
Takenami, T.
Osaka J. Math.
39 (2002), 867–895

LOCAL LIMIT THEOREM FOR RANDOM WALK
IN PERIODIC ENVIRONMENT

TOSHIYUKI TAKENAMI

(Received December 14, 2000)

1. Preliminaries and Results

Let ( F P) be a probability space on which all our random quantities will
be defined. LetZ be the set of -dimensional integer lattice. We consider Markov
chain onZ with a transition function ( ). We denote by ( ) the -th tran-
sition function of the Markov chain. We are interested in an asymptotic behaviour
of ( ) as → ∞, that is, a local limit theorem for the Markov chain. Spitzer
showed a uniform estimate of a local limit theorem for randomwalk in Z (see, [10,
Remark to P7.9 and P7.10]). The purpose of this paper is to extend his result to
the Markov chain with the following assumptions.

ASSUMPTION 1.1. There existss = ( 1 2 . . . ) ∈ Z with > 0, 1 ≤ ≤ ,
such that

( + e + e ) = ( )

for every , ∈ Z and , 1≤ ≤ . Here e , 1 ≤ ≤ , denotes the basis vector
(0 . . . 0 1︸ ︷︷ ︸ 0 . . . 0) in Z .

We call a Markov chain with this assumptiona random walk in periodic environ-
ment (RWPE for abbreviation), and the vectors period of RWPE.

ASSUMPTION 1.2. The Markov chain is irreducible and aperiodic, that is,for every
, ∈ Z , there exists a positive integer0( ) such that ( )> 0 for all ≥
0( ).

We set

Ξ = {( 1 2 . . . ) ∈ Z | 0≤ 1 ≤ 1 − 1 . . . 0≤ ≤ − 1}

For ∈ Z and , 1≤ ≤ , we denote by ( ) the remainder obtained when is
divided by , and put ( ) = (1( 1) 2( 2) . . . ( )) for = ( 1 2 . . . ) ∈ Z .
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Let be a point inΞ, then we say inZ a point of type if ( ) = . Let =
( ) ∈Ξ be a transition matrix, of which each component is given by

=
∑

( )=

( ) for ∈ Ξ

By Assumption 1.2, we see that the matrix is ergodic. Then hasa stationary
distribution = (π ) ∈Ξ, that is,

(1.1) lim
→∞

( ) = π

ASSUMPTION 1.3. For each ∈ Ξ,

∑

∈Z

| | ( + ) <∞ and
∑

∈Ξ

π
∑

∈Z

( + ) = 0

ASSUMPTION 1.4. The Markov chain has finite second moment, that is,

∑

∈Z

| |2 ( + ) <∞ for each ∈ Ξ

Let , ∈ Ξ and ∈ Z . For > 0 we define

( ) =





1
( + ) if ( + ) =

0 otherwise,

and for = 0, ( ) = 1 if = − and 0 otherwise. Note that (·) is the
jump size distribution of theRWPEunder the condition that the transition from a point
of type to a point of type occurs. Define the mean vectorsµ = (µ ;1 . . . µ ; )
and the covariance matrices = (; )1≤ ≤ of (·), , ∈ Ξ, that is,

µ ; =
∑

∈Z

( ) and ; =
∑

∈Z

( − µ ; )( − µ ; ) ( )

for 1≤ , ≤ . Note that by Assumption 1.3

(1.2)
∑

∈Ξ

π µ = 0

Put

(1.3) (θ) =
(

(µ θ)
)

∈Ξ
and (θ ) = | − (θ)|
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for θ ∈ R and ∈ C. Note that = (0). Since the matrix is ergodic, by Perron-
Frobenius theorem, 1 is a simple root of the characteristic equation (0 ) = 0. See,
e.g., Karlin [4]. Thus we see that

(1.4)
∂

∂
(0 1) 6= 0

Set

=
∂2

∂θ ∂θ
(0 1)

/
∂

∂
(0 1) for 1≤ ≤(1.5)

= ( )1≤ ≤ and =
∑

∈Ξ

π +

In Lemma 6.9, we will show that the matrix is positive definiteif the transition
function ( ) satisfies Assumptions 1.1 through 1.4. Let #Ξ denote the cardinarity
of the setΞ. Now let us state our result.

Theorem 1.1. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.4. Then
(1.6)

lim
→∞

(
(2π ) /2 ( ) − (#Ξ)| |−1/2 exp

{
− 1

2

(
− −1( − )

)}
π ( )

)
= 0

uniformly for all , ∈ Z .

Theorem 1.2. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.4. Then

lim
→∞
| − |2

×
(

(2π ) /2 ( )− (#Ξ)| |−1/2 exp

{
− 1

2

(
− −1( − )

)}
π ( )

)
= 0

(1.7)

uniformly for all , ∈ Z .

First we shall prove the relations (1.6) and (1.7) under additional assumptions
given below and thereafter remove them.

ASSUMPTION 1.5. For some , ∈ Ξ for which > 0, is positive definite.
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Let φ (·), , ∈ Ξ, denote the characteristic function of (·), that is,

φ (θ) =
∑

∈Z

(θ ) ( ) for ∈ Ξ θ ∈ R

ASSUMPTION 1.6. On [−π/ 1 π/ 1] × · · · × [−π/ π/ ],
∏

∈Ξ
|φ (θ)| equals

1 if and only if θ = 0.

Lemma 1.1. Under Assumptions 1.1through 1.6, the formula(1.6) holds.

Lemma 1.2. Under Assumptions 1.1through 1.6, the formula(1.7) holds.

For each , ∈ Ξ, let { } ≥1 be a family of independent identically dis-
tributed random vectors, and{χ } ≥0 be an ergodic Markov chain with a finite state
spaceΞ. Assume that{ } ∈Ξ

≥1 and {χ } ≥1 are mutually independent. Set =
χ0χ1
1 + · · · + χ −1χ . Then such a process may be calleda random walk defined on

a finite Markov chain. By Lemma 2.1 in Section 2, we will show thatRWPEmay be
realized as such a process. In 1-dimensional case, Miller [8] studied an asymptotic be-
haviour of P{ = | χ = χ0 = }, and Keilson and Wishart [5] proved the central
limit theorem of the process.

In [7] Kotani gave a Martingale approach to the central limittheorem and related
problem for a class of periodic Markov chains. Kotani, Shirai and Sunada [6] consid-
ered local limit theorem for a class of Markov chains on an infinite graph satisfying
a certain periodic condition. They treated the reversible Markov chain with the prop-
erty that a particle at a given site can move to only finitely many sites in one unit
of time.

In Section 2, in order to prove Lemma 1.1, we introduce the sequence of lemmas.
In Section 3, we prove Lemma 1.1. In Section 4, we give some lemmas on which our
proof of Lemma 1.2 is based. In Section 5, we prove Lemma 1.2. In Section 6, we
give some lemmas for Theorems 1.1 and 1.2. In Section 7, we prove these theorems,
extending Lemmas 1.1 and 1.2.

2. Some Lemmas for Lemma 1.1

In this section, we introduce some lemmas on which our proofsof Lemmas 1.1
and 1.2 are based.

Lemma 2.1. Suppose that the transition function ( ) satisfies Assump-
tion 1.1. Then for all , ≥ 1, and , ∈ Z , we have

(2.1) ( ) =
∑

1 ... −1∈Ξ

( ) 1 1 2 · · · −1 ( ) ( ) 1 ∗ 1 2 ∗ · · · ∗ −1 ( )( − )
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where ∗ is the convolution of and .

Lemma 2.1 is suggested by Shiga. See Chapter 7 of his book [9].
By Lemma 2.1 and the inversion formula for Fourier transform, ( ) equals

(2.2) ∑

1 ... −1∈Ξ

( ) 1 · · · −1 ( )
1

(2π)

∫

[−π π]

− (θ − )φ ( ) 1(θ) · · ·φ −1 ( )(θ) θ

Then by Assumption 1.1, we have the following lemma.

Lemma 2.2. Suppose that the transition function ( ) satisfies Assump-
tion 1.1. Then for all ≥ 1 and , ∈ Z we have

( ) =
∑

1 ... −1∈Ξ

( ) 1 · · · −1 ( )(2.3)

× (#Ξ)
(2π)

∫

[− π

1
π

1
]×···×[− π π ]

− (θ − )φ ( ) 1(θ) · · ·φ −1 ( )(θ) θ

Proof. By Assumption 1.1, we haveφ (θ + (2π/ )e ) = exp{ (2π/ )( − )}×
φ (θ). By applying this formula to (2.2), we obtain (2.3).

Denote by{ξ } ≥0 the Markov chain onΞ with the transition matrix . Set

= #{1≤ ≤ | ξ −1 = ξ = }
; =

∑

∈Ξ

µ ; and = ( ;1 ;2 . . . ; )

Put ψ (θ) = φ (θ) − (θ µ ) for , ∈ Ξ. Then we have

( ) =
(#Ξ)
(2π)

∫

[− π

1
π

1
]×···×[− π π ]

exp{− (θ − )}(2.4)

× E


 ∏

∈Ξ

ψ (θ) exp{ (θ )}; ξ = ( )

∣∣∣∣ ξ0 = ( )


 θ

It follows from the weak law of large numbers for ergodic Markov chains that, for ,
∈ Ξ,

(2.5) → π

in probability as → ∞. Moreover we have the following large deviation type esti-
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mate. Set

(2.6) A ζ =
⋂

∈Ξ

{∣∣∣∣∣ − π
∣∣∣∣∣ < ζ

}

Lemma 2.3. Suppose that the transition function ( ) satisfies Assump-
tions 1.1and 1.2. Then for all ζ > 0, we have

(2.7) P{A ζ} ≤ − for ∈ Ξ

where and are positive constants depending onζ but not on .

See, e.g., Dembo and Zeitouni [2, p. 64].
Recall Assumption 1.3 and (2.5). We have the following central limit theorem for

.

Lemma 2.4. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.3. Then

lim
→∞

E
[
exp

{
1√ ( )

}
; ξ =

∣∣∣∣ ξ0 =

]
(2.8)

= exp

{
−1

2
( )

}
π for ∈ Ξ

where the matrix is non-negative definite.

Proof. For a proof in the 1-dimensional case, see Hatori and Mori [3, p. 124].
We will show (2.8) in the multi-dimensional case.

We denote by ( )(θ), θ ∈ R , the component of the matrix (θ) . Note that we
have

(2.9) ( )(θ) = E
[
exp{ (θ )}; ξ = | ξ0 =

]

We will show lim →∞
( )( /

√
) = exp{(−1/2)( )}π . For every with| | <

1, ∈ C, we have
∑∞

=0 (θ) = ( − (θ))−1. We denote by (θ ) =
( (θ )) ∈Ξ the co-factor matrix of − (θ), so that

(2.10)
∞∑

=0

( )(θ) =
(θ )

| − (θ)|

Let κν(θ), ν = 1, 2 . . . #Ξ, denote the eigenvalues of (θ). Since (0) = , we
may takeκ1(0) = 1 and max2≤ν≤Ξ |κν(0)| < 1. Moreover there exist a neibourhoodU
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of θ = 0 and constantρ, 0 < ρ < 1, such thatκ1(θ) is analytic in U (see, Bochner
and Martin [1, p. 39]) andκν(θ), 1≤ ν ≤ #Ξ, are continuous inR (see, Takagi [11,
p. 56]) and

(2.11) inf
θ∈
|κ1(θ)| > ρ and sup

θ∈
|κν(θ)| < ρ for ν = 2 . . . #Ξ

Since (θ κν(θ)) = 0, ν = 1, 2 . . . #Ξ, we may write

| − (θ)| = (#Ξ)

(
θ

1
)

=
(
1− κ1(θ)

)
(θ )

where (θ ) is a polynomial of degree #Ξ− 1 in , and (θ 1/κν (θ)) = 0 if κν(θ) 6=
0, ν = 2 . . . #Ξ. Thus we have

(2.12)
(θ )

| − (θ)| =
(θ )

(1− κ1(θ) ) (θ )
=

σ (θ)
1− κ1(θ)

+
τ (θ )

(θ )

where σ (θ) = (θ 1/κ1(θ))/ (θ 1/κ1(θ)) and τ (θ ) is a polynomial of degree
#Ξ− 2 in . Put

(2.13) (θ) = max
2≤ν≤#Ξ

|κν(θ)|

Then τ (θ )/ (θ ) is analytic in for | | < 1/ (θ). Thus we may write

τ (θ )
(θ )

=
∞∑

=0

(θ) where (θ) =
1
!
∂

∂

{
τ (θ )

(θ )

}

=0

Since this series has the radius 1/ (θ) of convergence, we have

(θ) = lim sup
→∞
| (θ)|1/

Therefore by (2.10), (2.11), (2.12) and (2.13), we have

(2.14) ( )(θ) = σ (θ)κ1(θ) + (θ) and (θ) =
(
κ1(θ)

)

Since (∂ /∂ )(0 1) 6= 0 by (1.4), we may use the implicit function theorem forκ1(θ)
to have

(2.15) κ1(θ) = 1 +
∑

=1

∂κ1

∂θ
(0)θ +

1
2

∑

=1

∂2κ1

∂θ ∂θ
(0)θ θ + (|θ|2)

where

(2.16)
∂κ1

∂θ
(0) = −∂

∂θ
(0 1)

/
∂

∂
(0 1)
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and

∂2κ1

∂θ ∂θ
(0) = −

∂2

∂θ ∂θ (0 1)
∂
∂ (0 1)

+
∂
∂θ (0 1) ∂2

∂θ ∂ (0 1)

(∂∂ (0 1))2
(2.17)

+
∂2

∂θ ∂ (0 1) ∂∂θ (0 1)

(∂∂ (0 1))2
−

∂
∂θ (0 1) ∂∂θ (0 1)∂

2

∂ 2 (0 1)

(∂∂ (0 1))3

By (2.14), (2.15) and (2.16),

(2.18) lim
→∞

( )
( )

= σ (0) exp

{
−
∑

=1

(
∂

∂θ
(0 1)

/
∂

∂
(0 1)

) }

for every ∈ R . Set =0 in (2.18), then by (1.1) we obtain

(2.19) σ (0) = π

We show (∂ /∂θ )(0 1) = 0 for all , 1≤ ≤ . Note that

(2.20) lim
→∞

; =
∑

∈Ξ

µ ; π in probability 1≤ ≤

By (1.2), the right hand side of (2.20) equals 0. Therefore

lim
→∞

E
[
exp

{ ( )}
; ξ =

∣∣∣∣ ξ0 =

]
= π for all ∈ R

By (2.18) and (2.19),

exp

{
−
∑

=1

(
∂

∂θ
(0 1)

/
∂

∂
(0 1)

) }
= 1 for all ∈ R

so that (∂ /∂θ )(0 1) = 0 for all , 1≤ ≤ . Thus we have from (2.15), (2.16) and
(2.17)

(2.21) κ1(θ) = 1− 1
2

(θ θ) + (|θ|2)

Substitute (2.21) to (2.14) and setθ = /
√

, then we obtain (2.8).

It follows from the central limit theorem for sums of i.i.d. random variables that

(2.22) ψ

(
√
) π

→ exp

{
−1

2
( π )

}
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By (2.8) and (2.22), we have the following lemma.

Lemma 2.5. If the transition function ( ) satisfiesAssumptions 1.1through
1.4, then

lim
→∞

∏

∈Ξ

ψ

(
√
) π

E
[
exp

{
1√ ( )

}
; ξ = ′

∣∣∣∣ ξ0 = ′
]

= exp

{
−1

2
( )

}
π ′

for ∈ R , ′, ′ ∈ Ξ.

Using P 7.4 and P 7.7 of Spitzer [10], we have the following lemma.

Lemma 2.6. If the transition function ( ) satisfies Assumptions 1.1, 1.4
and 1.5, then there exist , ∈ Ξ and positive constantsδ and λ such that|ψ (θ)| ≤
−λ|θ|2 when |θ| < δ.

By Assumption 1.4 and Maclaurin expansion forψ (θ), we have the following
lemma.

Lemma 2.7. Suppose that the transition function ( ) satisfies Assump-
tions 1.1, 1.2 and 1.4. There exist positive constantsδ and such that for everyζ,
0< ζ < 1,

(2.23)

∣∣∣∣∣∣
1−

∏

∈Ξ

ψ

(
√
) (ω)− π

∣∣∣∣∣∣
≤ ζ| |2 exp{ ζ| |2}

when | /√ | < δ and ω ∈ A ζ .

3. Proof of Lemma 1.1

We will prove Lemma 1.1. Suppose that ( ) satisfies Assumptions 1.1
through 1.6 in this section. Then by Assumption 1.5 and Lemma2.4, is positive
definite. We will show the formula (1.6). Take 0< α, ζ < ∞. Let δ be positive con-
stant satisfying Lemmas 2.6 and 2.7. Set =

√
θ. We may write

(2π ) /2

(#Ξ)
( )

=
1

(2π) /2

∫
√

([− π

1
π

1
]×···×[− π π ])

exp

{
− 1√ ( − )

}
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× E
[( ∏

∈Ξ

ψ

(
√
) )

exp

{
1√ ( )

}
; ξ = ( )

∣∣∣∣ ξ0 = ( )

]

= 0( ) + 1( α) + 2( α) + 3( α δ) + 4( δ ζ)

+ 5( δ ζ) + 6( δ ζ) + 7( δ ζ)

where

0( ) =
1

(2π) /2

∫

R
exp

{
− 1√ ( − )

}
exp

{
−1

2
( )

}
π ( )

1( α) = − 1
(2π) /2

∫

| |>α
exp

{
− 1√ ( − )

}
exp

{
−1

2
( )

}
π ( )

2( α) =
1

(2π) /2

∫

| |≤α
exp

{
− 1√ ( − )

}(( ∏

∈Ξ

ψ

(
√
) π )

× E
[
exp

{
1√ ( )

}
; ξ = ( )

∣∣∣∣ ξ0 = ( )

]

− exp

{
−1

2
( )

}
π ( )

)

3( α δ) =
1

(2π) /2

∫

α<| |≤√
δ

exp

{
− 1√ ( − )

}( ∏

∈Ξ

ψ

(
√
) π )

× E
[
exp

{
1√ ( )

}
; ξ = ( )

∣∣∣∣ ξ0 = ( )

]

4( δ ζ) = − 1
(2π) /2

∫

| |≤√
δ

exp

{
− 1√ ( − )

}( ∏

∈Ξ

ψ

(
√
) π )

× E
[
exp

{
1√ ( )

}
; ξ = ( ) A ζ

∣∣∣∣ ξ0 = ( )

]

5( δ ζ) = − 1
(2π) /2

∫

| |≤√
δ

exp

{
− 1√ ( − )

}( ∏

∈Ξ

ψ

(
√
) π )

× E
[(

1−
( ∏

∈Ξ

ψ

(
√
) − π ))

× exp

{
1√ ( )

}
; ξ = ( ) A ζ

∣∣∣∣ ξ0 = ( )

]

6( δ ζ) =
1

(2π) /2

∫

| |>√
δ;
√

([− π

1
π

1
]×···×[− π π ])

exp

{
− 1√ ( − )

}

× E
[( ∏

∈Ξ

ψ

(
√
) )
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× exp

{
1√ ( )

}
; ξ = ( ) A ζ

∣∣∣∣ ξ0 = ( )

]

and

7( δ ζ) =
1

(2π) /2

∫
√

([− π

1
π

1
]×···×[− π π ])

exp

{
− 1√ ( − )

}

× E
[( ∏

∈Ξ

ψ

(
√
) )

× exp

{
1√ ( )

}
; ξ = ( ) A ζ

∣∣∣∣ ξ0 = ( )

]

A direct calculation shows that

0( ) = | |−1/2 exp

{
− 1

2

(
− −1( − )

)}
π ( )

It remains to show that the terms1, 2 . . . 7 go to zero uniformly in , as →
∞. We have

| 1( α)| ≤ (2π)− /2
∫

| |>α
exp

{
−1

2
( )

}
π ( )

which can be made arbitary small by takingα sufficiently large.
By Lemma 2.5 and Lebesgue’s dominated convergence theorem,for everyα

| 2( α)| = (2π)− /2
∫

| |≤α

∣∣∣∣∣∣


 ∏

∈Ξ

ψ

(
√
) π




× E
[
exp

{
1√ ( )

}
; ξ = ( )

∣∣∣ ξ0 = ( )

]

− exp

{
−1

2
( )

}
π ( )

∣∣∣∣∣∣
→ 0 as →∞

By Lemma 2.6,| 3( α δ)| ≤
∫
α<| |

−λ| |2 , which can be made arbitary small by

taking α sufficientry large. By Lemma 2.3,| 4( δ ζ)| ≤ (2δ
√

) − , where
and are positive constants in Lemma 2.3. Note Lemmas 2.6 and 2.7. Then we have

| 5( δ ζ)| ≤ (2π)− /2 ζ

∫

R
| |2 −(λ− ζ)| |2

which can be made arbitary small by takingζ sufficiently small.
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Let β = min{π | > 0 ∈ Ξ} and chooseζ, 0 < ζ < β/2. Then by
Assumption 1.6 there exists a positive constantγ, 0< γ < 1, such that

∏

∈Ξ

∣∣∣∣φ
(
√
)∣∣∣∣

(ω)

< (1− γ) β/2

when

∈ √
([
− π

1

π

1

]
× · · · ×

[
− π π

]) ∣∣∣∣√
∣∣∣∣ > δ and ω ∈ A ζ

Hence| 6( δ ζ)| ≤ (2π ) /2(1−γ) β/2. By analougous way to4( δ), | 7( δ ζ)| ≤
(2π ) /2 − .

The proof of Lemma 1.1 is complete.

4. Some Lemmas for Lemma 1.2

We introduce the -dimensional Laplacianθ =
∑

=1(∂
2/∂θ2).

Lemma 4.1. Suppose that the transition function ( ) satisfies Assump-
tions 1.1and 1.4. Then we have

| − |2 ( ) = − (#Ξ)
(2π)

∫

[− π

1
π

1
]×···×[− π π ]

− (θ − )

× θ

{
E
[( ∏

∈Ξ

ψ (θ)

)
(θ ); ξ = ( )

∣∣∣∣ ξ0 = ( )

]}
θ

for all ≥ 1 and , ∈ Z .

Proof. Using the formula for integration by parts and Assumptions 1.1 and 1.4,
we have

( − )2
∫ π/

−π/

− (θ − )φ ( ) 1(θ)φ 1 2(θ) · · ·φ −1 ( )(θ) θ

= −
∫ π/

−π/

− (θ − ) ∂
2

∂θ2{φ ( ) 1(θ)φ 1 2(θ) · · ·φ −1 ( )(θ)} θ

for , 1≤ ≤ . Thus we obtain the relation of the lemma.
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Lemma 4.2. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.3. Then

lim
→∞

∂

∂

{
E
[
exp

{
1√ ( )

}
; ξ =

∣∣∣ ξ0 =

]}

=
∂

∂

{
exp

{
−1

2
( )

}
π

}(4.1)

and

lim
→∞

∂2

∂ ∂

{
E
[
exp

{
1√ ( )

}
; ξ =

∣∣∣ ξ0 =

]}

=
∂2

∂ ∂

{
exp

{
−1

2
( )

}
π

}(4.2)

for ∈ R , , ∈ Ξ and 1≤ , ≤ .

Proof. Differentiate each side of (2.10). Thus by argumentssimilar to that made
for the proof of Lemma 2.4, we obtain (4.1) and (4.2).

As in Spitzer [10, p. 80], we have

(4.3) lim
→∞

∂

∂

{
ψ

(
√
) π }

=
∂

∂

{
exp

{
−1

2
( π )

}}

and

(4.4) lim
→∞

∂2

∂ 2

{
ψ

(
√
) π }

=
∂2

∂ 2

{
exp

{
−1

2
( π )

}}

1≤ ≤ . By Lemma 4.2, (4.3) and (4.4), we have the following lemma.

Lemma 4.3. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.4. Then

lim
→∞

{( ∏

∈Ξ

ψ

(
√
) π )

E
[
exp

{
1√ ( )

}
; ξ = ′

∣∣∣∣ ξ0 = ′
]}

=

{
exp

{
−1

2
( )

}
π ′

}

for ∈ R , ′, ′ ∈ Ξ.
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Lemma 4.4. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.5. There exist positive constantsδ, λ and 1 such that

(4.5)

∣∣∣∣∣∣
∂

∂




∏

∈Ξ

ψ

(
√
) π





∣∣∣∣∣∣
≤ 1| | exp{−λ| |2}

and

(4.6)

∣∣∣∣∣∣
∂2

∂ 2




∏

∈Ξ

ψ

(
√
) π





∣∣∣∣∣∣
≤ 1(1 + | |2) exp{−λ| |2}

for all , 1≤ ≤ , when | /√ | < δ.

Proof. See, for a proof, Spitzer [10, p. 81].
As in the proof of Lemma 2.7, we have the following lemma.

Lemma 4.5. Suppose that the transition function ( ) satisfies Assump-
tions 1.1, 1.2and 1.4. There exist positive constansδ and 2 such that for everyζ,
0< ζ < 1, we have

(4.7)

∣∣∣∣
∂

∂

{
1−

∏

∈Ξ

ψ

(
√
) (ω)− π }∣∣∣∣ ≤ 2ζ| | exp{ 2ζ| |2}

and

(4.8)

∣∣∣∣
∂2

∂ 2

{
1−

∏

∈Ξ

ψ

(
√
) (ω)− π }∣∣∣∣ ≤ 2ζ(1 + | |2) exp{ 2ζ| |2}

when | /√ | < δ and ω ∈ A ζ.

By analogous way to Lemma 4.2, we have the following lemma.

Lemma 4.6. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.3. There exist positive constantsδ and 3 such that for1≤ ≤ ,
, ∈ Ξ,

(4.9)

∣∣∣∣
∂

∂

{
E
[
exp

{
1√ ( )

}
; ξ =

∣∣∣ ξ0 =

]}∣∣∣∣ ≤ 3(| | + 1)

and

(4.10)

∣∣∣∣
∂2

∂ 2

{
E
[
exp

{
1√ ( )

}
; ξ =

∣∣∣ ξ0 =

]}∣∣∣∣ ≤ 3(| |2 + 1)
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when | /√ | < δ.

Lemma 4.7. Suppose that the transition function ( ) satisfies Assump-
tions 1.1and 1.2. Then there exists positive constant4 such that for everyζ > 0

(4.11)

∣∣∣∣
∂

∂

{
E
[
exp

{
1√ ( )

}
; ξ = A ζ

∣∣∣ ξ0 =

]}∣∣∣∣ ≤ 4
√

exp{− }

and

(4.12)

∣∣∣∣
∂2

∂ 2

{
E
[
exp

{
1√ ( )

}
; ξ = A ζ

∣∣∣ ξ0 =

]}∣∣∣∣ ≤ 4 exp{− }

where and are positive constants given inLemma 2.3.

Proof. Note that| ; | ≤ constant× for all ω ∈ and , ≤ ≤ . Thus by
Lemma 2.3, we obtain (4.11) and (4.12).

Lemma 4.8. Suppose that the transition function ( ) satisfies Assump-
tions 1.1, 1.2, 1.4and 1.6. Let β = min{π | > 0 ∈ Ξ} and ζ < β/2.
Then for everyδ, 0 < δ < min1≤ ≤ π/ , there exist positive constants5 and γ,
0< γ < 1, such that

(4.13)

∣∣∣∣
∂2

∂ 2

{ ∏

∈Ξ

φ

(
√
) (ω)}∣∣∣∣ ≤ 5 (1− γ)(1/4)β

when | | ≥ δ√ , ∈ √ ([−π/ 1 π/ 1] × · · · × [−π/ π/ ]) and ω ∈ A ζ .

See, for a proof, Spitzer [10, p. 81].

5. Proof of Lemma 1.2

Suppose that the transition function ( ) satisfies Assumption 1.1 through 1.6.
Set =

√
θ in Lemma 4.1, then we have

(5.1)

| − |2 (2π ) /2

(#Ξ)
( )

= − 1
(2π) /2

∫
√

([− π

1
π

1
]×···×[− π π ])

exp

{
− 1√ ( − )

}

×
{

E
[( ∏

∈Ξ

ψ

(
√
) )

exp

{
1√ ( )

}
; ξ = ( )

∣∣∣∣ ξ0 = ( )

]}
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Take 0< α, ζ < ∞ and 0< δ < min1≤ ≤ π/ . Decompose the right hand side
of (5.1) as follows:

| − |2 (2π ) /2

(#Ξ)
( ) = 0( ) + 1( α)

+ 2( α) + 3( α δ) + 4( δ ζ) + 5( δ ζ) + 6( δ ζ) + 7( δ ζ)

where

0( ) = − 1
(2π) /2

∫

R
exp

{
− 1√ ( − )

} {
exp

{
−1

2
( )

}}
π ( )

1( α) =
1

(2π) /2

∫

| |>α
exp

{
− 1√ ( − )

} {
exp

{
−1

2
( )

}}
π ( )

2( α) = − 1
(2π) /2

∫

| |≤α
exp

{
− 1√ ( − )

}( {( ∏

∈Ξ

ψ

(
√
) π )

× E
[
exp

{
1√ ( )

}
; ξ = ( )

∣∣∣ ξ0 = ( )

]

− exp

{
−1

2
( )

}
π ( )

})

3( α δ) = − 1
(2π) /2

∫

α<| |≤√
δ

exp

{
− 1√ ( − )

}

×
{( ∏

∈Ξ

ψ

(
√
) π )

× E
[
exp

{
1√ ( )

}
; ξ = ( )

∣∣∣∣ ξ0 = ( )

]}

4( δ ζ) =
1

(2π) /2

∫

| |≤√
δ

exp

{
− 1√ ( − )

}

×
{( ∏

∈Ξ

ψ

(
√
) π )

× E
[
exp

{
1√ ( )

}
; ξ = ( ) A ζ

∣∣∣∣ ξ0 = ( )

]}

5( δ ζ) =
1

(2π) /2

∫

| |≤√
δ

exp

{
− 1√ ( − )

}

×
{( ∏

∈Ξ

ψ

(
√
) π )

× E
[(

1−
( ∏

∈Ξ

ψ

(
√
) − π ))
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× exp

{
1√ ( )

}
; ξ = ( ) A ζ

∣∣∣∣ ξ0 = ( )

]}

6( δ ζ) = − 1
(2π) /2

∫

| |>√
δ;
√

([− π

1
π

1
]×···×[− π π ])

exp

{
− 1√ ( − )

}

×
{

E
[( ∏

∈Ξ

ψ

(
√
) )

exp

{
1√ ( )

}
;

ξ = ( ) A ζ

∣∣∣∣ ξ0 = ( )

]}

and

7( δ ζ) = − 1
(2π) /2

∫
√

([− π

1
π

1
]×···×[− π π ])

exp

{
− 1√ ( − )

}

×
{

E
[( ∏

∈Ξ

ψ

(
√
) )

exp

{
1√ ( )

}
;

ξ = ( ) A ζ

∣∣∣∣ ξ0 = ( )

]}

A direct calculation shows that

0( ) =
| − |2

exp

{
− 1

2

(
− −1( − )

)}
π ( )

Let us estimate remaining terms1 through 7. We have

| 1( α)| ≤ 1
(2π) /2

∫

| |>α

∣∣∣∣
{

exp

{
−1

2
( )

}}∣∣∣∣ π ( )

which can be made arbitary small by takingα sufficiently large. We apply Lemmas
4.3, 4.4 and 4.6 to get an estimate of2( α):

| 2( α)| ≤ (2π)− /2
∫

| |≤α

∣∣∣∣
{( ∏

∈Ξ

ψ

(
√
) π )

× E
[
exp

{
1√ ( )

}
; ξ = ( )

∣∣∣∣ ξ0 = ( )

]

− exp

{
−1

2
( )

}
π ( )

}∣∣∣∣ → 0 as →∞

By Lemmas 2.6, 4.4 and 4.6, we may choose a positive constant1 so that

| 3( α δ)| ≤ (2π)− /2
1

∫

α<| |

(
1 + | |2

) −λ| |2 → 0 asα→∞
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By Lemmas 4.4 and 4.7, there exists a positive constant2 such that| 4( δ ζ)| ≤
2

− .
Using Lemmas 2.6, 2.7, 4.4, 4.5 and 4.6, there exists a positive constant 3 such

that

| 5( δ ζ)| ≤ (2π)− /2
3ζ

∫

R

(
1 + | |4

) −(1/2)λ| |2 → 0 asζ → +0

Takeβ and ζ as in Lemma 4.8. Then by Lemma 4.8, there exist positive constants 4

and γ, 0< γ < 1, such that

| 6( δ ζ)| ≤ 4(2π ) /2 (1− γ) β/4

By Lemma 2.3, there exists a positive constant5 such that

| 7( δ ζ)| ≤ 5 (2π ) /2 −

We see from the estimates given above that (1≤ ≤ 7) tend to zero as →∞
uniformly for , . This completes the proof of Lemma 1.2.

6. Some Lemmas for Theorems 1.1 and 1.2

Let be a positive integer. Set = (( )) ∈Ξ. Note that ( ) =
∑

( )= ( ).

In a similar way to (·) we define, for ( ) > 0

( )( ) =





1
( ) ( + ) if ( + ) =

0 otherwise,

and for ( ) = 0, ( )( ) = 1 if = − and 0 otherwise.
Suppose that the transition function ( ) satisfies Assumptions 1.1 and 1.3.

Then we may setµ( )
; =

∑
∈Z

( )( ) and ( ) = ( ( )µ( )
; ) ∈Ξ for , 1 ≤ ≤ .

Let (0), 1≤ ≤ , be the null matrices.

Lemma 6.1. Suppose that the transition function ( ) satisfies Assump-
tions 1.1and 1.3. Then, for every positive integer, we have

(6.1) ( ) =
−1∑

=0

(1) −1−

Proof. The lemma is trivial for = 1. Let us consider for> 1. By the definition
of ( ),

(6.2) ( ) = ( −1) + −1 (1)
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Indeed,

( )µ( )
; =

∑

′∈Ξ

∑

( + ′)= ′

′
−1
(

+ ′) ∑

( + )=

(
+ ′ +

)

+
∑

′∈Ξ

∑

( + ′)= ′

−1
(

+ ′) ∑

( + )=

( − ′)
(

+ ′ +
)

=
∑

′∈Ξ

( −1)
′ µ( −1)

′; ′ +
∑

′∈Ξ

( −1)
′ ′ µ ′ ;

Suppose that the lemma is true for =′−1. Then by (6.2) and the induction hypoth-
esis, we have

( ′) =

′−2∑

=0

(1) ′−1− +
′−1 (1) =

′−1∑

=0

(1) ′−1−

The proof now follows by mathematical induction.

Suppose that the transition function ( ) satisfies Assumptions 1.1, 1.2 and 1.4.
Denote by1 the (#Ξ)-dimensional column vector with all the components equal to 1.
Then, by multiplying both sides (6.1) on the left by and on theright by 1, we have

(6.3)
∑

∈Ξ

π ( )µ( )
; =

∑

∈Ξ

π µ ; for 1≤ ≤

By Assumption 1.4, we may set( )
; =

∑
∈Z

( )( ), 1 ≤ , ≤ . Put ( ) =

( ( ) ( )
; ) ∈Ξ, ( ) = ( ( )µ( )

; µ
( )

; ) ∈Ξ and

( )
; =

∑

∈Z

(
− µ( )

;

)(
− µ( )

;

) ( )( )

for 1≤ , ≤ . Then we have

(6.4)
∑

∈Ξ

π ( ) ( )
; = ( )1− ( )1

Let (0) and (0), 1≤ , ≤ , be the null matrices.

Lemma 6.2. Suppose that the transition function ( ) satisfies Assump-
tions 1.1and 1.4. Then for every positive integer,

( ) =
−1∑

=0

(1) −1−

+
∑

0≤ 1≤ −2

∑

0≤ 2≤ −2− 1

(
2 (1) −2− 1− 2 (1) 1 + 2 (1) −2− 1− 2 (1) 1

)
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Proof. The lemma is trivial for = 1. By analogous way to (6.2),we have

(6.5) ( ) = ( −1) + −1 (1) + ( −1) (1) + ( −1) (1)

for every positive integer . Suppose that the lemma is true for = ′−1. Then by (6.5)
and the induction hypothesis, we have

( ′) =

( ′−2∑

=0

(1) ′−2− +
∑

0≤ 1≤ ′−3

∑

0≤ 2≤ ′−3− 1

(
2 (1) ′−3− 1− 2 (1) 1

+ 2 (1) ′−3− 1− 2 (1) 1

))
+

′−1 (1)

+

( ′−2∑

=0

(1) ′−2−
)

(1) +

( ′−2∑

=0

(1) ′−2−
)

(1)

=

′−1∑

=0

(1) ′−1− +

′−2∑

1=0

′−2− 1∑

2=0

2 (1) ′−2− 1− 2 (1) 1

+

′−2∑

1=0

′−2− 1∑

2=0

2 (1) ′−2− 1− 2 (1) 1

The proof follows by mathematical induction.

Suppose that the transition function ( ) satisfies Assumptions 1.1, 1.2 and 1.4.
Then, by (6.4) and Lemma 6.2, we have, for every positive integer ,

∑

∈Ξ

π ( ) ( )
;(6.6)

= (1)1 +
∑

0≤ ≤ −2

( − 1− )
( (1) (1) + (1) (1))1− ( )1

Denote by a matrix of order (#Ξ) with all the row vectors equal to .

Lemma 6.3. Suppose that is ergodic. Then( − + ) has its inverse matrix,
and ( − + )−1 =

∑∞
=0( − ) .

See, for a proof, Hatori and Mori [3, p. 107].
Suppose that is ergodic. Let be a positive integer. Then, by Lemma 6.3, we

may define

(6.7) ( ) =
( ( ))

∈Ξ
=
(
− +

)−1
=

∞∑

′=0

(
−

) ′



LOCAL LIMIT THEOREM IN PERIODIC ENVIRONMENT 887

and we have

(6.8) ( ) = ( ) =

Define = (1). Set

µ( ) =
(
µ( )

;1 . . . µ( )
;

)
( )(θ) =

( ( ) (µ( ) θ))
∈Ξ

( )(θ ) = | − ( )(θ)|

for θ ∈ R and ∈ C. Note that ( )(0) = . By (1.4), (∂ ( )/∂ )(0 1) 6= 0. Thus we
may set

( ) =
∂2 ( )

∂θ ∂θ
(0 1)

/
∂ ( )

∂
(0 1) and ( ) =

( ( ))
1≤ ≤

Lemma 6.4. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.4. Then

(6.9) ( ) =
( ( ) + ( ) ( ) ( ) + ( ) ( ) ( ))1

for every positive integer .

Proof. Let{ξ( )} ≥0 be a Markov chain onΞ with the transition matrix . Set

(6.10) ( ) = #{1≤ ′ ≤ | ξ( )
′−1 = ξ( )

′ = } and ( )
; =

∑

∈Ξ

µ( )
;

( )

Under Assumptions 1.1 and 1.2, is ergodic. Moreover, by (6.3) we have

∑

∈Ξ

π ( )µ( )
; = 0 for 1≤ ≤

Thus we may apply Lemma 4.2 to{ξ( )} ≥0 to have

(6.11) ( ) = lim
→∞

1
π

E
[

( )
;

( )
; ; ξ( ) =

∣∣∣ ξ( )
0 =

]
1≤ ≤

By analogous way to Hatori and Mori [3, p. 123], in which they treated the case
that = 1, we may see that the right hand side of (6.11) equals the right hand side
of (6.9). Thus we obtain (6.9).

Lemma 6.5. If Q is ergodic, then = −∑ −1
′=0

′

+ + .

Proof. By (6.7) and (6.8), we have

(6.12) = − +
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Therefore the lemma is true for = 1. Suppose that the lemma is true for = ′ − 1.
Then

′

=
( ′−1) = −

′−1∑

′′=0

′′

+ ′ +

The proof follows by mathematical induction.

Lemma 6.6. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.4. Then for every positive integer,

( ) = ( )1−
∑

0≤ ≤ −2

( − 1− )
( (1) (1) + (1) (1))1(6.13)

+ (1) (1)1 + (1) (1)1

Proof. By Lemma 6.1, we have

(6.14) ( ) ( ) ( )1 = (1)

( −1∑

′=0

′

)
( )

( −1∑

′′=0

′′

)
(1)1

By (6.7),

(6.15)
(

( )
)−1

= −1 + −

Multiply both sides (6.15) on the left by , and on the right by( ). Thus we obtain

(6.16) = ( ) +
∑

1≤ ≤ −1

( − ) ( )

By applying (6.8) and (6.12) to (6.16),

(6.17) =

( −1∑

=0

)
( ) − ( − 1)

By multiplying both sides (6.17) on the right by
∑ −1

=0 , we obtain

( −1∑

=0

)
( )

( −1∑

=0

)
=

−1∑

=0

+ ( − 1)

By Lemma 6.5, we have

(6.18)

( −1∑

=0

)
( )

( −1∑

=0

)
= −

∑

0≤ ≤ −2

( − − 1) +
3
2

( − 1) +
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Substitute (6.18) to (6.14), and note Assumption 1.3. Thus we have

( ) ( ) ( )1 = −
∑

0≤ ≤ −2

( − − 1) (1) (1)1 + (1) (1)1

By Lemma 6.4, we obtain (6.13). The proof is complete.

Set ( ) = ( ( )
; )1≤ ≤ and ( ) =

∑
∈Ξ

π ( ) ( ) + ( ). Thus by (6.6) and
Lemma 6.6, we have the following lemma.

Lemma 6.7. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.4. Then for every positive integer , ( ) = .

Lemma 6.8. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.4. Put

0 = max{ 0(0 0) 0(0 ± e ) 1≤ ≤ }

Then the transition function defined by′( ) = 0( ) satisfiesAssumptions 1.1
through 1.6.

The proof is omitted.

Lemma 6.9. Suppose that the transition function ( ) satisfies Assump-
tions 1.1 through 1.4. Let 0 be as inLemma 6.8. Then we have

lim
→∞

(
(2π 0) /2

0( )(6.19)

− (#Ξ)| |−1/2 exp

{
− 1

2 0

(
− −1( − )

)}
π ( )

)
= 0

and

lim
→∞
| − |2

0

(
(2π 0) /2

0( )(6.20)

−(#Ξ)| |−1/2 exp

{
− 1

2 0

(
− −1( − )

)}
π ( )

)
= 0

uniformly for , ∈ Z , where is positive definite.
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Proof. Since ′( ) in Lemma 6.8 satisfies Assumptions 1.1 through 1.6, we
have from Lemma 1.1 (2π ) /2 ′( ) converges to

(#Ξ)| ( 0)|−1/2 exp

{
− 1

2

(
− ( ( 0))−1( − )

)}
π ( )

uniformly for , ∈ Z and ( 0) is positive definite. By Lemma 6.7, is positive
definite and (6.19) holds. Similary, by Lemma 1.2, we obtain (6.20).

7. Proof of Theorems 1.1 and 1.2

Suppose that the transition function ( ) satisfies Assumption 1.1 through 1.4.
Let 0 be the positive integer given in Lemma 6.8. In order to prove Theorem 1.1, it
suffices to show that

lim
→∞

sup
∈Z

∣∣∣∣(2π( 0 + ′)) /2
0+ ′( )

− (#Ξ)| |−1/2 exp

{
− 1

2( 0 + ′)

(
− −1( − )

)}
π ( )

∣∣∣∣ = 0

for every ′, 0≤ ′ ≤ 0 − 1. By Lemma 6.9, we may write

(
2π( 0 + ′)

) /2
0+ ′( )

= (#Ξ)| |−1/2 exp

{
− 1

2( 0 + ′)

(
− −1( − )

)}
π ( )

+ ′
1( ) + ′

2( ) + (1)

where

′
1( ) = (#Ξ)| |−1/2 exp

{
− 1

2 0

(
− −1( − )

)}
π ( )

− (#Ξ)| |−1/2 exp

{
− 1

2( 0 + ′)

(
− −1( − )

)}
π ( )

and

′
2( ) = (#Ξ)| |−1/2

∑

′∈Z

′

( ′) exp

{
− 1

2 0

(
− ′ −1( − ′)

)}
π ( )

− (#Ξ)| |−1/2 exp

{
− 1

2 0

(
− −1( − )

)}
π ( )

and (1) tends to zero as→ ∞ uniformly for , . We will show that the terms′
1

and ′
2 go to zero uniformly in , as →∞.
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It follows from the inequality| − − − | ≤ − | − | for > > 0 that
| ′

1( )| ≤ ′
1/ , where ′

1 is a positive constant.
Since is a symmetric matrix and positive definite, all its eigenvalues{λ }1≤ ≤

are positive and there exists an orthogonal matrix = ( )1≤ ≤ such that

(7.1) = ∗

where = diag{λ1 . . . λ } and ∗ is the transposed matrix of . Then we have

exp

{
− 1

2 0

(
− ′ −1( − ′)

)}
− exp

{
− 1

2 0

(
− −1( − )

)}

=
∑

′=1

(
exp

{
− 1

2 0λ ′

(∑

=1

′

(
− ′ )

)2}

− exp

{
− 1

2 0λ ′

(∑

=1

′

(
−

))2})

× exp

{
− 1

2 0

∑

1≤ ≤ ′−1

1
λ

(∑

=1

(
− ′ )

)2

− 1
2 0

∑

′+1≤ ≤

1
λ

(∑

=1

( − )

)2}

Thus

| ′
2( )| ≤ (#Ξ)| |−1/2

∑

′∈Z

′

( ′)∑

′=1

∣∣∣∣∣exp

{
− 1

2 0λ ′

(∑

=1

′

(
− ′ )

)2}

−exp

{
− 1

2 0λ ′

(∑

=1

′( − )

)2}∣∣∣∣∣ π ( )

Note that

(7.2)
∣∣∣ − 2/ − 2/

∣∣∣ =

∣∣∣∣
∫

2 − 2/

∣∣∣∣ ≤ ′
2

1√ | − |

where ′
2 is positive constant. Thus, by Assumption 1.3, there existspositive constant

′
3 such that| ′

2( )| ≤ ′
3/
√

. The proof is complete.
In order to prove the Theorem 1.2, it suffices to show that

lim
→∞

1

0 + ′ sup
∈Z
| − |2

∣∣∣∣
(
2π( 0 + ′)

) /2
0+ ′( )

− (#Ξ)| |−1/2 exp

{
− 1

2( 0 + ′)

(
− −1( − )

)}
π ( )

∣∣∣∣ = 0
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for every ′, 0≤ ′ ≤ 0 − 1. We may write

| − |2
0 + ′

((
2π( 0 + ′)

) /2
0+ ′( )

− (#Ξ)| |−1/2 exp

{
− 1

2( 0 + ′)

(
− −1( − )

)}
π ( )

)

= ′
1( ) + ′

2( ) + ′
3( ) + ′

4( )

where

′
1( ) =

| − |2
0 + ′

(
0 + ′

0

) /2 ∑

′∈Z

′( ′)

(
(2π 0) /2

0

( ′ )

− (#Ξ)| |−1/2 exp

{
− 1

2 0

(
− ′ −1( − ′)

)}
π ( )

)

′
2( ) =

| − |2
0 + ′ (#Ξ)| |−1/2

∑

′∈Z

′

( ′) exp

{
− 1

2 0

(
− ′ −1( − ′)

)}
π ( )

−| − |2
0 + ′ (#Ξ)| |−1/2 exp

{
− 1

2 0

(
− −1( − )

)}
π ( )

′
3( ) = (#Ξ)| |−1/2 | − |2

0 + ′ exp

{
− 1

2 0

(
− −1( − )

)}
π ( )

− (#Ξ)| |−1/2 | − |2
0 + ′ exp

{
− 1

2( 0 + ′)

(
− −1( − )

)}
π ( )

′
4( ) =

((
0 + ′

0

) /2

− 1

)
(#Ξ)| |−1/2 | − |2

0 + ′

×
∑

′∈Z

′

( ′)exp

{
− 1

2 0

(
− ′ −1( − ′)

)}
π ( )

We will show that the terms ′
1, ′

2, ′
3 and ′

4 go to zero uniformly for , as
→∞.

Note that

(7.3) | − |2 ≤ 2| − ′|2 + 2| ′ − |2

Thus, by Lemma 6.9 and Assumption 1.4, there exist positive constants ′
1 and ′

2 such
that

| ′
1( )| ≤ ′

1
1

0
sup
′∈Z
| − ′|2

∣∣∣∣(2π 0) /2
0(

′ )

− (#Ξ)| |−1/2 exp

{
− 1

2 0

(
− ′ −1( − ′)

)}
π ( )

∣∣∣∣
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+ ′
2

1

0
sup
′∈Z

∣∣∣∣(2π 0) /2
0(

′ )

− (#Ξ)| |−1/2 exp

{
− 1

2 0

(
− ′ −1( − ′)

)}
π ( )

∣∣∣∣→ 0

as →∞

Since | − |2 = | − ′|2 + (| − |2− | − ′|2), we have ′
2( ) ≤ ′

21( ) + ′
22( ),

where

′
21( ) = (#Ξ)| |−1/2

∑

′∈Z

′ ( ′)
| | − |2 − | − ′|2 |

0 + ′

× exp

{
− 1

2 0

(
− ′ −1( − ′)

)}
π ( )

′
22( ) = (#Ξ)| |−1/2

×
∑

′∈Z

′ ( ′)
1

0 + ′

∣∣∣∣| − ′|2 exp

{
− 1

2 0

(
− ′ −1( − ′)

)}

− | − |2 exp

{
− 1

2 0

(
− −1( − )

)}∣∣∣∣π ( )

Note that the inequality|| − |2 − | − ′|2| ≤ | ′ − |2 + 2| − ′|| ′ − |. Thus,
by Assumption 1.4, there exists a positive constant′

3 such that ′
21( ) ≤ ′

3
−1/2.

By (7.1), the right hand side of ′22( ) equals

(#Ξ)| |−1/2
∑

′∈Z

′

( ′) 1

0 + ′

×
∣∣∣∣
(∑

=1

(∑

=1

(
− ′ )

)2)
exp

{
− 1

2 0

∑

=1

1
λ

(∑

=1

(
− ′ )

)2}

−
(∑

=1

(∑

=1

(
−

))2)
exp

{
− 1

2 0

∑

=1

1
λ

(∑

=1

(
−

))2}∣∣∣∣

Note that

(∑

=1

2

)
exp

{
−
∑

=1

1
λ

2

}
−
(∑

=1

2

)
exp

{
−
∑

=1

1
λ

2

}

=
∑

1=1

2
1
exp

{
− 1
λ 1

2
1

} ∑

1≤ 2≤
2 6= 1

(
exp

{
− 1
λ 2

2
2

}
− exp

{
− 1
λ 2

2
2

})
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× exp




−

∑

1≤ 3≤ 2−1
3 6= 1

1
λ 3

2
3
−

∑

2+1≤ 4≤
4 6= 1

1
λ 4

2
4





+
∑

1=1

(
2

1
exp

{
− 1
λ 1

2
1

}
− 2

1
exp

{
− 1
λ 1

2
1

})
exp




−

∑

1≤ 2≤
2 6= 1

1
λ 2

2
2





Thus we have

′
22( ) ≤ (#Ξ)| |−1/2 1

0 + ′

∑

′∈Z

′

( ′)

×
∑

1=1

(∑

=1
1

(
− ′ )

)2

exp

{
− 1

2 0λ 1

(∑

=1
1

(
− ′ )

)2}

×
∑

1≤ 2≤
2 6= 1

∣∣∣∣exp

{
− 1

2 0λ 2

(∑

=1
2

(
− ′ )

)2}

− exp

{
− 1

2 0λ 2

(∑

=1
2

(
−

))2}∣∣∣∣π ( )

+ (#Ξ)| |−1/2 1

0 + ′

∑

′∈Z

′ ( ′)

×
∑

3=1

∣∣∣∣
(∑

=1
3

(
− ′ )

)2

exp

{
− 1

2 0λ 3

(∑

=1
3

(
− ′ )

)2}

−
(∑

=1
3

(
−

))2

exp

{
− 1

2 0λ 3

(∑

=1
3

(
−

))2}∣∣∣∣π ( )

Noting (7.2) and that| 2 −(1/ ) 2 − 2 −(1/ ) 2| ≤ ′
4

√ | − |, where ′
4 is a positive

constant, we see that there exists a positive constant′
5 such that ′

22( ) ≤ ′
5/
√

.
By analogous way to ′

1( ) there exists a positive constant′6 such that| ′
3( )| ≤

′
6/ .

Since 2 − 2
is bounded, by (7.3) there exists a positive constant′

7 such that
| ′

4( )| ≤ ′
7/ . The proof is complete.

REMARK. Consider aRWPE on Z with the transition function ( ), where
( ) > 0 if = ± e , 1 ≤ ≤ , and ( ) = 0 otherwise. Such aRWPE

does not satisfy Assumption 1.2. Nevertheless, for 1 and 2-dimensional case, by mod-
ifying the transition function we may apply Theorems 1.1 and1.2 to the RWPE.
For 1-dimensional case, we may assume that its period is even. Set ′( ) =
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2(2 2 ). Then ′( ) is a transition function onZ with period /2 and satisfies
Assumptions 1.1 through 1.4. For 2-dimensional case, we mayassume thats = ( ).
Set =

(
1 −1
1 1

)
and ′( ) = 2( ). Then ′( ) is the transition function

on Z2 with period s and satisfies Assumptions 1.1 through 1.4.
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