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1. Introduction

In a series of papers ([9], [14], [15], [16]) one has studied the Weyl quantized
Hamiltonian of a relativistic spinless particle with a magnetic vector potential :

[ (λ ) ]( ) = (2π)−
∫∫

〈 − ξ〉λ
( +

2
ξ
)

( ) ξ

where λ ( ξ) = (|ξ − ( )|2 + 1)1/2. For simplicity we suppose here that the
mass of the particle is equal to 1. All the differential and pseudodifferential opera-
tors considered in this paper are, possibly unbounded, operators in 2(R ), defined on
the Schwartz spaceS of rapidly decreasing smooth functions onR .

In [14] it was proved that if the derivatives of any positive order of ∈
∞(R ; R ) are bounded, then (λ ) is essentially selfadjoint onS. Let be its

unique selfadjoint extension. In [16] the authors proved that if itself is bounded and
if all its derivatives converge to zero at infinity, then the essential spectrum of is
equal to the essential spectrum of

√
+ 1, where is the quantum nonrelativistic

magnetic Hamiltonian with vector potential , i.e. the selfadjoint operator generated by
the differential operator ( − ( ))2.

We shall prove in this paper that the essential spectra of andof
√

+ 1 are
still equal if we drop the condition of boundedness of . Thus,vector potentials
which behave at infinity as| |1−ε, ε positive and arbitrary small, are allowed.

More precisely, the main result of the paper is the followingtheorem.

Theorem 1.1. Suppose that:
(i) the vector potential ∈ ∞(R ; R ) is such that

lim
| |→∞

∂β ( ) = 0 ∀β ∈ N β > 0;

(ii) the scalar potential is a continuous function such thatlim| |→∞ ( ) = 0
If is the unique selfadjoint extension of (λ ) and is the unique selfad-
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joint extension of( − ( ))2, then

σess( + ) = σess[( + 1)1/2]

Let us also mention, that as a by-product of our proof, we not only recover some
results from [13] and [15] concerning the essential selfadjointness of some pseudodif-
ferential operators, but we can also obtain the domain of definition of the generated
self-adjoint operator (Theorem 3.4).

We now give the plan of the paper.
In the second section we recall some results on the calculus of pseudodifferential

operators. These results will be used in the next two sections.
In the third one, we introduce what we call the -magnetic Sobolev spaces, a par-

ticular case of weighted Sobolev spaces defined in [2]. As a corollary of the re-
sults proved in this section, we shall obtain that the domainof is equal to
the form domain of . If all the derivatives of are bounded, it is also proved that
the -magnetic Sobolev space of order is equal to the domain of/2. We think
that this kind of results are already known, but we never saw them explicitly stated.

The last section contains the proof of the main theorem.
Always in this paper Dom( ) denotes the domain of the operatorand 〈ξ〉 =

(1+|ξ|2)1/2. All the functions which appear are defined on the whole spaceR . There-
fore we shall write, for example, 2 instead of 2(R ). B( 1 2) denotes the space
of bounded linear operators from the locally convex topological vector space 1 to
the locally convex topological vector space2.

2. A class of pseudodifferential operators

DEFINITION 2.1. A vector valued function ∈ ∞(R ; R ) is called anadmissible
vector potentialif ∂α is bounded for anyα ∈ N \{0}.

For an admissible vector potential we define a weight function λ : R2 →
[1;∞) by the formula

λ ( ξ) = 〈ξ − ( )〉

When there is no risk of confusion, we shall omit the subscript from this notation.

Lemma 2.2. If is an admissible vector potential then:
(i) the weight functionλ is a basic weight function in the sense of Kumano-go and
Taniguchi [10];
(ii) the pair (λ; 1) is a pair of smooth weight functions in the sense of Beals[2].

For the convenience of the reader we recall here the definition of basic weight
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functions. A smooth functionλ : R2 → [1;∞) is called a basic weight function if
there exist positive constants ,τ and αβ , α, β ∈ N such that:
(i) λ( ξ) ≤ 〈 〉τ 〈ξ〉, ∀ ( ξ) ∈ R2 ;
(ii) |∂αξ ∂βλ| ≤ αβλ

1−|α|;
(iii) λ( + ξ) ≤ 〈 〉τλ( ξ), ∀, , , ξ ∈ R .

It is easy to verify that the first assertion of Lemma 2.2 is true and this verifi-
cation was already made in [14]. The fact that ifλ is a basic weight function, then
the pair (λ; 1) is a pair of smooth weight functions was pointed out in [2].

DEFINITION 2.3. The space

=
{
∈ ∞(R2 ); ∀α β ∈ N ∃ αβ > 0 s.t. | (α)

(β) | ≤ αβλ
−|α|

}

is called thespace of symbols of order ∈ R associated to the weight functionλ .

We have used the notation(α)
(β) = ∂αξ ∂

β . We shall also use the following notation:

– ‖ ‖ ; = max|α+β|≤ supR2 | (α)
(β) |λ− +|α|, ∀ ∈ , ∀ ∈ N;

– −∞ =
⋂

.
In the following remark we list some simple properties of thespaces and clar-

ify their relation with the spaces of standard symbols.

Remarks 2.4. (i) If is an admissible vector potential, thenλ ∈ 1.
(ii) If is an admissible vector potential and−∞ ≤ 1 ≤ 2 <∞, then 2 ⊂ 1 .
(iii) If and are admissible vector potentials, then the following assertions are
equivalent:

(a) there exists a real number such that = ;
(b) = for any ∈ R;
(c) − ∈ ∞(R ; R ).
In particular, if is bounded, then =0 , the space of standard symbols of or-

der , usually denoted by1 0.
(iv) A function is in if and only if there exists a (unique) symbol ∈ 0 such
that ( ξ) = ( ξ) ≡ ( ξ− ( )); for any admissible vector potential and every

, ∈ N, there exists a positive constant = ( ) such that

‖ ‖ ; ≤ ‖ ‖0; ∀ ∈ 0

Proof. The proof of the first property consists in a straightforward verification,
based on the definition of our basic weight functions. It is essential that the deriva-
tives of are bounded. The second assertion follows directlyfrom Definition 2.3.
The proof of (iii) is based on the following remark: if we putξ = ( ) in the in-
equality 〈ξ − ( )〉 ≤ 〈ξ − ( )〉, then we obtain〈 ( ) − ( )〉 ≤ . The proofs
of (iv) and (v) consist in a little tedious, but again straightforward computation, which
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we shall not perform here. The fact that all the derivatives of are bounded is also
crucial for this points.

In what follows, we shall always suppose that is a fixed admissible vector po-
tential.

Let us introduce the class of -pseudodifferential operators.

DEFINITION 2.5. For in and inS we define

1( ) ( ) = (2π)−
∫

〈 ξ〉 ( ξ) ˆ (ξ) ξ

( ) ( ) = (2π)− Osc−
∫∫

〈 − ξ〉
( +

2
ξ
)

( ) ξ

1( ) is called the right quantization or Kohn-Nirenberg quantization (follow-
ing [5]) of and ( ) is called the Weyl quantization of . Osc in front of an in-
tegral means that the integral is defined as an oscillatory integral.

Proposition 2.6 ([2, Proposition 3.11 and Corollary 4.8]).If ∈ , then
1( ), ( ) ∈ B(S S) and they have continuous extensions fromS ′ to S ′.

It is also known that

(1) { 1( ); ∈ } = { ( ); ∈ }

We shall denote this space with . It is the space of pseudodifferential oper-
ators of order associated to the weight functionλ . If ∈ , then there exists
a unique ∈ such that = 1( ). The symbol is called the Kohn-Nirenberg
symbol of and is denoted withσ1( ). Analogously, has a unique Weyl symbol
˜ ∈ such that = ( ˜).

Due to Lemma 2.2, the results proved in [2] and [10] are applicable to our sym-
bols and pseudodifferential operators. We shall state now some of them in a form
which is more convenient for our purposes.

Theorem 2.7 ([2, Theorem 4.13]). If ∈ , ∀ ∈ N and if ↓ −∞, then
there exists a symbol ∈ 0 such that

−
−1∑

=0

∈ ∀ ∈ N

In this case we write ∼∑ ≥0 .
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Theorem 2.8 ([2, Theorem 4.1]; [10, Theorem 2.3]).If ∈ , = 1, 2, then
1( 1) 1( 2) ∈ 1+ 2 and

σ1
(

1( 1) 1( 2)
)
( ξ)

= (2π)− Osc−
∫∫

− 〈 η〉
1( ξ + η) 2( + ξ) η

= 1( ξ) 2( ξ) + ( ξ)

where

( ξ) = (2π)−
∫ 1

0

∑

|γ|=1

Osc−
∫∫

− 〈 η〉 (γ)
1 ( ξ + θη) 2 (γ)( + ξ) η θ

For any ∈ N there exist 1, 2 ∈ N and > 0 such that

‖ ‖ ; 1+ 2−1 ≤ ‖∂ξ 1‖ ; 1−1 1
‖∂ 2‖ ; 2 2

For Weyl symbols there exists also a result similar to Theorem 2.8. Since our goal
is the study of some selfadjoint operators, it seems more natural to use the theorem
of multiplication of pseudodifferential operators in its version for Weyl symbols in-
stead of Theorem 2.8. But we prefer to work with Kohn-Nirenberg symbols because
the formulas are simpler in this case.

Theorem 2.9 ([2, Theorem 5.1]; [10, Theorem 2.7]).If ∈ 0, then 1( ) can
be extended to a bounded operator in2(R ). Moreover, there exist > 0 and ∈ N
which do not depend on such that

‖ 1( )‖B( 2) ≤ ‖ ‖ ;0

DEFINITION 2.10. A symbol ∈ is called elliptic if there exist two positive
constants and such that if|ξ − ( )| ≥ , then

| ( ξ)| ≥ λ ( ξ)

If the Kohn-Nirenberg symbol of a pseudodifferential operator is elliptic, then the op-
erator is said to be elliptic.

REMARK 2.11. If ∈ , then ( )− 1( ) ∈ −1. Therefore if
the Weyl symbol of an operator is elliptic, then the operatoris still elliptic.

Theorem 2.12. If ∈ is elliptic, then there exists a symbol˜ ∈ − (also
elliptic) such that

( ) ( ˜ )− ( ˜ ) ( )− ∈ −∞
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The operator ( ˜ ) is unique modulo −∞ and is called a parametrix of ( ).

Results of this type are standard in the theory of pseudodifferential operators, but
we prefer to sketch a proof.

Sketch of proof of Theorem 2.12. If we take into consideration Remark 2.11
and (1), we see that it is sufficient to prove the theorem for the case when is
replaced with 1.

Let be as in Definition 2.10 and letχ be a smooth function such thatχ(η) = 0
if |η| < andχ(η) = 1 if |η| > 2 . We put

˜0( ξ) = χ
(
ξ − ( )

)
( ξ)−1

Then 0̃ ∈ − and 1( ) 1( ˜0) = − 1( −1), where −1 ∈ −1. Therefore

1( ) 1( ˜0)
∑

=0

[ 1( −1)] − = [ 1( −1)] −1 ∈ −1

We define

˜ = σ1
{

1( ˜0)[ 1( −1)]
}

According to Theorem 2.7, we can choose a symbol ˜∈ − such that ˜∼∑ ≥0 ˜ .
The symbol ˜ has all the desired properties. For the verification of this statement
one also uses the fact that the Kohn-Nirenberg symbol of an operator from is
uniquely defined.

Theorem 2.15 below can be regarded as a particular case of Theorem 3.1 from
[13]. But we shall give its proof because it is not very complicated and part of it will
be used also for the proof of other theorems of our paper.

We shall need a result concerning the existence of approximate parametrices of el-
liptic pseudodifferential operators which depend on a parameter. A first step in this di-
rection is the following lemma.

Lemma 2.13. Let ∈ be an elliptic symbol and let ⊂ C\{0} be such that

| ( ξ) + µ| ≥ max(λ ( ξ) |µ|) ∀ ( ξ) ∈ R2 ∀µ ∈

for some positive constant . If̃µ( ξ) = ( ( ξ)+µ)−1, then for anyα, β ∈ N there
exists a constant αβ such that

|( ˜µ)(α)
(β)( ξ)| ≤ αβλ

−|α|( ξ) min(λ− ( ξ) |µ|−1) ∀ ( ξ) ∈ R2 ∀µ ∈

Proof. The proof of the lemma consists in a straightforward verification.
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Theorem 2.14. Let = + −1, ∈ , −1 ∈ −1, > 0, be an ellip-
tic symbol and let ⊂ C\{0} be such that the pair( ) satisfies the hypothesis
of Lemma 2.13. Then there exist symbols̃µ ∈ , µ ∈ −1 and µ ∈ such that

( 1( ) + µ
) 1( ˜µ) = 1 + 1( µ)

and such that µ satisfy the estimates

‖ µ‖ ;0 ≤ |µ|−min(1/ 1)

with some positive constants which depend on∈ N and do not depend onµ ∈ .

Proof. We take µ̃( ξ) = ( ( ξ) + µ)−1. Then

(
1( ) + µ

)
1( ˜µ) =

(
1( ) + µ

)
1( ˜µ) +

(
1( −1) 1( ˜µ)

)

The conclusion of the theorem follows from Theorem 2.8 and 2.13.

Theorem 2.15. If ∈ , > 0 is real and elliptic, then ( ) is essentially
selfadjoint onS

Proof. According to Remark 2.11, ( ) = 1( ) + 1( −1) for some

−1 ∈ −1. Therefore we can apply Theorem 2.14 with =R\(− ; ). Next,
applying Theorem 2.9, we deduce that ( ( ) +µ) 1( ˜µ) can be extended to
a bounded invertible operator on2(R ), for µ real and sufficiently large. Therefore,
for such values ofµ, ( ( ) + µ)(S) (⊃ ( ( ) + µ) 1( ˜µ)(S)) is a dense sub-
space of 2(R ). The corollary of Theorem VIII.3 in [17] completes the proof of The-
orem 2.15.

3. Magnetic Sobolev spaces

The magnetic Sobolev spaces which we define below are a particular case of
weighted Sobolev spaces defined in [2]. We shall use the same notation for various
extensions of a pseudodifferential operator to subspaces of S ′. A distinct notation will
be used only for the selfadjoint extension in2(R ), if it exists, of a pseudodifferential
operator.

DEFINITION 3.1. For ∈ R,

H = span{ ; ∈ 2(R ) ∈ − }

The spaceH is endowed with the finest topology with respect to which each
mapping : 2→ H ∈ − is continuous.
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Theorem 3.2 ([2, Theorem 6.1]). (i) For any ∈ R, S ⊂ H ⊂ S ′ continu-
ously and densely.
(ii) (H )′ =H− topologically, ∀ ∈ R.
(iii) If ∈ ν , ν ∈ R, then : H +ν →H is continuous, ∀ ∈ R.
(iv) For any , ν ∈ R there exists an elliptic operator ∈ νsuch that

: H +ν → H is a topological isomorphism. ThereforeH is a Hilbertizable topo-
logical vector space.

The most important result we shall prove in this section is that H2 = Dom( ),
where is the magnetic Hamiltonian, i.e. the unique selfadjoint extension of the op-
erator defined onS by the differential expression (− ( ))2, = − ∂. We shall
also prove that if ∈ , > 0 is real and elliptic and if is the unique selfadjoint
extension of ( ), then Dom( ) =H .

We start with a theorem which gives an alternative characterization of H . We
recall that is always an admissible vector potential.

Theorem 3.3. If ∈ , > 0 is elliptic, then

H = { ∈ 2; ∈ 2}

Proof. The hypothesis implies that there exists an ellipticsymbol such that
= ( ).

“⊂” Let ∈ − be such that : 2→H is a topological isomorphism and
let be an arbitrary function fromH . Then there exists a function∈ 2 such that

= . Therefore = ( ) ∈ 2, since ( ) ∈ 0.
“⊃” Suppose that is in 2 and that = ( ) ∈ 2. If ( ˜ ) is

a parametrix for ( ), then

( ˜ ) ( ) = + ( )

for some ∈ −∞. From Theorem 3.2 (iii), it follows that = ( ˜ )− ( )
is in H .

Theorem 3.4. If ∈ , > 0 is real and elliptic and if is the unique
selfadjoint extension of ( ), then Dom( ) =H .

Proof. “⊃” If is in H , then there exists a sequence of functions{ϕ } ∈N ⊂
S such thatϕ → , → ∞, in H . Applying Theorem 3.2 (iii), we obtain that

( )ϕ → ( ) , →∞, in 2.
“⊂” If is in Dom( ), then there exists a function in2 and a sequence of

functions {ϕ } ∈N ⊂ S such thatϕ → , → ∞, in 2 and ( )ϕ → ,
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→∞ in 2. Let ( ˜ ) be a parametrix for ( ). Then

( ˜ ) ( )ϕ = ϕ + ( )ϕ

for some ∈ −∞,

( ˜ ) ( )ϕ → ( ˜ ) →∞

in H and

( )ϕ → ( ) →∞

in H . Hence

ϕ = ( ˜ ) ( )ϕ − ( )ϕ → ( ˜ ) − ( ) →∞

in H . Therefore = ( ˜) − ( ) is in H .

Corollary 3.5. If is an admissible symbol, then Dom( ) =H2.

For the proof of the equalityH2 = Dom( ) we shall need the following
lemma.

Lemma 3.6. If

˜µ( ξ) = [[ξ − ( )]2 + µ]−1 Reµ > 0

then
[(
− ( )

)2
+ µ
]

1( ˜µ) = 1 + 1( µ)

where µ ∈ −2 depends continuously onµ in any seminorm‖·‖ ; , = 0, 1, 2,
∈ N. For any ∈ N there exists a constant which does not depend onµ such that

‖ µ‖ ;− ≤ |µ|−(2− )/2 = 0 1 2

The symbol̃ µ has the same properties asµ.

Proof. We have

(
− ( )

)2
+ µ = 1( ˜−1

µ ) + div ( )

Therefore, if we apply Theorem 2.8, we obtain that

(( − ( ))2 + µ) 1( ˜µ) = + div ( ) 1( ˜µ) + 1( µ 1) ≡ + 1( µ)
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where

µ( ξ) =
div ( )

(ξ − ( ))2 + µ

+ (2π)−
∫ 1

0

{∑

=1

Osc−4
∫∫

− 〈 η〉(ξ + θη − ( )
)

· 〈ξ − ( + ) ∂ ( + )〉
[(ξ − ( + ))2 + µ]2 η

}
θ

We put

µ( ξ η) = 4
∑

=1

∫ 1

0

(
ξ + θη − ( )

) 〈ξ − ( + ) ∂ ( + )〉
[(ξ − ( + ))2 + µ]2

Then

µ( ξ) =
div ( )

(ξ − ( ))2 + µ

+ (2π)−
∫∫

− 〈 η〉〈 〉−2 (1− η)〈η〉−2 (1− )

· µ( ξ η) η

for and sufficiently large. We can apply Lemma 2.13 to the firstterm and con-
clude that it satisfies the required estimates. For the estimation of the second one, ap-
plying again Lemma 2.13 and the inequalities

〈ξ + η〉 ≤ 2〈ξ〉〈η〉 | ( + )− ( )| ≤ | |

we obtain that

∂αξ ∂
β∂γη∂

δ
µ( ξ η) ≤ αβγδ〈ξ − ( )〉−|α|〈η〉〈 〉|α||(ξ − ( + ))2 + µ|−1

Taking and eventually larger, we get that the second term ofµ also satisfies
the required estimates.

The proof of the continuity proceeds in the same manner.

Theorem 3.7. Dom[( ) ] = H2 for any > 0.

Proof. If ∈ N, then the stated equality follows from Theorem 3.4. It remains
to prove the equality for ∈ R\N.
(i) We prove first that the theorem is valid for ∈ (0; 1). Let be the path

=

{
π;−∞ < < −1

2

}
∪
{(

1
2

)
θ;−π ≤ θ ≤ π

}
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∪
{

− π;−∞ < < −1
2

}

Then

( + 1) −1 =
2π

∮
µ −1( + 1 +µ)−1 µ

We also define an elliptic pseudodifferential operator of order 2 − 2

1( −1) =
2π

∮
µ −1 1(

∼
1−µ) µ

where

˜1−µ( ξ) =
[(
ξ − ( )

)2
+ 1− µ

]−1

is the symbol defined in Lemma 3.6. In fact, using the theorem of residues, we obtain
that

−1( ξ) =
[(
ξ − ( )

)2
+ 1
] −1

= (λ )( ξ)2 −2

The two contour integrals converge inB( 2) in the uniform operator topology.
The following identity holds onH2:

( + 1) − ( + 1) 1( −1) = ( + 1)
2π

∮
µ −1( + 1 +µ)−1 1( 1−µ) µ

Here 1−µ is the remainder obtained in Lemma 3.6. Hence the last contour integral
defines an operator fromB(H0 H2). Therefore ( +1)−( +1) 1( −1) ∈ B( 2).
This, combined with the ellipticity of ( + 1) 1( −1) and Corollary 3.5 gives that
Dom[( ) ] = H2 for ∈ (0; 1).
(ii) The general case can be proved by using a bootstrap argument. Suppose that
Dom[( )

′

] = H2 ′

for any ′ ∈ [0; ] for some ∈ N and that ∈ Dom[( ) ]
for an ∈ ( ; + 1). This is equivalent with the fact that ∈ Dom[( ) ]
and = ( + 1) ∈ Dom[( ) − ], i.e. with the fact that is inH2 and
( + 1) 1( − −1) ( + 1) ∈ 2, where − −1 was previously defined. But
( + 1) 1( − −1) ( + 1) is an elliptic pseudodifferential operator of order 2.
Theorem 3.3 completes the proof.

Another proof of Theorem 3.7 could be based on an appropriateinterpolation the-
orem for weighted Sobolev spaces. Such results are proved in[3]. But our weight
function does not satisfy the conditions imposed in that paper. Therefore we had
to give a direct proof of Theorem 3.7 based on some ideas from [18]. Evidently,
the interpolation theorem for magnetic Sobolev spaces is now a consequence of Theo-
rem 3.7. But we do not know how to prove it directly.
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4. The essential spectrum of the relativistic magnetic Hamiltonian

We now prove Theorem 1.1. The proof will be made in several steps and uses the
next compactness criterion, which is a particular case of Theorem 6.11 from [2].

Theorem 4.1. If ∈ ν is such that

lim
| |+|ξ|→∞

λ ( ξ)−ν+|α| (α)
(β) ( ξ) = 0 ∀α β ∈ N

then 1( ) is a compact operator fromH +ν to H for any ∈ R.

REMARK 4.2. If is an admissible vector potential, then| | + |ξ| → ∞ if and
only if | | + |ξ − ( )| → ∞

From now on, it is always assumed that the vector potential satisfies hypothesis
(i) of Theorem 1.1.

Lemma 4.3. If ∈ 0 does not depend on, then

lim
| |+|ξ|→∞

λ ( ξ)− +|α| {σ1
[

( )
]
−

}(α)

(β)
( ξ) = 0 ∀α β ∈ N

Recall that ( ξ) = (ξ− ( )). The following elementary lemma will be useful
for the proof of Lemma 4.3.

Lemma 4.4. Let ∈ 0(R ; R+)be such that ( )→ 0, | | → ∞. Then

lim
| |→∞

∫

R
〈 〉− ( + θ ) = 0 ∀ >

uniformly with respect toθ ∈ [0; 1].

Proof. For anyε > 0 we can choose > 0 such that

∫

| |>
〈 〉− < ε

and ( )< ε, ∀ | | > .
Let ∈ R , | | > 2 . Then | + θ | > , ∀ | | > , ∀ θ ∈ [0; 1]. It follows that

∫

| |>
〈 〉− ( + θ ) < ε

[
sup
R

+
∫

R
〈 〉−

]

for any | | > 2 and anyθ ∈ [0; 1].
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Proof of Lemma 4.3. Let be equal toσ1[ ( )] − . Then

( ξ) = (2π)− Osc−
∫∫

− 〈 η〉
[ (

ξ + η −
(

+
2

))
−

(
ξ + η − ( )

)]
η

= (2π)− Osc−
∫∫

− 〈 η〉
[

( )−
(

+
2

)]

·
∫ 1

0
(∂ )

(
ξ + η − ( ) + θ

(
( )−

(
+

2

)))
θ η

and

(
+

2

)
− ( ) =

1
2

[∫ 1

0
(∂ )

(
+
θ

2

)
θ

]
≡ χ( )

All the derivatives of the matrix valued functionχ are bounded. Moreover, from
the hypothesis and Lemma 4.4 it follows that

lim
| |→∞

∫
〈 〉−2 |∂α∂βχ( )| = 0

for any α, β ∈ N .
On the other hand, if we put

( ξ η) =
∫ 1

0
(∂ )

(
ξ + η − ( ) + θ

(
( )−

(
+

2

)))
θ

then, for anyα, β, γ, δ ∈ N , there exists a positive constantαβγδ such that

|∂αξ ∂β∂γη∂δ ( ξ η)| ≤ αβγδ〈ξ − ( )〉 −1−|α|(〈η〉〈 〉)| −1−|α||

Using the definition of the oscillatory integrals, we see that

(β)
(α) ( ξ) = (2π)−

∫∫
− 〈 η〉〈 〉−2 ( − η) 〈η〉−2

· ( − ) ∂αξ ∂
β [χ( ) · ( ξ η)] η

for and sufficiently large. Therefore| (β)
(α) ( ξ)| can be dominated by a finite sum

of terms of the form

const
∫∫
〈 〉−2 +1〈η〉−2 |∂β′

∂δ
′

χ( )||∂αξ ∂β
′′

∂γη∂
δ′′ ( ξ η)| η

≤ const
∫∫
〈 〉−2 +1+| −1−|α||〈η〉−2 +( −1−|α|)

· 〈ξ − ( )〉 −1−|α||∂β′

∂δ
′

χ( )|
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≤ const〈ξ − ( )〉 −1−|α|
∫
〈 〉−2 +1+| −1−|α|||∂β′

∂δ
′

χ( )|

for sufficiently large. Now the conclusion of the lemma follows if we take suffi-
ciently large and use the decaying properties ofχ and Remark 4.2.

In the statements of Lemmas 4.5 and 4.6 and in their proofs we shall use
the same notation as in the proof of Theorem 3.7.

Lemma 4.5. ( +1) − ( +1) 1( −1) is a compact operator in 2 for any
∈ (0; 1).

Proof. Recall that

( + 1) − ( + 1) 1( −1) = ( + 1)
2π

∮
µ −1( + 1 +µ)−1 1( 1−µ) µ

where the integral is convergent in the uniform operator topology in B( 2 H2).
Using the fact that lim| |→∞ ∂β ( ) = 0, ∀ |β| > 0, it can be checked, as in

the proof of Lemma 4.3, that1−µ satisfies the hypothesis of Theorem 4.1. All that is
important is that any term of1−µ is in −1 and contains a factor which is a deriva-
tive of . Therefore 1( 1−µ) is a compact operator in 2 for any µ such that
Reµ < 1/2. Hence the above contour integral defines a compact operator from 2

to H2.

Lemma 4.6. ( + 1) 1( −1)− 1( ) is a compact operator in 2 for any
∈ (0; 1).

Proof. The Kohn-Nirenberg symbol of ( + 1) 1( −1)− 1( ) is

( ξ) =
div ( )

〈ξ − ( )〉2−2

+ (2π)−
∫ 1

0

{∑

=1

Osc−
∫∫

4(1− ) − 〈 η〉(ξ + θη − ( )
)

· 〈ξ − ( + ) ∂ ( + )〉
〈(ξ − ( + ))2〉4−2

η

}
θ

Again, as in the proof of Lemma 4.3, it can be verified that satisfies the hypothesis
of Remark 4.2 withν = 0.

Proof of Theorem 1.1. First we remark that

( + 1)1/2− (λ ) =
[
( + 1)1/2 − ( + 1) 1(λ−1)

]
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+
[
( + 1) 1(λ−1)− 1(λ )

]

+
[

1(λ )− (λ )
]

is, according to Lemmas 4.3, 4.5, 4.6 and to Theorems 4.1 and 3.4 a relatively com-
pact perturbation of . Therefore

σess( ) = σess

[
( + 1)1/2

]

Next, it is known that if is an operator of multiplication as in the hypothesis
of the theorem, then is relatively compact with respect to ( +1)1/2 (see, e.g.,
the proof of Lemma 4.4 from [12]). Since Dom[( +1)1/2] = Dom( ), is relatively
compact with respect to and

σess( + ) = σess( )

Corollary 4.7. Suppose that the hypotheses ofTheorem 4.1are satisfied and that
= 2 or 3. Thenσess( + ) = [1;∞).

Proof. Theorem 6.1 from [4] states that in this caseσess( ) = [0;∞).
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