Next, we shall show (2.4). The Lévy measure of1 − ρ−1
0

is ( ( )− (ρ0 ))/

| | . We have

∫ ∞

1
exp

{

( )− (ρ0 )
∫∞( ( )− (ρ0 )) −1

}

( )− (ρ0 )
∫∞

1 ( ( )− (ρ0 )) −1

=
∫ ∞

1
exp

{

( ) − (ρ0 )
∫ ρ0 ( ) −1

}

( )− (ρ0 )
∫∞

1 ( ( )− (ρ0 )) −1

≤
∫ ∞

1
exp

{

( )

(ρ0 )
∫ ρ0 −1

}

( )− (ρ0 )
∫∞

1 ( ( )− (ρ0 )) −1
<∞

Hence, using Lemmas 2.2 and 2.3, we can get (2.4) in the same way as we showed
(2.3).
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Lastly, we shall prove (2.5). From (2.7) we have

( 1 > )
∫∞

2−1 ( ) −1
≤ ( 1 > 2−1 )
∫∞

2−1 ( ) −1
+

( 2 > 2−1 )
∫∞

2−1 ( ) −1
(2.9)

By virtue of Lemma 2.3 the first term in the above right-hand side converges 1 as
→ ∞. And the second term is caluculated as follows: Since ( )∈ OR, we have

∫∞
2−1 ( )/ ∈ OR. And we have

(

2 > 2−1
)

= (exp(−α log )) for some
α > 0 by virtue of Theorem 26.8 in [10]. Hence we get

sup
>2

(

2 > 2−1
)

∫∞
2−1 ( )/

<∞

by the representation theorem for OR. Therefore, as→∞ in (2.9), we can get (2.5).
We have completed the proof of the lemma.

The following lemma is found in [13, p. 317].

Lemma 2.5. Let be any sequence of events. If

∞∑

=1

( ) =∞

and if for some > 0

lim inf
→∞

∑

=1

∑

=1 (
⋂

)

(
∑

=1 ( ))2
≤

then we have

(lim sup
→∞

) ≥ −1

Lemma 2.6. Suppose that ( ) > 0 for all ∈ R1. If (1.1) holds, then it follows
that

lim sup
→∞

(∫∞ ( ) −1

( )
+

∫ −
−∞ ( )| |−1

(− )

)

<∞

Proof. Put ( ) = sup≥ (ρ0 )/ ( ). Now we have, for large enough ,

∫∞
( ) −1

( )
=

1
( )

∞∑

=0

∫ ρ +1
0

ρ0

( ) −1
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≤
∞∑

=0

( ρ0)
( )

logρ0

≤
∞∑

=0

( ) logρ0 <∞

Here we calculated as follows: For large enough ,

( ρ0)
( )

=
( ρ0)

( ρ −1
0 )

· ( ρ −1
0 )

( ρ −2
0 )

· · · · · ( ρ0)
( )

≤ ( ) < 1

In the same way we can also get

lim sup
→∞

∫ −
−∞ ( )| |−1

(− )
<∞

The lemma has been proved.

Now we shall prove Theorem 1.1.

Proof of Theorem 1.1. (i) First, we shall consider the case where the integral
of (1.3) is convergent. Then we have lim→∞ ( )/ = ∞. Put ( ) = sup0≤ ≤ | |.
Let ǫ > 0. By Lemma 2.1 we have

∞∑

=1

( (2 )> 3ǫ (2 −1))

≤ 3
∞∑

=1

sup
0≤ ≤2

(| | > ǫ (2 −1))

≤ 3
∞∑

=1

(

| 1| > ǫ
(2 −1)
2

)

≤ const.×
∞∑

=

∫

| |>ǫ (2 −1)
2 +1

( )| |−1 + 3( − 1) = I, (say).

Here is large enough and the last inequality was shown by Lemma 2.4. We notice
that

∫ ∞

1

∫

| |> ǫ ( )
4

( )| |−1 ≥
∞∑

=0

∫ 2 +1

2

∫

| |>ǫ (2 +1)
2 +3

( )| |−1

= log 2
∞∑

=0

∫

| |>ǫ (2 +1)
2 +3

( )| |−1
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Hence we have, forǫ < 4,

≤ const.×
∫ ∞

1

{ (

ǫ
( )
4

)

+

(

−ǫ ( )
4

)}

+ const.

≤ const.×
∫ ∞

1

{ (
( )
)

+

(

− ( )
)}

+ const.<∞

where the first ineqaulity was shown by Lemma 2.6 and the last ineqaulity from (1.2).
By virtue of the first Borel-Cantelli lemma we have

1 = (lim inf
→∞
{ (2 )≤ 3ǫ (2 −1)})

≤ (lim inf
→∞
{ sup

2 −1≤ ≤2
| | ≤ 3ǫ (2 −1)})

≤
(

lim inf
→∞

{

sup
2 −1≤ ≤2

| |
( )
≤ 3ǫ

})

Hence

lim sup
→∞

| |
( )
≤ 3ǫ a.s.

As ǫ→ 0, we can get (1.4).
(ii) Next, we shall consider the case where the integral of (1.3) is divergent. Letǫ > 0
and > 1. Put ={| ρ0

| ≤ ǫρ +1
0 | ρ +1

0
− ρ0

| > (ρ +1
0 ) + ǫρ +1

0 }. It suffices to
show that limǫ→∞ (lim sup →∞ ) = 1 Indeed, as we have

lim sup
→∞

⊂ lim sup
→∞

{| ρ +1
0
| > (ρ +1

0 )}

it follows that

lim sup
→∞

| ρ +1
0
|

(ρ +1
0 )
≥ a.s.

As →∞, we have

lim sup
→∞

| |
( )

=∞ a.s.

First, we shall show that
∑∞

=1 ( ) =∞. Now we have

∞∑

=1

( ) =
∞∑

=1

(| ρ0
| ≤ ǫρ +1

0 ) (| ρ +1
0
− ρ0

| > (ρ +1
0 ) + ǫρ +1

0 )

= (| 1| ≤ ǫρ0)
∞∑

=1

(

| 1 − ρ−1
0
| > (ρ +1

0 )

ρ +1
0

+ ǫ

)

= (say)
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If lim →∞ (ρ0)/ρ0 <∞, then = ∞. Hence from now on we suppose that
lim →∞ (ρ0)/ρ0 =∞. By virtue of Lemma 2.4 we have, for large enough0 and 1,

≥ const.×
∞∑

= 0

∫

| |>2

�
(ρ +1

0 )

ρ
+1

0
+ǫ

� ( )− (ρ0 )
| |

≥ const.×
∞∑

= 1

∫

| |>4
(ρ +1

0 )

ρ
+1

0

( )− (ρ0 )
| |

= const.×
∞∑

= 1

∫

4
(ρ +1

0 )

ρ
+1

0
<| |≤4ρ0

(ρ +1
0 )

ρ
+1

0

( )
| | = (say)

Here, as we have
∫

<| |≤ρ0

( )
| | ≥ ( (ρ0 ) + (−ρ0 )) logρ0

for > 0, it follows that, for large enough2,

≥ const.×
∞∑

= 1

{ (

4ρ0
(ρ +1

0 )

ρ +1
0

)

+

(

−4ρ0
(ρ +1

0 )

ρ +1
0

)}

≥ const.×
∞∑

= 2

{ (
(ρ +1

0 )

ρ +1
0

)

+

(

− (ρ +1
0 )

ρ +1
0

)}

≥ const.×
∫ ∞

ρ 2+1
0

{ (
( )
)

+

(

− ( )
)}

=∞

Here the second inequlity was shown from (1.2).
Let < . Furthermore, we have

( ∩ ) ≤ ( ∩ {| ρ +1
0
− ρ0

| > (ρ +1
0 ) + ǫρ +1

0 })
= ( ) (| ρ +1

0
− ρ0

| > (ρ +1
0 ) + ǫρ +1

0 })

= ( )
( )

(| ρ0
| ≤ ǫρ +1

0 )

= ( )
( )

(| 1| ≤ ǫρ0)

Hence, by Lemma 2.5, we have lim infǫ→∞ (lim sup →∞ ) = 1. The theorem has
been proved.

3. Proof of Theorem 1.2

First, we prepare some lemmas.
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Lemma 3.1. Let λ = (0+) + (0−) < ∞. There is a positive constant such
that

(| 1| ≤ ) ≥ ( )

for all small enough > 0.

Proof. In the case where (0+) = 0 or (0−) = 0, the lemma has been already
shown in [12, p. 298]. We shall prove the lemma in the case where (0+) (0−) > 0.
Define two distributionsµ1 and µ2 by

µ̂1( ) = exp

[∫ ∞

0
( − 1)

( )
]

and ˆµ2( ) = exp

[
∫ 0

−∞
( − 1)

( )
| |

]

respectively. K. Sato and M. Yamazato proved the following (see (5.7) in [12, p. 298]):
As ↓ 0, we have

µ1([0 ]) ∼ 1
(0+)

1( )

µ2([− 0]) ∼ 2
(0−)

2( )

where 1 and 2 are positive constants and

1( ) = exp

[
∫ 1 (0+)− ( )

]

2( ) = exp

[
∫ 1 (0−)− (− )

]

We notice that the support ofµ1 or µ2 is contained in [0∞) or (−∞ 0], respectively.
Hence we can obtain that

(| 1| ≤ ) ≥ µ1([0 ])µ2([− 0])

∼ 1 2 ( ) as → 0

The lemma has been proved.

The following lemma was pointed out by K. Sato and M. Yamazato(see
Lemma 2.4 in [12, p. 280]).

Lemma 3.2. If 0< λ <∞, then there is a constant M such that, for∈ R1,

| ˆ 1( )| ≤
(
| |−1

)
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Here we introduce some terminology. From now on define the function ( ) on
[0 ∞) by

( ) =

{
≥ 1
< 1

(3.1)

And we define a time-homogeneous transition function ¯ ( ) by

¯ ( ) = ( ( + ) − ( ) + ∈ )

for ≥ 0, = ( ) ∈ [0 ∞) × R1, and ∈ B([0 ∞) × R1), where ={ ∈ R1 :
( + ) ∈ }. Let { } be the time-homogeneous Markov process with this transition
probablity ¯ ( ). The process{ } is expressed by a system of probability mea-
sures{ ¯ : ∈ [0 ∞) × R1} on the space of paths on [0∞) × R1. The expectation
with respect to¯ is denoted by¯ . Furthermore denote bỹ the transition operator
of { }. Refer to the paper [16].

Lemma 3.3. The process{ } is a Hunt process.

Proof. Denote by 0 the real Banach space of continuous functions on [0∞)×
R1 vanishing at infinity with the norm of uniform convergence. For any ∈ 0 and

= ( ) ∈ [0 ∞)× R1, we have

˜ ( ) =
∫

( ω) ( + ( + ) − ( ) + )

For each , almost surely the limit of ( ) as ↓ is equal to the limit as ↑ , so
we have ˜ ∈ 0. Furthermore˜ ( )→ ( ) as ↓ 0 for any ∈ 0. Hence, by
virtue of Theorem 9.4 in [2, p. 46], the process{ } is a Hunt process.

For > 0, let ( ) = ( −| |)∨0. Then the Fourier transform of is as follows:

ˆ ( ) =
∫

R1

( ) =

(
sin 2−1

2−1

)2

And let φ ( ) = ˆ ( ) for each ( )∈ [0 ∞)×R1.

Lemma 3.4. Let λ < ∞. We define a projection by ( ) = . Let τ =
inf{ > 0 : | ( )| < } for > 0. Then we have

¯ (τ <∞) ≤ 0 ¯
[∫ ∞

0
φ −1( )

]

for large enough . Here 0 is a positive constant.
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Proof. By virtue of Lemma 3.3 the process{ } has the strong Markov property.
Hence we have

¯
[∫ ∞

0
φ −1( )

]

≥ ¯
[∫ ∞

τ

φ −1( ) ; τ <∞
]

= ¯
[∫ ∞

0
φ −1( +τ ) ; τ <∞

]

= ¯
[

¯ τ

[∫ ∞

0
φ −1( )

]

; τ <∞
]

≥ ¯ (τ <∞) inf
≥0 | |≤

¯( )

[∫ ∞

0
φ −1( )

]

Therefore it suffices to prove that

inf
≥0 | |≤

¯( )

[∫ ∞

0
φ −1( )

]

> 0

Now we shall show it. For 0< δ < 1, we have

¯( )

[∫ ∞

0
φ −1( )

]

=

[∫ ∞

0

ˆ −1( ( + ) − ( ) + )

]

≥
∫ δ

0

ˆ −1( ( + ) − ( ) + )

=
∫ δ

0

∫

R1

−1( ) exp[ϕ( )] = (say)

where

ϕ( ) = +
∫

R1

( − 1)
( /( ( + )))− ( /( ( )))

| |
First, we suppose that≤ 1. Let > 0. Then we obtain that

∣
∣
∣
∣
∣

∫

| |≤ ( + )
( − 1)

( /( ( + )))− ( /( ( )))
| |

∣
∣
∣
∣
∣

≤ | |
∫

| |≤ ( + )

(

( + )

)

≤ | | (δ + 1)
∫

| |≤
( )

And we have
∣
∣
∣
∣
∣

∫

| |> ( + )
( − 1)

( /( ( + )))− ( / ( ))
| |

∣
∣
∣
∣
∣

≤ 2
∫

| |> ( + )

( /( ( + )))− ( / ( ))
| | ≤ 2

∫

| |>

( )
| |
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Second, we suppose that> 1. Then we obtain that

∣
∣
∣
∣
∣

∫

| |≤1
( − 1)

( /( ( + )))− ( / ( ))
| |

∣
∣
∣
∣
∣

≤ | |
∫

| |≤1

( (

( + )

)

−
(

( )

))

≤ λ| |

And we have
∣
∣
∣
∣
∣

∫

| |>1
( − 1)

( /( ( + )))− ( / ( ))
| |

∣
∣
∣
∣
∣
≤ 2

∫

| |>1

( /( ( + )))− ( / ( ))
| |

= 2
∫

1
( + )<| |≤ 1

( )

( )
| | ≤ 2λ log

( + )
( )

= 2λ

Let ǫ > 0. If we firstly choose large enough , secondly small enoughδ, and lastly
large enough , then we can get|ϕ( )| < 1 + ǫ for all with | | ≤ −1. Therefore,
choosing small enoughǫ, we have

≥
∫ δ

0

∫

R1

−1( ) exp[−(1 + ǫ)] cos(1 +ǫ) > 0

We have been proved the lemma.

Lemma 3.5. Let ( ) be an increasing positive function on[1 ∞) such that
( )/ is decreasing. Let0< λ <∞. If

∫ ∞

1

(
( )
)

<∞

and lim sup→∞ ( α)/ ( )α < ∞ for someα > 1, then we have, for any positive
numberβ with β < λ,

∫ ∞

1

(
( )
)β

<∞

Proof. Since
∫∞

1

(
( )/

) −1 < ∞, we have lim→∞ ( )/ = 0. And we
have ( ( )/ ) ≥ ( ( )/ )λ for large enough . Hence we obtain that, for large enough

,

∞ >

∫ ∞

1

(
( )
)

≥
∫ ∞ ( ( )α

α

)λα−1

≥ const.×
∫ ∞( ( α)

α

)λα−1
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= const.× α−1
∫ ∞

α

(
( )
)λα−1

We repeate this calculation. Then we can get the lemma.

Now we shall prove Theorem 1.2.

Proof of Theorem 1.2. (i) We shall consider the case where theintegral of (1.5)
is divergent. Letǫ > 0. We have

1 ≥
∞∑

=1

(| 2 | ≤ ǫ (2 ) | 2 + | > ǫ (2 + ) for = 1, 2 . . .)

≥
∞∑

=1

(| 2 | ≤ ǫ (2 ) | 2 + − 2 | > ǫ( (2 + ) + (2 )) for = 1, 2 . . .)

=
∞∑

=1

(| 2 | ≤ ǫ (2 )) (| 2 + − 2 | > ǫ( (2 + ) + (2 )) for = 1, 2 . . .)

≥
∞∑

=1

(

| 1| ≤ ǫ
(2 )
2

)

(| 2 −1 − 2−1| > ǫ (2 ) for = 1, 2 . . .)

Here the last inequality was shown since ( (2+ ) + (2 ))/2 +1 ≤ (2 + )/2 ≤ (2 )
Now we have

∞∑

=1

(

| 1| ≤ ǫ
(2 )
2

)

= ∞(3.2)

Indeed, if lim→∞ ( )/ > 0, then (3.2) holds. We suppose that lim→∞ ( )/ = 0.
By Lemma 3.1 we have, for large enough ,

∞∑

=1

(

| 1| ≤ ǫ
(2 )
2

)

≥ const.×
∞∑

=

(

ǫ
(2 )
2

)

≥ const.×
∞∑

=

∫ 2 +1

2

(

ǫ
( )
)

= const.×
∫ ∞

2

(

ǫ
( )
)

≥ const.×
∫ ∞

2

(
( )
)

Here the third inequality was shown since ( )/(1∧ )λ is slowly varying at 0. There-
fore, if the integral of (1.5) is divergent, then (3.2) holds.
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Hence, from the calculation at the beginning and from (3.2),we obtain that, for
any ǫ > 0,

(| 2 −1 − 2−1| > ǫ (2 ) for = 1, 2 . . .) = 0(3.3)

Now, from (3.3), we have

( ∞⋃

=1

∞⋂

=

{| 2 −1 − 2−1| > ǫ (2 )}
)

=
∞∑

=1

where

= (| 2 −1 − 2−1| ≤ ǫ (2 ) | 2 + −1 − 2−1| > ǫ (2 + ) for = 1, 2 . . .)

Now let be fixed. Since ( ) is strictly increasing, there is a positive constant
such that (2+ ) − (2 ) ≥ (2 ) for all positive integer . Indeed, we have

(2 + ) − (2 ) ≥ (2 )(1− (2 )/ (2 +1)) for ≥ + 1, and (2+ ) − (2 ) ≥
(2 ) inf1≤ ≤ ( (2 + )− (2 ))/ (2 ) for ≤ .

Hence, from (3.3), we have

≤ (| 2 + −1 − 2 −1| > ǫ( (2 + )− (2 )) for = 1, 2 . . .)

≤ (| 2 −1 − 2−1| > ǫ2− (2 ) for = 1, 2 . . .) = 0

Therefore we have
( ∞⋃

=1

∞⋂

=

{| 2 −1 − 2−1| > ǫ (2 )}
)

= 0

so it follows that

lim inf
→∞

| 2 −1 − 2−1|
(2 )

≤ ǫ a.s.

Using selfsimilarity, we have

lim inf
→∞

| 2 − 1|
(2 )

≤ 2ǫ a.s.

Now, as the integral of (1.5) is divergent, we have lim→∞ ( ) =∞. Consequently, as
ǫ ↓ 0, we have

lim inf
→∞

| 2 |
(2 )

= 0 a.s.

We have completed the proof in the case where the integral of (1.5) is divergent.
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(ii) We shall consider the case where the integral of (1.5) isconvergent. It suffices to
show that, for large enough> 0,

∞∑

=1

(
| | < (2 ) for some ∈ (2 −1 2 ]

)
<∞(3.4)

Indeed, by virtue of the first Borel-Cantelli lemma we have

1 =

(∞⋃

=1

∞⋂

=

{
| | ≥ (2 ) for all ∈ (2 −1 2 ]

}

)

≤
(∞⋃

=1

∞⋂

=

{ | |
( )
≥ for all ∈ (2 −1 2 ]

})

Hence we have lim inf→∞ | |/ ( ) ≥ a.s. Then, as → ∞, we have
lim inf →∞ | |/ ( ) =∞. Now we shall prove (3.4). As the integral of (1.5) is conver-
gent, we have lim→∞ ( )/ = 0. Here it was shown since ( ( )/ ) ≥ (1∧ ( ( )/ ))λ.
Recall that the function ( ) is defined by (3.1). Let =−1(2 −1/ (2 )). By
Lemma 3.4 we obtain that, for large enough ,

∞∑

=

(
| | < (2 ) for some ∈ (2 −1 2 ]

)

≤
∞∑

=

(inf{ > 2 −1 : | | < (2 )} <∞)

=
∞∑

=

(

inf

{

>
2 −1

(2 )
: | | <

}

<∞
)

=
∞∑

=

(
inf { > : | ( )| < } <∞

)

=
∞∑

=

∫

R1

¯(0 0)( ∈ ) ¯
(
inf { > 0 : | ( )| < } <∞

)

≤ 0

∞∑

=

∫

R1

¯(0 0)( ∈ ) ¯
[∫ ∞

0
φ −1( )

]

= 0

∞∑

=

[∫ ∞
ˆ −1( ( ))

]

= (say).

Here, by Lemma 3.2 we have, for large enough ,

= 0

∞∑

=

∫ ∞ ∫

R1

−1( ) ˆ
1( ( ) )
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≤ 0

∞∑

=

∫ ∞ ∫

R1

−1( )

(
1

( )| |

)

≤ 2 0
−1

∞∑

=

∫ ∞

( )

∫ ( ) −1

0

(
1
)

= 2 0
−2

∞∑

=

∫ ∞

( )

∫ ( )

0

( )

= 2 0
−2( 1 + 2)

where

1 =
∞∑

=

∫ ∞

( )
2

∫

0

( )

2 =
∞∑

=

∫ ∞

( )
2

∫ ( )

First, we shall calculate1. We have

1 ≤
∞∑

=

1
( )
≤ 2

log 2

∫ ∞

2 −1

( )
2

In the case whereλ > 1, using Lemma 3.5, we have1 < ∞ since the integral of
(1.5) converges. And, in the case whereλ ≤ 1, we have ( )/ ≤ ( ( )/ ) for large
enough . Thus we have1 <∞ again since the integral of (1.5) converges.

Next, we shall calculate 2. Let λ < 1. Since ( −1) is regularly varying of
index −λ, by virtue of [1, p. 28] Karamata’s Theorem in we obtain that

lim
→∞

( −1
)
(∫

( −1)

)−1

= −λ + 1

and

lim
→∞

( −1)

(∫ ∞
( −1) −1

)−1

= λ

Let min{1− λ λ} > ǫ > 0. Hence we obtain that, for large enough ,

2 ≤
1

1− λ− ǫ

∞∑

=

∫ ∞

( )

( −1)

≤ 1
(λ− ǫ)(1− λ− ǫ)

∞∑

=

(

( )

)

≤ const.×
∫ ∞

2 −1

(

2
( )
)
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≤ const.×
∫ ∞

2 −1

(
( )
)

<∞

Here we used the fact that ( )/(1∧ )λ is slowly varying at 0.
Now we shall consider the case whereλ ≥ 1. Let 1 > δ > 0, whereλ − δ > 1 if
λ > 1. Since ( )/(1∧ )λ is slowly varying at 0, we have

∫
1
λ−δ

λ−δ
( )

≤ const.×
∫

λ−δ

Hence, by virtue of Lemma 3.5, we obtain that, for large enough ,

2 ≤
∞∑

=

(

0

∫ ∞

( )
2

+ 1(λ)
∫ ∞

( )
2−δ

)

= 0

∞∑

=

1
( )

+ 1(λ)
1− δ

∞∑

=

1
( )1−δ

≤ 2 0

log 2

∫ ∞

2 −1

( )
2

+
21−δ

1(λ)
(1− δ) log 2

∫ ∞

2 −1

(
( )
)1−δ

<∞

where 0 and 1(λ) are nonnegative constants, and, in particular,1(λ) = 0 if λ > 1.
Here we used that ( ( )/ ) ≥ ( )/ for large enough in the case whereλ = 1.
Hence (3.4) has been shown. We have completed the theorem.
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