A VARIATION ON THE GLAUBERMAN CORRESPONDENCE

GABRIEL NAVARRO

(Received January 24, 2001)

1. Introduction

Suppose that *G* is a finite *p*-solvable group, where *p* is a prime. Let IBr(G) be the set of irreducible Brauer characters of *G*, and let $IBr_{p'}(G)$ be those $\varphi \in IBr(G)$ of degree not divisible by *p*.

The Glauberman correspondence, in the important case where a *p*-group acts on a *p'*-group, can be viewed as a natural correspondence between $\operatorname{IBr}_{p'}(G)$ and $\operatorname{IBr}(\mathbf{N}_G(P))$, where $P \in \operatorname{Syl}_p(G)$ and *G* is a group with a normal *p*-complement. Our point in this note is to show that it is not necessary to assume that *G* has a normal *p*-complement: it suffices to assume that $\mathbf{N}_G(P)$ does.

Theorem A. Suppose that G is p-solvable, and let $P \in \text{Syl}_p(G)$. Assume that $N_G(P)$ has a normal p-complement. Then for every $\varphi \in \text{IBr}_{p'}(G)$, there is a unique $\varphi^* \in \text{IBr}(N_G(P))$ such that

$$\varphi_{\mathbf{N}_G(P)} = e\varphi^* + p\Delta,$$

where e is not divisible by p and Δ is some Brauer character of $\mathbf{N}_G(P)$ or zero. Also, the map $\operatorname{IBr}_{p'}(G) \to \operatorname{IBr}(\mathbf{N}_G(P))$ given by $\varphi \mapsto \varphi^*$ is a bijection. On the other hand, if $\tau \in \operatorname{IBr}(G)$ has degree divisible by p, then

 $\tau_{\mathbf{N}_G(P)} = p\Xi,$

where Ξ is some Brauer character of $N_G(P)$.

Even in the case where $N_G(P) = P$, Theorem A above tells us something nontrivial (although well-known): a Sylow *p*-subgroup *P* of a *p*-solvable group *G* is selfnormalizing, if and only if all nontrivial irreducible Brauer characters of *G* have degree divisible by *p*.

The condition of $N_G(P)$ having a normal *p*-complement is natural enough that can be read off from the character table of *G* (whenever *G* is *p*-solvable).

Theorem B. Suppose that G is p-solvable and let $P \in Syl_p(G)$. Then $N_G(P)$ has a normal p-complement iff the number of p-regular classes of G of size not divis-

ible by p is the number of irreducible Brauer characters of G of degree not divisible by p.

Theorem B is already false for $G = A_5$ and p = 2. In this case, G has only one irreducible Brauer character of odd degree and only one 2-regular class of odd size. However the Sylow 2-normalizer of G does not have a normal 2-complement.

2. Proofs

We begin with a lemma.

Lemma 2.1. Suppose that G is a p-solvable and let P be a Sylow p-subgroup of G. Suppose that $N \triangleleft G$ and that $\theta \in \operatorname{IBr}(N)$ is P-invariant of p'-degree. Then there exists $\varphi \in \operatorname{IBr}(G)$ of p'-degree lying over θ .

Proof. We argue by induction on |G:N|. If N = G, we let $\varphi = \theta$ and the proof of the lemma follows. Now, let M/N be a chief factor of G. If M/N is a p-group, then θ is M-invariant since $M \subseteq NP$. By Green's Theorem (8.11) of [3], there exists a unique $\eta \in \operatorname{IBr}(M)$ lying over θ . Furthermore, η extends θ . In particular, η has p'-degree and by uniqueness is P-invariant. Now, |G:M| < |G:N| and by induction there is some $\varphi \in \operatorname{IBr}(G)$ of p'-degree lying over η . Then φ lies over θ and the proof of the lemma is complete. Suppose now that M/N is a p'-group. In this case, all irreducible constituents of θ^M have p'-degree by Theorem (8.30) of [3]. Now, P acts on the irreducible constituents of the Brauer character θ^M . Since this character has p'-degree, necessarily it follows that P fixes some irreducible constituent $\xi \in \operatorname{IBr}(M)$ of θ^M . Now, ξ lies over θ (by Corollary (8.7) of [3]) and the proof of the lemma follows by induction (as in the previous case).

Proof of Theorem A. Let $N = \mathbf{O}_{p'}(G)$ and let $C = \mathbf{C}_N(P)$. If N = G, then there is nothing to prove. We claim that $\mathbf{N}_G(P) = P \times C$. Write $M = \mathbf{N}_G(P)$. By hypothesis, we know that $M = P \times K$. Hence, $K = \mathbf{O}_{p'}(M) \subseteq N$, by a well-known group theoretical fact. Hence, the claim easily follows.

Let $\varphi \in \operatorname{IBr}_{p'}(G)$. We claim that φ_N has a unique irreducible *P*-invariant constituent $\theta \in \operatorname{Irr}(N)$. Let $\nu \in \operatorname{Irr}(N)$ be an irreducible constituent of φ_N . Since φ has p'-degree it follows that the inertia group of ν in *G* has p'-index (by the Clifford correspondence, Theorem (8.9) of [3]). Hence, some conjugate θ of ν has stabilizer *T* containing *P*. Therefore θ is *P*-invariant. Suppose that $\mu \in \operatorname{Irr}(N)$ is some other *P*-invariant irreducible constituent of φ_N . Then $\mu = \theta^g$, by Clifford's theorem. Now, we have that *P* and $P^{g^{-1}}$ are inside *T*. Therefore, $P^{tg} = P$ for some $t \in T$, and we deduce that μ and θ are *M*-conjugate. However M = CP, and therefore $\mu = \theta$, as claimed.

Now, let $\theta \in \operatorname{Irr}(N)$ be *P*-invariant. We claim that there is a unique $\varphi \in \operatorname{IBr}_{p'}(G)$

980

over θ . By Lemma (2.1), we see that there is some $\varphi \in \operatorname{IBr}(G)$ of p'-degree lying over θ . We prove that φ is unique by induction on |G|. By hypothesis, we have that $MN/N \subseteq PN/N \subseteq \mathbf{O}^{p'}(G/N)$. Hence, by the Frattini argument, we have that $\mathbf{O}^{p'}(G/N) = G/N$. So let $K/N = \mathbf{O}^{p}(G/N) < G/N$, and let $L/N = \mathbf{O}^{p'}(K/N)$. Write U = LP. Hence, G = KU and $K \cap U = L$. Since $M = CP \subseteq NP$, we have that $M \subseteq U$. In particular, $\mathbb{C}_{K/L}(P) = 1$. Now, $N = \mathbb{O}_{p'}(L)$ since $L \triangleleft G$. Since U/Lis a p-group, it follows that $N = O_{p'}(U)$. If U = G, then K = L = N and we have that G = NP. In this case, φ is unique by Green's Theorem (8.11) of [3]. Hence, we may assume that U is proper in G. By induction, there is a unique $\eta \in \operatorname{IBr}_{p'}(U)$ lying over θ . Suppose now that $\delta \in \operatorname{IBr}_{p'}(G)$ also lies over θ and has p'-degree. Now, δ_U has a p'-degree irreducible constituent ξ . Also, ξ_N has a P-invariant constituent (by the second paragraph, for instance). Since by the second paragraph, δ_N has a unique P-invariant irreducible constituent, we deduce that ξ_N contains θ . By induction, we have that $\eta = \xi$. By the same reason, φ_U contains η . Now, by using repeatedly Corollary (8.22) of [3], we have that δ_K and φ_K are *P*-invariant irreducible Brauer characters of K lying over η_L . Now, let $\delta_1, \varphi_1 \in B_{p'}(K)$ and $\eta_1 \in B_{p'}(L)$ be the canonical Isaacs liftings of δ_K , φ_K and η_L , respectively (see Corollary (10.3) of [1]). By uniqueness, we have that these three characters are *P*-invariant. Also, by Corollary (7.5) and Corollary (10.3) of [1], it easily follows that δ_1 and φ_1 lie over η_1 . By Problem (13.10) of [2], we have that $\delta_1 = \varphi_1$. Hence $\varphi_K = \delta_K$. By Theorem (8.11) of [3], we have that $\varphi = \delta$, and the claim is proven.

Now, given $\varphi \in \operatorname{IBr}_{p'}(G)$, we have that φ_N has a unique *P*-invariant irreducible constituent $\theta \in \operatorname{Irr}(N)$, and that θ and φ uniquely determine one each other. In particular, we have proven that

$$\left|\operatorname{IBr}_{p'}(G)\right| = \left|\operatorname{Irr}_{P}(N)\right|,$$

where, as usual, $Irr_P(N)$ denotes the irreducible *P*-invariant characters of *N*. Let Ω be the set of *G*-conjugates of θ . Hence, *P* acts on Ω fixing only θ , and we may write

$$\varphi_N = d\left(\theta + \sum_{\mathcal{O}} \left(\sum_{\eta \in \mathcal{O}} \eta\right)\right),$$

where \mathcal{O} runs over the different *P*-orbits not equal $\{\theta\}$. Also, since $\varphi(1)$ is not divisible by *p*, we have that *d* is not divisible by *p*. Now, since $C = C_N(P)$, notice that $\eta_C = (\eta^x)_C$ for $x \in P$ and $\eta \in \operatorname{Irr}(N)$. Therefore we may write $\varphi_C = d\theta_C + p\Psi$, where Ψ is some character of *C* or zero. Now, by Theorem (13.14) of [2], we have that $\theta_C = e\theta^* + p\Delta$, where $\theta^* \in \operatorname{Irr}(C)$ is the Glauberman correspondent of θ , *p* does not divide *e* and Δ is a character of *C* or zero. Since $N_G(P) = P \times C$, and the irreducible Brauer characters of $N_G(P)$ are naturally identifiable with the irreducible characters of *C*, the first part of the theorem easily follows. Now, since

$$\left|\operatorname{IBr}_{p'}(G)\right| = \left|\operatorname{Irr}_{P}(N)\right| = \left|\operatorname{Irr}(C)\right| = \left|\operatorname{Irr}(\mathbf{N}_{G}(P)/P)\right| = \left|\operatorname{IBr}(\mathbf{N}_{G}(P))\right|,$$

G. NAVARRO

(where the equality $|\operatorname{Irr}_P(N)| = |\operatorname{Irr}(C)|$ follows from the Glauberman correspondence) to prove that the map $\varphi \mapsto \varphi^*$ is bijective, it suffices to show that * is one to one. Assume that $\varphi^* = \delta^*$, where φ , $\delta \in \operatorname{IBr}_{P'}(G)$. By how our map is constructed and using that the Glauberman correspondence is one to one, we easily deduce that φ and δ lie over the same *P*-invariant irreducible character of *N*. Hence, by the third paragraph of this proof, we have that $\varphi = \delta$, as required.

Suppose now that $\tau \in \text{IBr}(G)$ has degree divisible by p. We distinguish two cases. Suppose first that τ_N contains a P-invariant irreducible constituent $\theta \in \text{Irr}(N)$. Let T be the inertia group of θ in G, and let $\mu \in \text{IBr}(T \mid \theta)$ be the Clifford correspondent of τ over θ (Theorem (8.9) of [3]). Since |G : T| is not divisible by p, we conclude that p divides $\mu(1)$ since $\tau(1) = |G : T|\mu(1)$. Now, since $\mu_N = d\theta$ and p does not divide $\theta(1)$, we conclude that p divides d. Since d is the multiplicity of θ in τ_N (again, by Theorem (8.9) of [3]), by Clifford's theorem, we deduce that $\tau_C = p\Xi$, for some ordinary character Ξ of C. In this case, the last part of the theorem follows. Finally, suppose that τ_N does not contain any P-invariant irreducible constituent. In this case, we may write

$$\varphi_N = d\left(\sum_{\mathcal{O}} \left(\sum_{\eta \in \mathcal{O}} \eta\right)\right),$$

where \mathcal{O} runs over the different *P*-orbits on the action of *P* on the irreducible constituents of τ_N . Since elements in the same *P*-orbit have the same restriction to *P*, the proof of the theorem is completed.

To prove Theorem B, we use the following notation. We denote by cl(G) the set of conjugacy classes of G. Also, $cl(G^0)$ is the set of conjugacy classes of p-regular elements of G, and $cl(G^0 | P)$ is the set of p-regular classes of G with defect group P.

Proof of Theorem B. First, we prove that in a group G with a normal Sylow p-subgroup P, we have that G has a normal p-complement iff

$$\left|\operatorname{cl}(G/P)\right| = \left|\operatorname{cl}(G^{0} \mid P)\right|.$$

Let *K* be a *p*-complement of *G*. If $K \triangleleft G$, then $G = P \times K$, and |cl(G/P)| = |cl(K)|. Also, if $x \in G$ is *p*-regular, then $x \in K$ and $P \subseteq C_G(x)$. So

$$|\operatorname{cl}(G^0 | P)| = |\operatorname{cl}(G^0)| = |\operatorname{cl}(K)|,$$

and one direction is proven. Conversely, assume now that

$$\left|\operatorname{cl}(G/P)\right| = \left|\operatorname{cl}(G^{0} \mid P)\right|.$$

Hence, we have that

$$|cl(K)| = |cl(G^0 | P)| \le |cl(G^0)| \le |cl(K)|,$$

and we conclude that all *p*-regular classes of *G* have defect group *P*. Hence, we have that $K \subseteq C_G(P)$, and the claim is proven.

Since G is p-solvable, it is well known that

$$|\operatorname{IBr}_{p'}(G)| = |\operatorname{Irr}(\mathbf{N}_G(P)/P)|.$$

(This follows, for instance, from Corollary (1.16) of [4], Lemma (5.4) and Corollary (10.3) of [1]). Now, by Lemma (4.16) of [3], it follows that

$$\left|\operatorname{cl}(G^{0} \mid P)\right| = \left|\operatorname{cl}(\mathbf{N}_{G}(P^{0}) \mid P)\right|.$$

Hence

$$|\mathrm{IBr}_{p'}(G)| = |\mathrm{cl}(G^0 \mid P)|$$

iff

$$\left|\operatorname{cl}(\mathbf{N}_{G}(P)/P)\right| = \left|\operatorname{cl}(\mathbf{N}_{G}(P^{0}) \mid P)\right|$$

which happens iff $N_G(P)$ has a normal *p*-complement, by the first paragraph.

Of course, the numbers $|\text{IBr}_{p'}(G)|$ and $|\text{cl}(G^0 | P)|$ can be read off from the character table of G, whenever G is p-solvable. Higman's theorem (8.21) of [2], allows us to distinguish if an element $x \in G$ is p-regular. In this case, the class of x has defect group a Sylow p-subgroup of G iff $|\mathbb{C}_G(x)|$ is divisible by $|G|_p$. On the other hand, Corollary (10.4) of [3], allows to construct the Brauer character table of G from its ordinary one, and we can easily count how many irreducible Brauer characters of Ghave degree not divisible by p.

References

- [1] I.M. Isaacs: Characters of π -separable groups, J. Algebra, 86 (1984), 98–128.
- [2] I.M. Isaacs: Character Theory of Finite Groups, Dover, New York, 1994.
- [3] G. Navarro: Characters and Blocks of Finite Groups, LMS Series 250, Cambridge University Press, 1998.
- [4] T.R. Wolf: Variations on McKay's character degree conjecture, J. Algebra, **135** (1990), 123–138.

Departament d'Àlgebra Facultat de Matemàtiques Universitat de València 46100 Burjassot. València, SPAIN e-mail: gabriel@uv.es