ON THE GENERALIZED NOVIKOV FIRST EXT GROUP MODULO A PRIME

Hirofumi NAKAI and Douglas C. RAVENEL

(Received March 28, 2001)

1. Introduction

Let $B P$ be the Brown-Peterson spectrum for a fixed prime p, whose homotopy is $B P_{*} \cong \mathbf{Z}_{(p)}\left[v_{1}, v_{2}, \ldots, v_{n}, \ldots\right]$. In [6] §6.5, the second author has introduced the spectrum $T(m)$, whose $B P$-homology is

$$
B P_{*}(T(m)) \cong B P_{*}\left[t_{1}, \ldots, t_{m}\right] .
$$

This is homotopy equivalent to $B P$ below dimension $2 p^{m+1}-3$.
The Adams-Novikov E_{2}-term converging to the homotopy groups of $T(m)$

$$
E_{2}^{*, *}(T(m))=\operatorname{Ext}_{B P_{*}(B P)}\left(B P_{*}, B P_{*}(T(m))\right)
$$

is isomorphic by [6, Corollary 7.1.3] to

$$
\operatorname{Ext}_{\Gamma(m+1)}\left(B P_{*}, B P_{*}\right),
$$

where

$$
\Gamma(m+1)=B P_{*}(B P) /\left(t_{1}, \ldots, t_{m}\right) \cong B P_{*}\left[t_{m+1}, t_{m+2}, \ldots\right] .
$$

In particular $\Gamma(1)=B P_{*}(B P)$ by definition. To get the structure of $\operatorname{Ext}_{\Gamma(m+1)}\left(B P_{*}, B P_{*}\right)$, we will use the chromatic method introduced in [3].

Denote an ideal $\left(p, v_{1}, \ldots, v_{n-1}\right)$ of $B P_{*}$ by I_{n}, and a comodule

$$
v_{n+s}^{-1} B P_{*} /\left(p, v_{1}, \ldots, v_{n-1}, v_{n}^{\infty}, \ldots, v_{n+s-1}^{\infty}\right) .
$$

by M_{n}^{s}. Then we can consider the chromatic spectral sequence converging to

$$
\operatorname{Ext}_{\Gamma(m+1)}\left(B P_{*}, B P_{*} / I_{n}\right)
$$

with

$$
E_{1}^{s, t}=\operatorname{Ext}_{\Gamma(m+1)}^{t}\left(B P_{*}, M_{n}^{s}\right) .
$$

Shimomura calls this Ext group the general chromatic E_{1}-term.
The limiting case as m approaches infinity is discussed by the second author in [7]. In this paper we will determine the module structure (over an appropriate generalization of $\left.k(1)_{*}\right)$ of

$$
\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(B P_{*}, M_{1}^{1}\right)
$$

in Theorem 6.1, which is closely related to the group

$$
\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*}, B P_{*} /(p)\right) .
$$

The structure of these two groups are described below in Theorems 6.1 and 7.1. Notice that our target $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*}, B P_{*} /(p)\right)$ is different from the localized object, which is determined in Kamiya-Shimomura [2]. Hereafter we will often abbreviate $\operatorname{Ext}_{\Gamma(m+1)}\left(B P_{*}, M\right)$ by $\operatorname{Ext}_{\Gamma(m+1)}(M)$ for a $\Gamma(m+1)$-comodule M.

We begin by recalling the analogous result for $m=0$, which was obtained long ago by Miller-Wilson in [4] (and reformulated in [6] as Theorems 5.2.13, Corollary 5.2.14, and Theorem 5.2.17). Recall that we have the 4 -term exact sequence

$$
\begin{equation*}
0 \rightarrow B P_{*} /(p) \rightarrow M_{1}^{0} \rightarrow M_{1}^{1} \rightarrow N_{1}^{2} \rightarrow 0 \tag{1.1}
\end{equation*}
$$

obtained by splicing the two short exact sequences

$$
0 \longrightarrow B P_{*} /(p) \longrightarrow M_{1}^{0} \longrightarrow N_{1}^{1} \longrightarrow 0
$$

and

$$
0 \longrightarrow N_{1}^{1} \longrightarrow M_{1}^{1} \longrightarrow N_{1}^{2} \longrightarrow 0
$$

From (1.1) we see that $\operatorname{Ext}_{\Gamma(1)}^{1}\left(B P_{*} /(p)\right)$ is a certain subquotient of

$$
\begin{equation*}
\operatorname{Ext}_{\Gamma(1)}^{1}\left(M_{1}^{0}\right) \oplus \operatorname{Ext}_{\Gamma(1)}^{0}\left(M_{1}^{1}\right) \tag{1.2}
\end{equation*}
$$

For the first summand, we have (for p odd)

$$
\operatorname{Ext}_{\Gamma(1)}\left(M_{1}^{0}\right)=\operatorname{Ext}_{\Gamma(1)}\left(v_{1}^{-1} B P_{*} /(p)\right) \cong K(1)_{*} \otimes E\left(h_{1,0}\right)
$$

In particular we have

$$
\operatorname{Ext}_{\Gamma(1)}^{1}\left(M_{1}^{0}\right) \cong K(1)_{*}\left\{h_{1,0}\right\}
$$

It turns out that the image of $\operatorname{Ext}_{\Gamma(1)}^{1}\left(B P_{*} /(p)\right)$ into this group is $k(1)_{*}\left\{h_{1,0}\right\}$, which is the v_{1}-torsion free component of $\operatorname{Ext}_{\Gamma(1)}^{1}\left(B P_{*} /(p)\right)$.

To describe $\operatorname{Ext}_{\Gamma(1)}^{0}\left(M_{1}^{1}\right)$, we recall the elements $x_{k} \in v_{2}^{-1} B P_{*} /(p)$ defined by

$$
x_{0}=v_{2},
$$

$$
\begin{aligned}
x_{1} & =v_{2}^{p}-v_{1}^{p} v_{2}^{-1} v_{3}, \\
x_{2} & =x_{1}^{p}-v_{1}^{p^{2}-1} v_{2}^{p^{2}-p+1}-v_{1}^{p^{2}+p-1} v_{2}^{p^{2}-2 p} v_{3}, \\
\text { and } \quad x_{k} & =\left\{\begin{array}{l}
x_{k-1}^{2} \\
x_{k-1}^{p}-2 v_{1}^{(p+1)\left(p^{k-1}-1\right)} v_{2}^{(p-1) p^{k-1}+1}(p>2)
\end{array} \quad \text { for } k \geq 3,\right.
\end{aligned}
$$

and integers $a(k)$ defined by

$$
\begin{aligned}
& a(0)=1 \\
& a(1)=p \\
& a(k)=\left\{\begin{array}{ll}
3 \cdot 2^{k-1} \\
p^{k}+p^{k-1}-1 & (p=2) \\
(p>2)
\end{array} \quad \text { for } k \geq 2\right.
\end{aligned}
$$

Then we have
Theorem 1.3 ([4]). As a $k(1)_{*}$-module, $\operatorname{Ext}_{\Gamma(1)}^{0}\left(M_{1}^{1}\right)$ is the direct sum of
(a) the cyclic submodules generated by $x_{k}^{s} / v_{1}^{a(k)}$ for $k \geq 0$ and $p \nmid s \in \mathbf{Z}$; and
(b) $K(1)_{*} / k(1)_{*}$, generated by $1 / v_{1}^{j}$ for $j \geq 1$.

The odd prime case follows from the next proposition ([3, Proposition 5.4]). We refer the reader to the original sources for the case $p=2$.

Proposition 1.4. Let p be odd. Modulo $\left(p, v_{1}^{1+a(k)}\right)$, the differential

$$
d=\eta_{R}-\eta_{L}: v_{2}^{-1} B P_{*} /(p) \rightarrow v_{2}^{-1} B P_{*} /(p) \otimes_{B P_{*}} B P_{*}(B P)
$$

on x_{k} is

$$
d\left(x_{k}\right) \equiv \begin{cases}v_{1} t_{1}^{p} & \text { for } k=0 \\ v_{1}^{p} v_{2}^{p-1} t_{1} & \text { for } k=1 \\ 2 v_{1}^{a(k)} v_{2}^{(p-1) p^{i-1}} t_{1} & \text { for } k \geq 2\end{cases}
$$

Before Theorem 1.3 was proved, the naive conjecture about $\operatorname{Ext}_{\Gamma(1)}^{1}\left(B P_{*} /(p)\right)$ would have had the exponents $a(k)$ being p^{k} for all $k \geq 0$. It was clear that

$$
\frac{v_{2}^{s p^{k}}}{v_{1}^{p^{k}}} \in \operatorname{Ext}_{\Gamma(1)}^{0}\left(M_{1}^{1}\right),
$$

but the existence of "deeper" elements such as

$$
\frac{x_{2}}{v_{1}^{a(2)}}=\frac{v_{2}^{p^{2}}-v_{1}^{p^{2}-1} v_{2}^{p^{2}-p+1}-v_{1}^{p^{2}} v_{2}^{-p} v_{3}^{p}}{v_{1}^{p^{2}+p-1}}
$$

and

$$
\frac{x_{3}}{v_{1}^{a(3)}}=\frac{v_{2}^{p^{3}}-v_{1}^{p^{3}-p} v_{2}^{p^{3}-p^{2}+p}-v_{1}^{p^{3}} v_{2}^{-p^{2}} v_{3}^{p^{2}}-2 v_{1}^{p^{3}+p^{2}-p-1} v_{2}^{p^{3}-p^{2}+1}}{v_{1}^{p^{3}+p^{2}-1}}
$$

(and that of $\beta_{s p^{2} / a(2)}$ and $\beta_{s p^{3} / a(3)}$ in $\operatorname{Ext}_{\Gamma(1)}^{1}\left(B P_{*} /(p)\right)$ for $\left.s>1\right)$ came as a surprise, as did the fact that the limiting value (as $k \rightarrow \infty$) of $a(k) / p^{k}$ is $(p+1) / p$ (this limit is attained for $p=2$ but not for odd primes) instead of 1 .

Using these results one can deduce
Theorem 1.5. For odd prime p, the group $\operatorname{Ext}_{\Gamma(1)}^{1}\left(B P_{*} /(p)\right)$ is isomorphic to

$$
k(1)_{*}\left\{\beta_{s p^{k} / j}: s \geq 0, p \nmid s, k \geq 0 \text { and } 0<j \leq a_{s}(k)\right\} \oplus k(1)_{*}\left\{h_{1,0}\right\}
$$

where $\beta_{s p^{k} / j}$ is the image of x_{k}^{s} / v_{1}^{j} under the connecting homomorphism

$$
\delta: \operatorname{Ext}_{\Gamma(1)}^{0}\left(N_{1}^{1}\right) \rightarrow \operatorname{Ext}_{\Gamma(1)}^{1}\left(N_{1}^{0}\right)
$$

and $a_{S}(k)=\left\{\begin{array}{cc}p^{k} & (s=1) \\ a(k) & (s>1)\end{array}\right.$.
Our results (Theorems 6.1 and 7.1 below) have the same form as Theorems 1.3 and 1.5 , but with x_{k} and $a(k)$ replaced by \widehat{x}_{k} and $\widehat{a}(k)$ defined in (4.1) and (4.3), and with $k(1)_{*}$ replaced by a bigger ring $v_{2}^{-1} \widehat{k}(1)_{*}$ defined in (2.1). The $\widehat{a}(k)$ are the same for all $m>0$ (except when $m=1$ and $p=2$) although the \widehat{x}_{k} show a slight difference between the cases $m=1$ and $m>1$. The case $m=1$ and $p=2$ is different and has to be treated separately. For $m>1$ there are no special conditions for the prime 2 . The asymptotic behavior of the exponents is given by

$$
\lim _{k \rightarrow \infty} \frac{\widehat{a}(k)}{p^{k}}=\frac{p^{3}+p^{2}}{p^{3}-1}
$$

a slightly larger value than for the case $m=0$. However for $m>0$ there are no deeper elements in $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*} /(p)\right)$, i.e., no elements of the form $\widehat{\beta}_{s p^{k} / j}$ with $p \nmid s$ and $j>p^{k}$.

We found a new form of periodicity in our statement with no precedent in Theorem 1.3. For example, (except for $p=2$ and $m=1$) we have

$$
\begin{array}{rlrl}
\widehat{x}_{k}-\widehat{x}_{k-1}^{p} & =-v_{1}^{p^{k-1}(p+1)} v_{2}^{p^{k-2}\left(p^{m+2}-p-1\right)} \widehat{x}_{k-3}^{p-1}\left(\widehat{x}_{k-3}-\widehat{x}_{k-4}^{p}\right) & & \text { for } k \geq 5, \\
\text { and } & \widehat{a}(k) & =p^{k}+p^{k-1}+\widehat{a}(k-3) & \\
\text { for } k \geq 4 .
\end{array}
$$

A similar result for the chromatic module M_{2}^{1} is obtained in a joint work with Ippei Ichigi [1]. There we get a similar periodicity with period 4 instead of 3 when $m \geq 5$.

We obtained our result in the summer of 1999. On the other hand, KamiyaShimomura [2] told us that they have determined all the structure of $\operatorname{Ext}_{\Gamma(m+1)}^{*}\left(M_{1}^{1}\right)$ in the fall of 1999 independently.

We are grateful to the referee for suggesting some corrections to an earlier draft of this paper.

2. Prelimaries

For a $\Gamma(m+1)$-comodule M, consider the cobar complex

$$
\left\{C_{\Gamma(m+1)}^{n}(M), d_{n}\right\}_{n \geq 0}
$$

which is determined by

$$
C_{\Gamma(m+1)}^{n}(M)=\underbrace{\Gamma(m+1) \otimes_{B P_{*}} \cdots \otimes_{B P_{*}} \Gamma(m+1)}_{n \text {-factors }} \otimes_{B P_{*}} M,
$$

and

$$
d_{n}: C_{\Gamma(m+1)}^{n}(M) \rightarrow C_{\Gamma(m+1)}^{n+1}(M)
$$

Then $\operatorname{Ext}_{\Gamma(m+1)}(M)$ is the cohomology of this cobar complex. By the change-of-rings isomorphism (cf. [6, Theorem 6.1.1]), we have

$$
\begin{aligned}
\operatorname{Ext}_{\Gamma(m+1)}\left(M_{n}^{0}\right) & \cong \operatorname{Ext}_{\Gamma(1)}\left(M_{n}^{0} \otimes_{B P_{*}} B P_{*}(T(m))\right) \\
& \cong \operatorname{Ext}_{\Sigma(n)}\left(K(n)_{*}, K(n)_{*}(T(m))\right)
\end{aligned}
$$

where $\Sigma(n)=K(n)_{*} \otimes_{B P_{*}} B P_{*}(B P) \otimes_{B P_{*}} K(n)_{*}$. This object is already known by [6, Corollary 6.5.6].

In order to avoid the excessive appearance of the index m, we will hereafter use the following notations.

$$
\left\{\begin{align*}
\omega & =p^{m}, \tag{2.1}\\
\widehat{v}_{i} & =v_{m+i}, \\
\widehat{t}_{i} & =t_{m+i}, \\
\widehat{h}_{i, j} & =h_{m+i, j}, \\
\widehat{K}(n)_{*} & =K(n)_{*}\left[v_{n+1}, \ldots, v_{n+m}\right], \\
\text { and } \widehat{k}(n)_{*} & =k(n)_{*}\left[v_{n+1}, \ldots, v_{n+m}\right],
\end{align*}\right.
$$

where $h_{m+i, j}$ is the cocycle represented by $t_{m+i}^{p^{j}}$.
Theorem 2.2 ([6, Corollary 6.5.6]). If $n<2(p-1)(m+1) / p$ and $n<m+2$, then

$$
\operatorname{Ext}_{\Gamma(m+1)}\left(M_{n}^{0}\right) \cong \widehat{K}(n)_{*} \otimes E\left(\widehat{h}_{i, j}: 1 \leq i \leq n, 0 \leq j \leq n-1\right)
$$

In this paper we will need this result only for $n=2$, for which it covers the cases $m>0$ for odd p and $m>1$ for $p=2$. For the case $p=2$ and $m=1$, we need

Theorem 2.3 ([5]). If $p=2$ and $m=1$, then

$$
\operatorname{Ext}_{\Gamma(2)}\left(M_{2}^{0}\right) \cong \widehat{K}(2)_{*} \otimes P\left(\widehat{h}_{1,0}, \widehat{h}_{1,1}\right) /\left(\widehat{h}_{1,1}^{2}+v_{2}^{2} \widehat{h}_{1,0}^{2}\right) \otimes E\left(\widehat{h}_{2,0}, \widehat{h}_{2,1}, \rho\right)
$$

where $\rho=\widehat{h}_{3,1}+v_{2}^{5} \widehat{h}_{3,0}$.
This information allow us to determine the structure of $\operatorname{Ext}_{\Gamma(m+1)}\left(M_{1}^{1}\right)$ using the Bockstein spectral sequence. In fact, we use the following convenient lemma.

Lemma 2.4 (cf. [3, Remark 3.11]). Assume that there exists a $\widehat{k}(1)_{*}$-submodule B^{t} of $\operatorname{Ext}_{\Gamma(m+1)}^{t}\left(M_{1}^{1}\right)$ for each $t<N$, such that the following sequence is exact:

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{2}^{0}\right) \xrightarrow{1 / v_{1}} B^{0} \xrightarrow{v_{1}} B^{0} \xrightarrow{\delta} \cdots \\
& \cdots \xrightarrow{\delta} \operatorname{Ext}_{\Gamma(m+1)}^{t}\left(M_{2}^{0}\right) \xrightarrow{1 / v_{1}} B^{t} \xrightarrow{v_{1}} B^{t} \xrightarrow{\delta} \cdots
\end{aligned}
$$

where δ is a restriction of the coboundary map

$$
\delta: \operatorname{Ext}_{\Gamma(m+1)}^{t}\left(M_{1}^{1}\right) \rightarrow \operatorname{Ext}_{\Gamma(m+1)}^{t+1}\left(M_{2}^{0}\right)
$$

Then the inclusion $i_{t}: B^{t} \rightarrow \operatorname{Ext}_{\Gamma(m+1)}^{t}\left(M_{1}^{1}\right)$ is an isomorphism between $\widehat{k}(1)_{*}$-modules for each $t<N$.

Proof. Because $\operatorname{Ext}_{\Gamma(m+1)}^{t}\left(M_{1}^{1}\right)$ is a v_{1}-torsion module, we can filter B^{t} by

$$
B^{t}(i)=\left\{x \in B^{t}: v_{1}^{i} x=0\right\}
$$

and $\operatorname{Ext}_{\Gamma(m+1)}^{t}\left(M_{1}^{1}\right)$ by

$$
E^{t}(i)=\left\{x \in \operatorname{Ext}_{\Gamma(m+1)}^{t}\left(M_{1}^{1}\right): v_{1}^{i} x=0\right\}
$$

Assume that the inclusion i_{k} is an isomorphism for $k \leq t-1$ (the $t=0$ case is obvious), and consider the following commutative ladder diagram where we abbreviate
$\operatorname{Ext}_{\Gamma(m+1)}^{s}\left(M_{i}^{j}\right)$ by $H^{s}\left(M_{i}^{j}\right)$.

Using the Five Lemma, we obtain the desired isomorphism $B^{t}(i) \cong E^{t}(i)(i \geq 1)$ by induction on i.

In $\S 3$ and $\S 4$, we will define elements $\widehat{x}_{k} \in v_{2}^{-1} B P_{*}$ for $k \geq 0$ (see (4.1)) satisfying

$$
\widehat{x}_{k}^{s} \equiv \widehat{v}_{2}^{s p^{k}} \quad \bmod \left(p, v_{1}\right),
$$

and integers $\widehat{a}(k)$ such that each $\widehat{x}_{k}^{s} / v_{1}^{l}$ is a cocycle of for all $1 \leq l \leq \widehat{a}(k)$.
Using these notations, we can describe the structure of B^{0} fitting into the long exact sequence of Lemma 2.4. We have

Lemma 2.5. For $m>0$,

$$
B^{0}=v_{2}^{-1} \widehat{k}(1)_{*}\left\{\frac{\widehat{x}_{k}^{s}}{\hat{v}_{1}^{\tilde{a}(k)}}: \quad k \geq 0, s>0 \text { and } p \nmid s\right\} \oplus v_{2}^{-1} \widehat{K}(1)_{*} / \widehat{k}(1)_{*}
$$

is isomorphic as a $\widehat{k}(1)_{*}$-module to $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right)$, if the set

$$
\left\{\delta\left(\frac{\widehat{x}_{k}^{s}}{\hat{v}_{1}^{\hat{a}(k)}}\right): k \geq 0, s>0 \text { and } p \nmid s\right\} \subset \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M_{2}^{0}\right)
$$

is linearly independent over

$$
R=\mathbf{Z} /(p)\left[v_{2}, v_{2}^{-1}, v_{3}, \ldots, v_{m}, v_{m+1}\right],
$$

where δ is the coboundary map in Lemma 2.4.
Proof. All exactness of the sequence

$$
0 \longrightarrow \operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{2}^{0}\right) \xrightarrow{1 / v_{1}} B^{0} \xrightarrow{v_{1}} B^{0} \xrightarrow{\delta} \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M_{2}^{0}\right)
$$

is obvious, except $\operatorname{Ker} \delta \subset \operatorname{Im} v_{1}$. So we need to show only this inclusion. Separate
the R-basis of B^{0} into two parts,

$$
A=\left\{\frac{\widehat{x}_{k}^{s}}{\hat{v}_{1}^{\hat{(L k}}}: \quad k \geq 0 \text { and } p \nmid s>0\right\}
$$

and

$$
B=\left\{\frac{\widehat{x}_{k}^{s}}{v_{1}^{l}}: k \geq 0, p \nmid s>0, \text { and } 1 \leq l<\widehat{a}(k)\right\} \cup\left\{\frac{1}{v_{1}^{i}}: i>0\right\} .
$$

Then it is obvious that $\delta\left(\widehat{x}_{\lambda}\right) \neq 0 \in \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M_{2}^{0}\right)$ for $\widehat{x}_{\lambda} \in A$, but that $\delta\left(y_{\mu}\right)=0 \in$ $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M_{2}^{0}\right)$ for $y_{\mu} \in B$. Thus for any element $z=\sum_{\lambda} a_{\lambda} \widehat{\lambda}_{\lambda}+\sum_{\mu} b_{\mu} y_{\mu}$ of B^{0} $\left(a_{\lambda}, b_{\mu} \in R\right)$, we have $\delta(z)=\sum_{\lambda} a_{\lambda} \delta\left(\widehat{x}_{\lambda}\right)$. The condition implies that all a_{λ} are zero when $\delta(z)=0$, and so $v_{1} \sum_{\mu} b_{\mu} y_{\mu} / v_{1}=z$. This completes the proof.

3. Definition of the elements \widehat{w}_{3} and \widehat{w}_{4}

In this section we will introduce elements \widehat{w}_{3} and \widehat{w}_{4} in (3.2) to change the bases $\widehat{h}_{i, j}(i=1,2$ and $j=0,1)$ of $\operatorname{Ext}_{\Gamma(m+1)}\left(M_{2}^{0}\right)$ given in Theorems 2.2 and 2.3. First we recall the right unit η_{R} on \widehat{v}_{i}.

Lemma 3.1. For any prime p and $m \geq 1$, the right unit

$$
\eta_{R}: B P_{*} \rightarrow \Gamma(m+1) /(p)
$$

on the Hazewinkel generators are

$$
\left\{\begin{array}{rlrl}
\eta_{R}\left(\widehat{v}_{2}\right)= & \widehat{v}_{2}+v_{1} \widehat{t}_{1}^{p}-v_{1}^{p \omega} \widehat{t}_{1}, \\
\eta_{R}\left(\widehat{v}_{3}\right)= & \widehat{v}_{3}+v_{2} \widehat{t}_{1}^{p^{2}}-v_{2}^{p \omega} \widehat{t}_{1}+v_{1} \widehat{t}_{2}^{p}-v_{1}^{p^{2} \omega} \widehat{t}_{2} \\
& \quad+v_{1} w_{1}\left(\widehat{v}_{2}, v_{1} \hat{t}_{1}^{p},-v_{1}^{p \omega} \widehat{t}_{1}\right) \\
& \quad\left(\operatorname{add} v_{1}^{4 \omega+1} \hat{t}_{1}^{2} \text { for } p=2\right) & \\
\equiv \equiv \widehat{v}_{3}+v_{2} \widehat{t}_{1}^{p^{2}}-v_{2}^{p \omega} \widehat{t}_{1}+v_{1} \widehat{t}_{2}^{p}-v_{1}^{2} \widehat{v}_{2}^{p-1} \widehat{t}_{1}^{p} & \bmod \left(v_{1}^{3}\right), \\
\eta_{R}\left(\widehat{v}_{4}\right) \equiv & \widehat{v}_{4}+v_{3} \widehat{t}_{1}^{p^{3}}-v_{3}^{p \omega} \widehat{t}_{1}+v_{2} t_{2}^{p^{2}}-v_{2}^{p^{2} \omega \widehat{t}_{2}} & \bmod \left(v_{1}\right) .
\end{array}\right.
$$

where $w_{1}(-)$ is the first Witt polynomial satisfying

$$
w_{1}\left(y_{1}, \ldots, y_{t}, \ldots\right)=\frac{\left(\sum_{t} y_{t}^{p}\right)-\left(\sum_{t} y_{t}\right)^{p}}{p} .
$$

Now let

$$
\left\{\begin{array}{l}
\widehat{w}_{3}=v_{2}^{-1} \widehat{v}_{3}, \tag{3.2}\\
\widehat{w}_{4}=v_{2}^{-1}\left(\widehat{v}_{4}-v_{3} \widehat{w}_{3}^{p}\right) .
\end{array}\right.
$$

Using Lemma 3.1, it is easily shown that

Lemma 3.3. The differentials

$$
d=\eta_{R}-\eta_{L}: v_{2}^{-1} B P_{*} /(p) \rightarrow v_{2}^{-1} B P_{*} /(p) \otimes_{B P_{*}} \Gamma(m+1)
$$

on the above \widehat{w}_{k} 's are

$$
\begin{aligned}
d\left(\widehat{w}_{3}\right) & \equiv \widehat{t}_{1}^{p^{2}}-v_{2}^{p \omega-1} \widehat{t}_{1}+v_{1} v_{2}^{-1} \widehat{t}_{2}^{p}-v_{1}^{2} v_{2}^{-1} \widehat{v}_{2}^{p-1} \widehat{t}_{1}^{p} & \bmod \left(v_{1}^{3}\right), \\
\text { and } \quad d\left(\widehat{w}_{4}\right) & \equiv \widehat{t}_{2}^{p^{2}}-v_{2}^{-1} v_{3}^{p \omega} \widehat{t}_{1}+v_{2}^{p^{2} \omega-p-1} v_{3} \widehat{t}_{1}^{p}-v_{2}^{p^{2} \omega-1} \widehat{t}_{2} & \bmod \left(v_{1}\right) .
\end{aligned}
$$

Then we can change the $\widehat{K}(n)_{*}$-module basis of Theorems 2.2 and 2.3 using Lemma 3.3. In particular, we have

Corollary 3.4.

$$
\begin{aligned}
& \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M_{2}^{0}\right) \\
& \quad \cong\left\{\begin{array}{l}
\widehat{K}(2)_{*}\left\{\widehat{h}_{1,1}, \widehat{h}_{1,2}, \widehat{h}_{2,2}, \widehat{h}_{2,3}\right\} \quad \text { for } p>2, \text { or } p=2 \text { and } m>1, \\
\widehat{K}(2)_{*}\left\{\widehat{h}_{1,1}, \widehat{h}_{1,2}, \widehat{h}_{2,2}, \widehat{h}_{2,3}, \rho\right\} \text { for } p=2 \text { and } m=1 .
\end{array}\right.
\end{aligned}
$$

When we compute the connecting homomorphism δ of Lemma 2.5, this basechanging method actually works well to determine the structure of $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{n}^{1}\right)$ for a general n. In fact, Kamiya-Shimomura [2] and Shimomura [9] recently determined the structure of $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{n}^{1}\right)$ under some conditions on m and n in a similar way.

4. The elements \widehat{x}_{k}

In this section, we will define elements $\hat{x}_{k} \in v_{2}^{-1} B P_{*}(k \geq 0)$ to be used in Lemma 2.5 except for $p=2$ and $m=1$. The case $p=2$ and $m=1$ will be treated in the next section.

Define elements $\widehat{x}_{k} \in v_{2}^{-1} B P_{*}(k \geq 0)$ inductively on k by

$$
\left\{\begin{array}{l}
\widehat{x}_{0}=\widehat{v}_{2}, \tag{4.1}\\
\widehat{x}_{1}=\widehat{x}_{0}^{p}, \\
\widehat{x}_{2}=\widehat{x}_{1}^{p}-v_{1}^{p^{2}-1} v_{2}^{\beta+1} \widehat{x}_{0}-v_{1}^{p^{2}} \widehat{w}_{3}^{p}, \\
\widehat{x}_{3}=\widehat{x}_{2}^{p}, \\
\widehat{x}_{4}= \begin{cases}\widehat{x}_{3}^{p}+\widehat{y}_{1}+\widehat{y}_{2} & (m>1) \\
\widehat{x}_{3}^{p}+\widehat{y}_{1}+\frac{1}{2} \widehat{y}_{3} & (m=1 \text { and } p>2), \\
\widehat{x}_{k}=\widehat{x}_{k-1}^{p}-v_{1}^{p^{k-1} \alpha} v_{2}^{p^{k-2} \beta} \widehat{x}_{k-3}^{p-1}\left(\widehat{x}_{k-3}-\widehat{x}_{k-4}^{p}\right) \quad \text { for } k \geq 5,\end{cases}
\end{array}\right.
$$

where $\alpha=p+1$ and $\beta=p^{2} \omega-p-1$, and $\widehat{y}_{i}(i=1,2,3)$ are given by

$$
\left\{\begin{align*}
& \widehat{y}_{1}=-v_{1}^{p^{4}+p^{3}-p^{2}-p} v_{2}^{p^{2} \beta+p} \widehat{x}_{2}+v_{1}^{p^{4}+p^{3}-p} v_{2}^{-p^{3}-p^{2}} v_{3}^{p^{3}} \widehat{x}_{1} \tag{4.2}\\
& \quad-v_{1}^{p^{4}+p^{3}-1} v_{2}^{\left(p^{2}+1\right) \beta-p^{3}+1} v_{3}^{p^{2}} \widehat{x}_{0}+v_{1}^{p^{4}+p^{3}} v_{2}^{-p^{3}} \widehat{w}_{4}^{p^{2}} \\
& \quad-v_{1}^{p^{4}+p^{3}} v_{2}^{(\beta-p) p^{2}} v_{3}^{p^{2}} \widehat{w}_{3}^{p}, \\
& \widehat{y}_{2}=-v_{1}^{p^{4}+p^{3}-p^{2}} v_{2}^{(\beta-p) p^{2}} v_{3}^{p^{2}} \widehat{x}_{2}, \\
& \widehat{y}_{3}=\widehat{y}_{2}+v_{1}^{p^{4}+p^{3}-1} v_{2}^{\left(p^{2}+1\right) \beta-p^{3}+1} \widehat{x}_{2} \widehat{x}_{0}+v_{1}^{p^{4}+p^{3}} v_{2}^{(\beta-p) p^{2}} \widehat{x}_{2} \widehat{w}_{3}^{p} .
\end{align*}\right.
$$

Define integers $\widehat{a}(k)$ by

$$
\widehat{a}(k)= \begin{cases}p^{k} & \text { for } 0 \leq k \leq 1, \tag{4.3}\\ p^{k-1} \alpha & \text { for } 2 \leq k \leq 3, \\ p^{k-1} \alpha+\widehat{a}(k-3) & \text { for } k \geq 4\end{cases}
$$

Notice that the integers $\widehat{a}(k)$ are equivalently defined inductively on k by

$$
\widehat{a}(k)=\left\{\begin{array}{lll}
p \widehat{a}(k-1) & \text { for } 2<k \equiv 0 & \bmod (3) \tag{4.4}\\
p \widehat{a}(k-1)+p & \text { for } 2 \leq k \not \equiv 0 & \bmod (3)
\end{array}\right.
$$

Lemma 4.5. Unless $p=2$ and $m=1$, the differentials

$$
d=\eta_{R}-\eta_{L}: v_{2}^{-1} B P_{*} /(p) \rightarrow v_{2}^{-1} B P_{*} /(p) \otimes_{B P_{*}} \Gamma(m+1)
$$

on the above \widehat{x}_{k} 's are

$$
\begin{array}{ll}
d\left(\widehat{x}_{0}\right) \equiv v_{1} \widehat{t}_{1}^{p} & \bmod \left(v_{1}^{2}\right), \\
d\left(\widehat{x}_{1}\right) \equiv v_{1}^{\widehat{a}(1)} \widehat{t}_{1}^{p^{2}} & \bmod \left(v_{1}^{1+\widehat{a}(1)}\right), \\
d\left(\widehat{x}_{2}\right) \equiv-v_{1}^{\widehat{a}(2)} v_{2}^{-p} \widehat{t}_{2}^{p^{2}} & \bmod \left(v_{1}^{1+\widehat{a}(2)}\right), \\
d\left(\widehat{x}_{3}\right) \equiv-v_{1}^{\widehat{a}(3)} v_{2}^{-p^{2} \hat{t}_{2}^{p^{3}}} & \bmod \left(v_{1}^{1+\widehat{a}(3)}\right), \\
d\left(\widehat{x}_{k}\right) \equiv-v_{1}^{p^{k-1} \alpha} v_{2}^{p^{k-2} \beta \widehat{v}_{2}^{(p-1) p^{k-3}} d\left(\widehat{x}_{k-3}\right)} & \bmod \left(v_{1}^{1+\widehat{a}(k)}\right) \quad \text { for } k \geq 4 .
\end{array}
$$

Proof. By Lemma 3.1 we have

$$
\begin{array}{ll}
d\left(\widehat{x}_{0}\right) \equiv v_{1} \widehat{t}_{1}^{p} & \bmod \left(v_{1}^{p \omega}\right) \tag{4.6}\\
d\left(\widehat{x}_{1}\right) \equiv v_{1}^{p} t_{1}^{p^{2}} & \bmod \left(v_{1}^{p^{2} \omega}\right)
\end{array}
$$

Moreover, we find that

$$
\begin{aligned}
d\left(\widehat{x}_{1}^{p}\right) & \equiv v_{1}^{p^{2}} \widehat{t}_{1}^{p^{3}} \\
d\left(-v_{1}^{p^{2}} \widehat{w}_{3}^{p}\right) & \equiv-v_{1}^{p^{2}}\left(\widehat{t}_{1}^{p^{3}}-v_{2}^{\beta+1} \widehat{t}_{1}^{p}-v_{1}^{2 p} v_{2}^{-p} \widehat{v}_{2}^{(p-1) p} \hat{t}_{1}^{p^{2}}+v_{1}^{p} v_{2}^{-p} \hat{t}_{2}^{p^{2}}\right)
\end{aligned}
$$

$$
\bmod \left(v_{1}^{p^{2}+3 p}\right)
$$

and

$$
d\left(-v_{1}^{p^{2}-1} v_{2}^{\beta+1} \widehat{x}_{0}\right) \equiv-v_{1}^{p^{2}} v_{2}^{\beta+1} \widehat{t}_{1}^{p} \quad \bmod \left(v_{1}^{p \omega+p^{2}-1}\right)
$$

Summing the above three congruences we obtain

$$
\begin{aligned}
d\left(\widehat{x}_{2}\right) & \equiv-v_{1}^{p^{2}+p} v_{2}^{-p}\left(\widehat{t}_{2}^{p^{2}}-v_{1}^{p} \widehat{v}_{2}^{(p-1) p} \widehat{t}_{1}^{p^{2}}\right) \\
& \equiv-v_{1}^{\widehat{a}(2)} v_{2}^{-p} \widehat{\boldsymbol{t}}_{2}^{p^{2}}
\end{aligned}
$$

and

$$
d\left(\widehat{x}_{3}\right) \equiv-v_{1}^{\widehat{a}(3)} v_{2}^{-p^{2}} \widehat{t}_{2}^{p^{3}}
$$

$\bmod \left(v_{1}^{p^{2}+2 p+2}\right)$
$\bmod \left(v_{1}^{p^{2}+2 p}\right)$,
$\bmod \left(v_{1}^{p^{3}+2 p^{2}}\right)$.
(4.4) suggests that we should calculate $d\left(\widehat{x}_{k}\right)$ modulo $\left(v_{1}^{2+\widehat{a}(k)}\right)$ rather than modulo $\left(v_{1}^{1+\widehat{a}(k)}\right)$ when we apply induction on $k \geq 4$. For $k=4$, we find that modulo $\left(v_{1}^{2+\widehat{a}(4)}\right)$

$$
\left\{\begin{array}{l}
d\left(v_{1}^{\widehat{a}(4)-p} v_{2}^{-p^{3}} \widehat{w}_{4}^{p^{2}}\right) \tag{4.7}\\
\quad \equiv v_{1}^{\widehat{a}(4)-p} v_{2}^{-p^{3}} \widehat{t}_{2}^{p^{4}}-v_{2}^{-p^{2}} v_{3}^{\left.p^{3} \omega \widehat{t}_{1}^{p^{2}}+v_{2}^{p^{2} \beta} v_{3}^{p^{2}} \widehat{t}_{1}^{p^{3}}-v_{2}^{(\beta+p) p^{2}} \widehat{t}_{2}^{p^{2}}\right)} \\
d\left(v_{1}^{\widehat{a}(4)-2 p} v_{2}^{-p^{3}-p^{2}} v_{3}^{p^{3}} \widehat{x}_{1}\right) \\
\quad \equiv v_{1}^{\widehat{a}(4)-p} v_{2}^{-p^{3}-p^{2}} v_{3}^{p^{3} \omega \widehat{t}_{1}^{p^{2}}} \\
d\left(-v_{1}^{\widehat{a}(4)-\widehat{a}(2)-p} v_{2}^{p^{2} \beta+p} \widehat{x}_{2}\right) \\
\left.\quad \equiv v_{1}^{\widehat{a}(4)-p} v_{2}^{p^{2} \beta} \widehat{t}_{2}^{p^{2}}-v_{1}^{p} \widehat{v}_{2}^{p^{2}-p} \widehat{t}_{1}^{p^{2}}\right) \\
d\left(-v_{1}^{\widehat{a}(4)-p} v_{2}^{(\beta-p) p^{2}} v_{3}^{p^{2}} \widehat{w}_{3}^{p}\right) \\
\left.\quad \equiv-v_{1}^{\widehat{a}(4)-p} v_{2}^{(\beta-p) p^{2}} v_{3}^{p^{2}} \widehat{t}_{1}^{p^{3}}-v_{2}^{\beta+1} \widehat{t}_{1}^{p}+v_{1}^{p} v_{2}^{-p} \widehat{t}_{2}^{p^{2}}\right) \\
d\left(-v_{1}^{\widehat{a}(4)-p-1} v_{2}^{\left(p^{2}+1\right) \beta-p^{3}+1} v_{3}^{p^{2}} \widehat{x}_{0}\right) \\
\quad \equiv-v_{1}^{\widehat{a}(4)-p} v_{2}^{\left(p^{2}+1\right) \beta-p^{3}+1} v_{3}^{p^{2}} \widehat{t}_{1}^{p} .
\end{array}\right.
$$

Summing these congruences we obtain

$$
\begin{gathered}
d\left(\widehat{y}_{1}\right) \equiv v_{1}^{\widehat{a}(4)-p} v_{2}^{-p^{3}} \widehat{t}_{2}^{p^{4}}-v_{1}^{\widehat{a}(4)} v_{2}^{p^{2} \beta}\left(v_{2}^{-p^{3}-p} v_{3}^{p^{2}} \widehat{t}_{2}^{p^{2}}+\widehat{v}_{2}^{p^{2}-p} \widehat{t}_{1}^{p^{2}}\right) \\
\bmod \left(v_{1}^{2+\widehat{a}(4)}\right)
\end{gathered}
$$

On the other hand, we find that modulo $\left(v_{1}^{2+\hat{a}(4)}\right)$

$$
d\left(\widehat{y}_{2}\right) \equiv \begin{cases}v_{1}^{\widehat{a}(4)} v_{2}^{p^{2} \beta-p^{3}-p} v_{3}^{p^{2}} \widehat{t}_{2}^{p^{2}} & (m \geq 2) \\ -v_{1}^{p^{3} \alpha} v_{2}^{(\beta-p) p^{2}} v_{3}^{p^{2}}\left(\widehat{t}_{1}^{p^{3}}-v_{1}^{p} v_{2}^{-p} \widehat{t}_{2}^{p^{2}}\right) & (m=1)\end{cases}
$$

In the $m \geq 2$ case, we see that

$$
\begin{aligned}
d\left(\widehat{x}_{4}\right) & \equiv-v_{1}^{\widehat{a}(4)} v_{2}^{p^{2} \beta} \widehat{v}_{2}^{(p-1) p} \widehat{t}_{1}^{p^{2}} \\
& \equiv-v_{1}^{p^{3} \alpha} v_{2}^{p^{2} \beta} \widehat{v}_{2}^{(p-1) p} d\left(\widehat{x}_{1}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(4)}\right)
\end{aligned}
$$

In the $m=1$ case, we must modify the element \widehat{y}_{2} into \widehat{y}_{3} as defined in (4.2). We find that

$$
\left\{\begin{aligned}
& d\left(v_{1}^{\widehat{a}(4)-p} v_{2}^{(\beta-p) p^{2}} v_{3}^{p^{2}} \widehat{w}_{3}^{p}\right) \equiv v_{1}^{\widehat{a}(4)-p} v_{2}^{(\beta-p) p^{2}} v_{3}^{p^{2}}\left(\widehat{t}_{1}^{p^{3}}-v_{2}^{\beta+1} \widehat{t}_{1}^{p}+v_{1}^{p} v_{2}^{-p} \hat{t}_{2}^{p^{2}}\right) \\
& \bmod \left(v_{1}^{\widehat{a}(4)+p}\right) \\
& d\left(v_{1}^{\widehat{a}(4)-p-1} v_{2}^{\left(p^{2}+1\right) \beta-p^{3}+1} v_{3}^{p^{2}} \widehat{x}_{0}\right) \equiv v_{1}^{\widehat{a}(4)-p} v_{2}^{\left(p^{2}+1\right) \beta-p^{3}+1} v_{3}^{p^{2}} \hat{t}_{1}^{p} \bmod \left(v_{1}^{\widehat{a}(4)+p^{2}-p-1}\right) .
\end{aligned}\right.
$$

Summing the above congruences we obtain

$$
d\left(\widehat{y}_{3}\right) \equiv 2 v_{1}^{\widehat{a}(4)} v_{2}^{p^{2} \beta-p^{3}-p} v_{3}^{p^{2}} \widehat{t}_{2}^{p^{2}} \quad \bmod \left(v_{1}^{2+\widehat{a}(4)}\right)
$$

Consequently, we obtain the desired congruence of $d\left(\widehat{x}_{4}\right)$ in $m=1$ case, too.
For $k \geq 5$, assume that

$$
d\left(\widehat{x}_{k-1}\right) \equiv-v_{1}^{p^{k-2} \alpha} v_{2}^{p^{k-3} \beta} \widehat{x}_{k-4}^{p-1} d\left(\widehat{x}_{k-4}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(k-1)}\right)
$$

and denote $\widehat{x}_{k}-\widehat{x}_{k-1}^{p}$ by \widehat{z}_{k}. By definition (4.1), we note that $\widehat{z}_{k}=0$ for $k \equiv 0 \bmod 3$. In case that $k \not \equiv 0$ modulo 3 , we have

$$
\widehat{z}_{k}=-v_{1}^{p^{k-1}} \alpha v_{2}^{p^{k-2} \beta} \widehat{x}_{k-3}^{p-1} \widehat{z}_{k-3} \quad \text { for } k \geq 5
$$

Notice that \widehat{z}_{k-3} is divided by $v_{1}^{p^{2}-1}$ for $k=5$, by $v_{1}^{p(p+1)\left(p^{2}-1\right)}$ for $k=7$, and by $v_{1}^{p^{k-4} \alpha}$ for $k \geq 8$. On the other hand, by inductive hypothesis we see that $d\left(\hat{x}_{k-3}^{p-1}\right)$ is divisible by $v_{1}^{p^{2}+p}$ for $k=5$ and by $v_{1}^{p^{k-4} \alpha}$ for $k \geq 7$. So we have

$$
\begin{aligned}
d\left(\widehat{x}_{k-3}^{p-1} \widehat{z}_{k-3}\right) & =d\left(\widehat{x}_{k-3}^{p-1}\right) \eta_{R}\left(\widehat{z}_{k-3}\right)+\widehat{x}_{k-3}^{p-1} d\left(\widehat{z}_{k-3}\right) \\
& \equiv \widehat{x}_{k-3}^{p-1} d\left(\widehat{z}_{k-3}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(k-3)}\right)
\end{aligned}
$$

Therefore the differential on \widehat{z}_{k} is

$$
\begin{aligned}
d\left(\widehat{z}_{k}\right) & \equiv-v_{1}^{p^{k-1} \alpha} v_{2}^{p^{k-2} \beta} d\left(\widehat{x}_{k-3}^{p-1} \widehat{z}_{k-3}\right) \\
& \equiv-v_{1}^{p^{k-1} \alpha} v_{2}^{p^{k-2} \beta} \widehat{x}_{k-3}^{p-1} d\left(\widehat{z}_{k-3}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(k)}\right)
\end{aligned}
$$

On the other hand, by inductive hypothesis we have

$$
\begin{aligned}
d\left(\widehat{x}_{k-1}^{p}\right) & \equiv-v_{1}^{p^{k-1} \alpha} v_{2}^{p^{k-2} \beta} \widehat{x}_{k-4}^{(p-1) p} d\left(\widehat{x}_{k-4}^{p}\right) \\
& \equiv-v_{1}^{p^{k-1} \alpha} v_{2}^{p^{k-2} \beta} \widehat{x}_{k-3}^{p-1} d\left(\widehat{x}_{k-4}^{p}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(k)}\right)
\end{aligned}
$$

Summing the above two congruences we obtain

$$
d\left(\widehat{x}_{k}\right) \equiv-v_{1}^{p^{k-1} \alpha} v_{2}^{p^{k-2} \beta} \widehat{x}_{k-3}^{p-1} d\left(\widehat{x}_{k-3}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(k)}\right)
$$

as desired.

5. The case $p=2$ and $m=1$

In this section we recover some results of Shimomura [8] using the basis obtained in Corollary 3.4.

Define the elements $\widehat{x}_{k} \in v_{2}^{-1} B P_{*}$ in the same fashion as those in (4.1) for $0 \leq$ $k \leq 3$, and

$$
\left\{\begin{array}{l}
\widehat{x}_{4}=\widehat{x}_{3}^{2}+\widehat{y}_{1}+\widehat{y}_{4}, \tag{5.1}\\
\widehat{x}_{k}=\widehat{x}_{k-1}^{2}+v_{1}^{5 \cdot 2^{k-2}} v_{2}^{3 \cdot 2^{k-2}} \widehat{x}_{k-2}\left(\widehat{x}_{k-2}+\widehat{x}_{k-3}^{2}\right) \quad \text { for } k \geq 5,
\end{array}\right.
$$

where \hat{y}_{4} is

$$
\widehat{y}_{4}=v_{1}^{14} v_{2}^{14} \widehat{x}_{3}+v_{1}^{23} v_{2}^{25} \widehat{x}_{1}+v_{1}^{25} v_{2}^{8} v_{3}^{8} \widehat{x}_{0}+v_{1}^{25} v_{2}^{25} \widehat{w}_{3}+v_{1}^{26} v_{2}^{10} \widehat{w}_{4}^{2} .
$$

Note that the construction of $\widehat{x}_{k}(k \geq 4)$ in this case is 2-periodic, although it is 3-periodic for the other cases. We are surprised at this difference.

Define integers $\widehat{a}(k)$ by

$$
\widehat{a}(k)= \begin{cases}2^{k} & \text { for } 0 \leq k \leq 1, \tag{5.2}\\ 3 \cdot 2^{k-1} & \text { for } 2 \leq k \leq 3, \\ 5 \cdot 2^{k-2}+\widehat{a}(k-2) & \text { for } k \geq 4 .\end{cases}
$$

This gives $\widehat{a}(0)=1, \widehat{a}(1)=2, \widehat{a}(2)=6, \widehat{a}(3)=12, \widehat{a}(4)=26$, and so on. Notice that the integers $\widehat{a}(k)$ are equivalently defined inductively on k by

$$
\widehat{a}(k)= \begin{cases}2 \widehat{a}(k-1) & \text { for odd } k, \tag{5.3}\\ 2 \widehat{a}(k-1)+2 & \text { for even } k .\end{cases}
$$

Then we have

Lemma 5.4. For $p=2$ and $m=1$, the differentials

$$
d=\eta_{R}-\eta_{L}: v_{2}^{-1} B P_{*} /(2) \rightarrow v_{2}^{-1} B P_{*} /(2) \otimes_{B P_{*}} \Gamma(m+1)
$$

on the above \widehat{x}_{k} 's are

$$
\begin{array}{ll}
d\left(\widehat{x}_{0}\right) \equiv v_{1} \hat{t}_{1}^{2} & \bmod \left(v_{1}^{2}\right), \\
d\left(\widehat{x}_{1}\right) \equiv v_{1}^{\widehat{a}(2)} \widehat{t}_{1}^{4} & \bmod \left(v_{1}^{1+\widehat{a}(1)}\right), \\
d\left(\widehat{x}_{2}\right) \equiv v_{1}^{\widehat{a}(2)} v_{2}^{-2} \widehat{t}_{2}^{4} & \bmod \left(v_{1}^{1+\widehat{a}(2)}\right),
\end{array}
$$

$$
\begin{array}{ll}
d\left(\widehat{x}_{3}\right) \equiv v_{1}^{\widehat{a}(3)} v_{2}^{-4} \widehat{t}_{2}^{8} & \bmod \left(v_{1}^{1+\widehat{a}(3)}\right), \\
d\left(\widehat{x}_{k}\right) \equiv v_{1}^{5 \cdot 2^{k-2}} v_{2}^{3 \cdot 2^{k-2}} \widehat{v}_{2}^{2^{k-2}} d\left(\widehat{x}_{k-2}\right) & \bmod \left(v_{1}^{1+\widehat{a}(k)}\right) \quad \text { for } k \geq 4
\end{array}
$$

Proof. The $k=0$ and $k=1$ cases follow directly from Lemma 3.1 (cf. (4.6)). For $k=2$ case, we find that

$$
\left\{\begin{aligned}
d\left(\widehat{x}_{1}^{2}\right) & \equiv v_{1}^{4} \widehat{t}_{1}^{8} & & \bmod \left(v_{1}^{16}\right) \\
d\left(v_{1}^{4} \widehat{w}_{3}^{2}\right) & \equiv v_{1}^{4}\left(\hat{t}_{1}^{8}+v_{2}^{6} \widehat{t}_{1}^{2}+v_{1}^{2} v_{2}^{-2} \widehat{t}_{2}^{4}+v_{1}^{4} v_{2}^{-2} \widehat{v}_{2}^{2} \widehat{t}_{1}^{4}\right) & & \bmod \left(v_{1}^{10}\right) \\
d\left(v_{1}^{3} v_{2}^{6} \widehat{x}_{0}\right) & \equiv v_{1}^{4} v_{2}^{6} \hat{t}_{1}^{2}+v_{1}^{7} v_{2}^{6} \widehat{t}_{1} & & \bmod \left(v_{1}^{9}\right)
\end{aligned}\right.
$$

Then we have

$$
\begin{aligned}
d\left(\widehat{x}_{2}\right) & \equiv v_{1}^{6} v_{2}^{-2} \widehat{t}_{2}^{4}+v_{1}^{7} v_{2}^{6} \widehat{t}_{1}+v_{1}^{8} v_{2}^{-2} v_{3}^{2} \widehat{t}_{1}^{4} & & \bmod \left(v_{1}^{9}\right) \\
& \equiv v_{1}^{6} v_{2}^{-2} \widehat{t}_{2}^{4} & & \bmod \left(v_{1}^{7}\right) \\
d\left(\widehat{x}_{3}\right) & \equiv v_{1}^{12} v_{2}^{-4} \widehat{t}_{2}^{8} & & \bmod \left(v_{1}^{14}\right)
\end{aligned}
$$

For $k=4$ case, we obtain the same consequences as in (4.7), but with the third one replaced by

$$
d\left(v_{1}^{18} v_{2}^{22} \widehat{x}_{2}\right) \equiv v_{1}^{24} v_{2}^{20} \widehat{t}_{2}^{4}+v_{1}^{25} v_{2}^{28} \widehat{t}_{1}+v_{1}^{26} v_{2}^{20} v_{3}^{2} \widehat{t}_{1}^{4} \quad \bmod \left(v_{1}^{27}\right)
$$

and so

$$
d\left(\widehat{y}_{1}\right) \equiv v_{1}^{24} v_{2}^{-8} \widehat{t}_{2}^{16}+v_{1}^{25} v_{2}^{28} \widehat{t}_{1}+v_{1}^{26} v_{2}^{10} v_{3}^{4} \widehat{t}_{2}^{4}+v_{1}^{26} v_{2}^{20} v_{3}^{2} \hat{t}_{1}^{4} \quad \bmod \left(v_{1}^{27}\right)
$$

On the other hand, we find that

$$
\left\{\begin{aligned}
d\left(v_{1}^{25} v_{2}^{25} \widehat{w}_{3}\right) & \equiv v_{1}^{25}\left(v_{2}^{25} \widehat{t}_{1}^{4}+v_{2}^{28} \widehat{t}_{1}\right)+v_{1}^{26} v_{2}^{24} \widehat{t}_{2}^{2} \\
d\left(v_{1}^{23} v_{2}^{25} \widehat{x}_{1}\right) & \equiv v_{1}^{25} v_{2}^{25} \widehat{t}_{1}^{4} \\
d\left(v_{1}^{26} v_{2}^{10} \widehat{w}_{4}^{2}\right) & \equiv v_{1}^{26}\left(v_{2}^{8} v_{3}^{8} \widehat{t}_{1}^{2}+v_{2}^{10} \widehat{t}_{2}^{8}+v_{2}^{20} v_{3}^{2} \widehat{t}_{1}^{4}+v_{2}^{24} \widehat{t}_{2}^{2}\right) \\
d\left(v_{1}^{14} v_{2}^{14} \widehat{x}_{3}\right) & \equiv v_{1}^{26} v_{2}^{10} \widehat{t}_{2}^{8} \\
d\left(v_{1}^{25} v_{2}^{8} v_{3}^{8} \widehat{x}_{0}\right) & \equiv v_{1}^{26} v_{2}^{8} v_{3}^{8} \widehat{t}_{1}^{2}
\end{aligned}\right.
$$

modulo $\left(v_{1}^{27}\right)$, so we have

$$
d\left(\widehat{y}_{4}\right) \equiv v_{1}^{25} v_{2}^{28} \widehat{t}_{1}+v_{1}^{26} v_{2}^{20} v_{3}^{2} \widehat{t}_{1}^{4} \quad \bmod \left(v_{1}^{27}\right)
$$

Using the above congruences, we have

$$
\begin{aligned}
d\left(\widehat{x}_{4}\right) & \equiv v_{1}^{26} v_{2}^{10} v_{3}^{4} \widehat{t}_{2}^{4} \\
& \equiv v_{1}^{20} v_{2}^{12} v_{3}^{4} d\left(\widehat{x}_{2}\right) \quad \bmod \left(v_{1}^{1+\widehat{a}(4)}\right)
\end{aligned}
$$

(5.3) suggests that we should calculate $d\left(\widehat{x}_{k}\right)$ modulo $\left(v_{1}^{2+\hat{a}(k)}\right)$ rather than modulo $\left(v_{1}^{1+\widehat{a}(k)}\right)$ for $k \geq 5$ when we apply induction on k. Denote $\widehat{x}_{k}+\widehat{x}_{k-1}^{2}$ by \widehat{z}_{k}. By definition (5.1) we note that $\widehat{z}_{k}=0$ for odd k. In case that k is even, we have

$$
\widehat{z}_{k}=v_{1}^{5 \cdot 2^{k-2}} v_{2}^{3 \cdot 2^{k-2}} \widehat{x}_{k-2} \widehat{z}_{k-2} \quad \text { for } k \geq 5
$$

Notice that \widehat{z}_{k-2} is divisible by v_{1}^{14} for $k=6$ and by $v_{1}^{5 \cdot 2^{k-4}}$ for $k \geq 8$. On the other hand, by inductive hypothesis $d\left(\widehat{x}_{k-2}\right)$ is divisible by $v_{1}^{\widehat{a}(k-2)}$. So we have

$$
\begin{aligned}
d\left(\widehat{x}_{k-2} \widehat{z}_{k-2}\right) & =d\left(\widehat{x}_{k-2}\right) \eta_{R}\left(\widehat{z}_{k-2}\right)+\widehat{x}_{k-2} d\left(\widehat{z}_{k-2}\right) \\
& \equiv \widehat{x}_{k-2} d\left(\widehat{z}_{k-2}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(k-2)}\right)
\end{aligned}
$$

Therefore the differential on \widehat{z}_{k} is

$$
\begin{aligned}
d\left(\widehat{z}_{k}\right) & \equiv v_{1}^{5 \cdot 2^{k-2}} v_{2}^{3 \cdot 2^{k-2}} d\left(\widehat{x}_{k-2} \widehat{z}_{k-2}\right) \\
& \equiv v_{1}^{5 \cdot 2^{k-2}} v_{2}^{3 \cdot 2^{k-2}} \widehat{x}_{k-2} d\left(\widehat{z}_{k-2}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(k)}\right)
\end{aligned}
$$

On the other hand, by inductive hypothesis we have

$$
d\left(\widehat{x}_{k-1}^{2}\right) \equiv v_{1}^{5 \cdot 2^{k-2}} v_{2}^{3 \cdot 2^{k-2}} \widehat{v}_{2}^{2^{k-2}} d\left(\widehat{x}_{k-3}^{2}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(k)}\right)
$$

because $2(1+\widehat{a}(4))=2+\widehat{a}(5)$ and $2(2+\widehat{a}(k-1)) \geq 2+\widehat{a}(k)$ for $k \geq 6$. Summing the above two congruences, we obtain

$$
d\left(\widehat{x}_{k}\right) \equiv v_{1}^{5 \cdot 2^{k-2}} v_{2}^{3 \cdot 2^{k-2}} \widehat{x}_{k-2} d\left(\widehat{x}_{k-2}\right) \quad \bmod \left(v_{1}^{2+\widehat{a}(k)}\right)
$$

as desired.

6. The structure of $\operatorname{Ext}_{\Gamma(m+1)}^{\mathbf{0}}\left(M_{1}^{1}\right)$

Theorem 6.1. As a $v_{2}^{-1} \widehat{k}(1)_{*}$-module, $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right)$ for $m \geq 1$ is the direct sum of
(a) the cyclic submodules generated by $\widehat{x}_{k}^{s} / v_{1}^{\widehat{a}(k)}$ for $k \geq 0, s>0$ and $p \nmid s$; and
(b) $v_{2}^{-1} \widehat{K}(1)_{*} / \widehat{k}(1)_{*}$, generated by $1 / v_{1}^{j}$ for $j \geq 1$,
where \widehat{x}_{k} 's are the elements defined in (4.1) and (5.1).

Proof. First we prove the theorem except for the $p=2$ and $m=1$ case.
By Lemma 2.5 it suffices to show that the set

$$
D=\left\{\delta\left(\widehat{x}_{k}^{s} / v_{1}^{\widehat{a}(k)}\right): k \geq 0, s>0 \text { and } p \nmid s\right\} \subset \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M_{2}^{0}\right)
$$

is linearly independent over

$$
R=\mathbf{Z} /(p)\left[v_{2}, v_{2}^{-1}, v_{3}, \ldots, v_{m}, v_{m+1}\right]
$$

It follows from Corollary 3.4 that $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(\boldsymbol{M}_{2}^{0}\right)$ is the free $\widehat{K}(2)_{*}$-module on the four classes represented by

$$
\left\{\widehat{t}_{1}^{p}, \hat{t}_{1}^{p^{2}}, \widehat{t}_{2}^{p^{2}}, \widehat{t}_{2}^{p^{3}}\right\}
$$

so its basis over R is

$$
\left\{\widehat{v}_{2}^{t} \widehat{t}_{1}^{p}, \widehat{v}_{2}^{t} \widehat{t}_{1}^{p^{2}}, \widehat{v}_{2}^{t} \hat{t}_{2}^{p^{2}}, \widehat{v}_{2}^{t} t_{2}^{p^{3}}: t \geq 0\right\}
$$

Now define integers $\widehat{b}(k)$ and $\widehat{c}(k)$ for $k \geq 0$ by

$$
\widehat{b}(k)= \begin{cases}0 & \text { for } 0 \leq k \leq 1, \\ -p^{k-1} & \text { for } 2 \leq k \leq 3, \\ p^{k-2} \beta+\widehat{b}(k-3) & \text { for } k \geq 4,\end{cases}
$$

where $\beta=p^{2} \omega-p-1$ as before, and

$$
\widehat{c}(k)= \begin{cases}0 & \text { for } 0 \leq k \leq 3, \\ (p-1) p^{k-3}+\widehat{c}(k-3) & \text { for } k \geq 4\end{cases}
$$

Then Lemma 4.5 implies that

$$
d\left(\widehat{x}_{k}\right) \equiv \pm v_{1}^{\widehat{a}(k)} v_{2}^{\widehat{b}(k)} \widehat{v}_{2}^{\hat{c}(k)}\left\{\begin{array}{l}
\widehat{t}_{1}^{p} \text { for } k=0, \\
\widehat{t}_{1}^{p^{2}} \text { for } k>0 \text { and } k \equiv 1 \bmod 3, \\
\widehat{t}_{2}^{p^{2}} \text { for } k>0 \text { and } k \equiv 2 \bmod 3, \\
\hat{t}_{2}^{p^{3}} \text { for } k>0 \text { and } k \equiv 3 \bmod 3
\end{array}\right.
$$

modulo $\left(v_{1}^{1+\widehat{a}(k)}\right)$, where $\widehat{a}(k)$ is defined in (4.3). Since

$$
d\left(\widehat{x}_{k}^{s}\right) \equiv s \widehat{x}_{k}^{s-1} d\left(\widehat{x}_{k}\right) \equiv s \widehat{v}_{2}^{(s-1) p^{k}} d\left(\widehat{x}_{k}\right) \bmod \left(v_{1}^{1+\widehat{a}(k)}\right)
$$

it follows that

$$
\delta\left(\frac{\widehat{x}_{k}^{s}}{\hat{v}_{1}^{\widehat{a}(k)}}\right)= \pm s v_{2}^{\widehat{b}(k)} \widehat{v}_{2}^{(s-1) p^{k}+\overparen{c}(k)} \begin{cases}\widehat{t}_{1}^{p} \text { for } k=0, \tag{6.2}\\ \widehat{t}_{1}^{p^{2}} \text { for } k>0 & \text { and } k \equiv 1 \bmod 3, \\ \widehat{t}_{2}^{p^{2}} \text { for } k>0 & \text { and } k \equiv 2 \bmod 3, \\ \widehat{t}_{2}^{p^{3}} \text { for } k>0 & \text { and } k \equiv 3 \bmod 3 .\end{cases}
$$

In order to show that these elements $\delta\left(\widehat{x}_{k}^{s} / v_{1}^{\widehat{a}(k)}\right)$ (with $k \geq 0$ and $s>0$ not divisible by p) are linearly independent over R, it suffices to observe the exponents of \widehat{v}_{2} in the right hand side of (6.2).

So we consider the sets $D_{0}=\left\{\widehat{v}_{2}^{s-1}: s>0\right.$ and $\left.p \nmid s\right\}$ for $k=0$, and $D_{k_{0}}=$ $\left\{\widehat{v}_{2}^{(s-1) p^{k}+\hat{c}(k)}: k=k_{0}+3 k_{1}, s>0\right.$ and $\left.p \nmid s\right\}$ for a fixed $k_{0}\left(1 \leq k_{0} \leq 3\right)$. Since the integer $\widehat{c}(k)$ is

$$
\widehat{c}(k)=(p-1) p^{k_{0}}\left(1+p^{3}+\cdots+p^{3 k_{1}-3}\right)
$$

for $k=k_{0}+3 k_{1} \geq 4$ with $1 \leq k_{0} \leq 3$, we see

$$
(s-1) p^{k}+\widehat{c}(k) \equiv s p^{k}-\frac{p^{k_{0}}}{1+p+p^{2}} \quad \bmod \left(p^{k+1}\right)
$$

If $(s-1) p^{k}+\widehat{c}(k)=(t-1) p^{l}+\widehat{c}(l)$ with $k \equiv l \equiv k_{0}$ modulo 3, then it follows that $k=l$ and hence $s=t$. Thus all the entries in the sets D_{0} and $D_{k_{0}}\left(1 \leq k_{0} \leq 3\right)$ are disparate, respectively.

In the $p=2$ and $m=1$ case our argument is the same subject to the following changes. The integers $\widehat{b}(k)$ and $\widehat{c}(k)$ are defined by

$$
\widehat{b}(k)= \begin{cases}0 & \text { for } 0 \leq k \leq 1, \\ -2^{k-1} & \text { for } 2 \leq k \leq 3 \\ 3 \cdot 2^{k-2}+\widehat{b}(k-2) & \text { for } k \geq 4\end{cases}
$$

and

$$
\widehat{c}(k)= \begin{cases}0 & \text { for } 0 \leq k \leq 3 \\ 2^{k-2}+\widehat{c}(k-2) & \text { for } k \geq 4\end{cases}
$$

which is

$$
\widehat{c}(k)= \begin{cases}0 & \text { for } 0 \leq k \leq 3 \\ \frac{4}{3}\left(2^{k-2}-1\right) & \text { for even } k \geq 4 \\ \frac{8}{3}\left(2^{k-3}-1\right) & \text { for odd } k \geq 5\end{cases}
$$

Then (6.2) gets replaced by

$$
\delta\left(\frac{\widehat{x}_{k}^{s}}{v_{1}^{\widehat{a}(k)}}\right)=v_{2}^{\widehat{b}(k)} \widehat{v}_{2}^{(s-1) p^{k}+\hat{c}(k)}\left\{\begin{array}{l}
\widehat{t}_{1}^{2} \text { for } k=0, \\
\widehat{t}_{1}^{4} \text { for } k=1, \\
\widehat{t}_{2}^{4} \text { for } k>0 \text { and } k \equiv 0 \bmod 2, \\
\widehat{t}_{2}^{8} \text { for } k>1 \text { and } k \equiv 1 \bmod 2,
\end{array}\right.
$$

and we can argue for linear independence as before.

7. The group $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*} /(p)\right)$

In this section we will use the structure of $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right)$ given in Theorem 6.1 to determine the group $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*} /(p)\right)$. As in the case $m=0$, this group is the direct sum of subquotients of $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M_{1}^{0}\right)$ and $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right)$.

In Lemma 7.2 we will show that the former subquotient has the same form as in the case $m=0$, i.e., it is $\widehat{k}(1)_{*}\left\{\widehat{h}_{1,0}\right\}$. We will also see that unlike in the classical case, the element $v_{1}^{-1} \widehat{h}_{1,0}$ supports a nontrivial d_{2} in the chromatic spectral sequence.

The summand $v_{2}^{-1} \widehat{K}(1)_{*} / \widehat{k}(1)_{*}$ of $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right)$ is the image of

$$
d_{1}: E_{1}^{0,0}=\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{0}\right) \longrightarrow E_{1}^{1,0}=\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right)
$$

so it maps trivially to $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*} /(p)\right)$. The kernel of the map

$$
d_{1}: E_{1}^{1,0}=\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right) \longrightarrow E_{1}^{2,0}=\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{2}\right)
$$

consists of all elements, each of which does not have any monomial with negative v_{2}-exponent. We will see in Corollary 7.7 that these are the elements

$$
\frac{\widehat{x}_{k}^{s}}{v_{1}^{j}} \in \operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right) \quad \text { with } k \geq 0, s>0, p \nmid s, \text { and } 0<j \leq p^{k}
$$

Combining these results we get

Theorem 7.1. For any prime p and $m \geq 1$, the group

$$
\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*} /(p)\right)
$$

is isomorphic to

$$
\widehat{k}(1)_{*}\left\{\widehat{\beta}_{s p^{k} / j}: s \geq 0, p \nmid s, k \geq 0 \text { and } 0<j \leq p^{k}\right\} \bigoplus \hat{k}(1)_{*}\left\{\widehat{h}_{1,0}\right\}
$$

where $\widehat{\beta}_{s p^{k} / j}$ is the image of $\widehat{x}_{k}^{S} / v_{1}^{j}$ under the connecting homomorphism

$$
\delta: \operatorname{Ext}_{\Gamma(m+1)}^{0}\left(N_{1}^{1}\right) \longrightarrow \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(N_{1}^{0}\right)
$$

First we consider the subquotient of $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M_{1}^{0}\right)$.
Lemma 7.2. For any prime p and $m \geq 1$, the group $E_{\infty}^{0,1}$ in the chromatic spectral sequence is $\widehat{k}(1)_{*}\left\{\widehat{h}_{1,0}\right\}$. Moreover there is a nontrivial differential in the chromatic spectral sequence,

$$
d_{2}\left(v_{1}^{-1} \widehat{h}_{1,0}\right)=\frac{z}{v_{1}^{p+1} v_{2}^{p \omega-1}}
$$

where $z=\widehat{v}_{2}^{p}-v_{1}^{p} v_{2}^{-1} \widehat{v}_{3}$.
Proof. We use the chromatic cobar complex

$$
\left\{C C_{\Gamma(m+1)}^{n}\left(B P_{*} /(p)\right), d_{c}\right\}_{n \geq 0}
$$

given by

$$
\begin{aligned}
& C C_{\Gamma(m+1)}^{n}\left(B P_{*} /(p)\right)=\bigoplus_{s+t=n} C^{s}\left(M_{1}^{t}\right), \\
& d_{c}=d_{e}+(-1)^{t} d_{i}: C^{s}\left(M_{1}^{t}\right) \rightarrow C^{s}\left(M_{1}^{t+1}\right) \oplus C^{s+1}\left(M_{1}^{t}\right),
\end{aligned}
$$

where $d_{e}: C^{s}\left(M_{1}^{t}\right) \rightarrow C^{s}\left(M_{1}^{t+1}\right)$ is induced by the composite map $M_{1}^{t} \rightarrow N_{1}^{t+1} \rightarrow M_{1}^{t+1}$ and $d_{i}: C^{s}\left(M_{1}^{t}\right) \rightarrow C^{s+1}\left(M_{1}^{t}\right)$ is the differential in the cobar complex (see [6, Definition 5.1.10]).

By Theorem 2.2, we have

$$
E_{1}^{0,1}=\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(M_{1}^{0}\right) \cong \widehat{K}(1)_{*}\left\{\widehat{h}_{1,0}\right\} .
$$

The element $\widehat{h}_{1,0}$ is represented by \widehat{t}_{1} in the cobar complex and is clearly a permanent cycle in the chromatic spectral sequence. We need to show that $v_{1}^{-1} \widehat{h}_{1,0}$ does not survive to $E_{\infty}^{0,1}$. If it does, then the element $\widehat{h}_{1,0} \in \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*} /(p)\right)$ is divisible by v_{1} and therefore has trivial image under the composite

$$
\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*} /(p)\right) \rightarrow \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*} / I_{2}\right) \rightarrow \operatorname{Ext}_{\Gamma(m+1)}^{1}\left(v_{2}^{-1} B P_{*} / I_{2}\right) .
$$

The target group was computed in [5], and the element in question is one of its generators.

For the chromatic differential d_{2}, we have

$$
d(z) \equiv v_{1}^{p} v_{2}^{p \omega-1} \widehat{t}_{1} \quad \bmod \left(v_{1}^{p+1}\right) .
$$

It follows that in the chromatic cobar complex $C C_{\Gamma(m+1)}\left(B P_{*} /(p)\right)$ the differential

$$
d_{c}: C^{1}\left(M_{1}^{0}\right) \oplus C^{0}\left(M_{1}^{1}\right) \rightarrow C^{2}\left(M_{1}^{0}\right) \oplus C^{1}\left(M_{1}^{1}\right) \oplus C^{0}\left(M_{1}^{2}\right)
$$

satisfies

$$
\begin{aligned}
d_{c}\left(v_{1}^{-1} \widehat{t}_{1}\right) & =\frac{\widehat{t}_{1}}{v_{1}} \quad \in C^{1}\left(M_{1}^{1}\right), \\
d_{c}\left(\frac{v_{2}^{1-p \omega} z}{v_{1}^{p+1}}\right) & =-\frac{\widehat{t}_{1}}{v_{1}}+\frac{z}{v_{1}^{p+1} v_{2}^{p \omega-1}} \in C^{1}\left(M_{1}^{1}\right) \oplus C^{0}\left(M_{1}^{2}\right),
\end{aligned}
$$

so $\quad d_{c}\left(v_{1}^{-1} \widehat{t}_{1}+\frac{v_{2}^{1-p \omega} z}{v_{1}^{p+1}}\right)=\frac{z}{v_{1}^{p+1} v_{2}^{p \omega-1}}$.
In terms of the double complex associated with the chromatic resolution, we have the following picture:

$$
\begin{array}{cc}
s=1: v_{1}^{-1} \widehat{t}_{1} \xrightarrow{d_{e}} \frac{\widehat{t}_{1}}{v_{1}} \\
s=0: & \frac{\left.d_{i}\right|_{2} ^{1-p \omega} z}{v_{1}^{p+1}} \xrightarrow{d_{e}} \frac{z}{v_{1}^{p+1} v_{2}^{p \omega-1}} \\
& t=0 \quad t=1 \quad t=2
\end{array}
$$

This means that in the chromatic spectral sequence we have the indicated d_{2}. Its target must be nontrivial in E_{2}, i.e., it is not in the image under

$$
d_{1}: E_{1}^{1,0}=\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right) \longrightarrow E_{1}^{2,0}=\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{2}\right)
$$

because otherwise $v_{1}^{-1} \widehat{h}_{1,0}$ would survive to $E_{\infty}^{0,1}$, contradicting the nondivisibilty result above.

Now we turn to the v_{1}-torsion in $\operatorname{Ext}_{\Gamma(m+1)}^{1}\left(B P_{*} /(p)\right)$. Let $\widehat{d}(k)$ be the maximum exponent of v_{1} satisfying

$$
\widehat{x}_{k} \equiv \widehat{x}_{k-1}^{p} \quad \bmod \left(p, v_{1}^{\widehat{d}(k)}\right)
$$

(if $\widehat{x}_{k}=\widehat{x}_{k-1}^{p}$, then we set $\widehat{d}(k)=\infty$.) Thus the integers $\widehat{d}(k)(k \geq 5)$ are given inductively by

$$
\begin{equation*}
\widehat{d}(k)=p^{k-1} \alpha+\widehat{d}(k-3) \tag{7.3}
\end{equation*}
$$

with $\widehat{d}(2)=p^{2}-1, \widehat{d}(3)=\infty, \widehat{d}(4)=p^{4}+p^{3}-p^{2}-p$ unless $p=2$ and $m=1$, but

$$
\begin{equation*}
\widehat{d}(k)=5 \cdot 2^{k-2}+\widehat{d}(k-2) \tag{7.4}
\end{equation*}
$$

with $\hat{d}(3)=\infty, \widehat{d}(4)=14$ in the case $p=2$ and $m=1$.

Lemma 7.5. For any prime p and $m \geq 1$,

$$
\widehat{x}_{k} \equiv \widehat{x}_{2}^{p^{k-2}} \bmod \left(p, v_{1}^{p^{k-4} \widehat{d}(4)}\right)
$$

Furthermore, $\widehat{x}_{k} \equiv \widehat{x}_{4}^{2^{k-4}}$ modulo $\left(2, v_{1}^{2^{k-6} \hat{d}(6)}\right)$ in the case $p=2$ and $m=1$.
Proof. From (7.3) and (7.4) it follows that $\widehat{d}(k)>p^{k-4} \widehat{d}(4)$ for $k \geq 5$ unless $p=2$ and $m=1$, and that $\widehat{d}(k)>2^{k-6} \widehat{d}(6)$ for $k \geq 7$ in the case $p=2$ and $m=1$. Therefore it is obvious that

$$
\begin{array}{r}
\min \left\{\widehat{d}(k), \hat{p}(k-1), \ldots, p^{k-4} \widehat{d}(4), p^{k-3} \widehat{d}(3)\right\} \\
=p^{k-4} \widehat{d}(4)=p^{k}+p^{k-1}-p^{k-2}-p^{k-3}
\end{array}
$$

unless $p=2$ and $m=1$, and

$$
\min \left\{\widehat{d}(k), 2 \widehat{d}(k-1), \ldots, 2^{k-6} \widehat{d}(6), 2^{k-5} \widehat{d}(5)\right\}=2^{k-6} \widehat{d}(6)=94 \cdot 2^{k-6}
$$

when $p=2$ and $m=1$. This completes the proof.
Lemma 7.6. Let $\widehat{x}_{k}^{s} / v_{1}^{j}(j \leq \widehat{a}(k))$ be one of the generators of $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right)$. Then the image of this element by the map

$$
\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right) \rightarrow \operatorname{Ext}_{\Gamma(m+1)}^{0}\left(N_{1}^{2}\right)
$$

is non-trivial if and only if $k \geq 2$ and $p^{k}<j \leq \widehat{a}(k)$.
Proof. We may assume that $k \geq 2$. From definition of \widehat{x}_{2}, it follows that

$$
\widehat{x}_{2}^{p^{k-2}} \equiv \widehat{v}_{2}^{p^{k}}-v_{1}^{p^{k}-p^{k-2}} v_{2}^{\beta p^{k-2}} \hat{v}_{3}^{p^{k-2}}+v_{1}^{p^{k}} v_{2}^{-p^{k-1}} \widehat{v}_{3}^{p^{k-1}} \quad \bmod (p)
$$

Then, using the fact that

$$
\begin{array}{ll}
2\left(p^{k}-p^{k-2}\right) \geq \widehat{a}(k) & \text { for } k=2 \text { or } 3 \\
2\left(p^{k}-p^{k-2}\right)>p^{k} \hat{d}(4) & \text { for } k \geq 4
\end{array}
$$

and Lemma 7.5 we have

$$
\widehat{x}_{k}^{s} \equiv \widehat{v}_{2}^{s p^{k}}-s \widehat{v}_{2}^{(s-1) p^{k}}\left(v_{1}^{p^{k}-p^{k-2}} v_{2}^{\beta p^{k-2}} \widehat{v}_{3}^{p^{k-2}}-v_{1}^{p^{k}} v_{2}^{-p^{k-1}} \widehat{v}_{3}^{k^{k-1}}\right)
$$

modulo $\left(p, v_{1}^{j}\right)$ for $k=2$ and 3 , and modulo ($p, v_{1}^{p^{k-4} \widehat{d}(4)}$) for $k \geq 4$.
In the right hand side the first and the second terms do not have a negative v_{2}-exponent, but the third term in $\widehat{x}_{k}^{s} / v_{1}^{j}$ is

$$
\frac{s v_{1}^{p^{k}} v_{2}^{-p^{k-1}} \widehat{v}_{2}^{(s-1) p^{k}} \widehat{v}_{3}^{p^{k-1}}}{v_{1}^{j}}
$$

which may be mapped non-trivially to N_{1}^{2}. Unless $p=2$ and $m=1$, we notice that $p^{k-4} \widehat{d}(4)>p^{k}$. Then we observe that $\widehat{x}_{k}^{s} / v_{1}^{j}$ is mapped non-trivially to N_{1}^{2} if and only if $j>p^{k}$ except when $p=2, m=1$ and $k \geq 4$.

On the other hand, in the $p=2$ and $m=1$ case we find that $\widehat{x}_{k} \equiv \widehat{x}_{4}^{2^{k-4}}$ modulo $\left(v_{1}^{2^{k-6} \hat{d}(6)}\right)(k \geq 6)$ and

$$
\begin{aligned}
\widehat{x}_{4} & \equiv \widehat{x}_{3}^{2}+v_{1}^{14} v_{2}^{14} \widehat{x}_{3} \\
& \equiv \widehat{v}_{2}^{16}+v_{1}^{12} v_{2}^{24} \widehat{v}_{2}^{4}+v_{1}^{14} v_{2}^{14} \widehat{v}_{2}^{8}+v_{1}^{16} v_{2}^{-8} \widehat{v}_{3}^{8} \quad \bmod \left(2, v_{1}^{18}\right),
\end{aligned}
$$

so that

$$
\widehat{x}_{4}^{2^{k-4}} \equiv \widehat{v}_{2}^{2^{k}}+v_{1}^{2^{k}} v_{2}^{-2^{k-1}} \widehat{v}_{3}^{2^{k-1}}+v_{1}^{3 \cdot 2^{k-2}} v_{2}^{3 \cdot 2^{k-1}} \widehat{v}_{2}^{k-2}+v_{1}^{7 \cdot 2^{k-3}} v_{2}^{7 \cdot 2^{k-3}} \widehat{v}_{2}^{2^{k-1}}
$$

modulo $\left(2, v_{1}^{9 \cdot 2^{k-3}}\right)$. Notice that $2^{k-6} \widehat{d}(6)>9 \cdot 2^{k-3}>2^{k}$ and that we may ignore the terms except the second one, because the other terms don't have a negative v_{2}-exponent. Then we can complete the proof in similar way as the above.

Corollary 7.7. The only elements of $E_{1}^{1,0}$ which survive to $E_{\infty}^{1,0}$ are

$$
\frac{\widehat{x}_{k}^{s}}{v_{1}^{j}} \text { for } s \geq 0, p \nmid s, k \geq 0 \text { and } 0<j \leq p^{k}
$$

Proof. The summand $v_{2}^{-1} \widehat{K}(1)_{*} / \widehat{k}(1)_{*}$ of $E_{1}^{1,0}$ is killed by the chromatic differential

$$
d_{1}: \operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{0}\right) \rightarrow \operatorname{Ext}_{\Gamma(m+1)}^{0}\left(M_{1}^{1}\right)
$$

Joining this result with Lemma 7.6, we have the desired result.

References

[1] I. Ichigi, H. Nakai, and D.C. Ravenel: The chromatic Ext groups $\operatorname{Ext}_{\Gamma(m+1)}^{0}\left(B P_{*}, M_{2}^{1}\right)$, Trans. Amer. Math. Soc. 354 (2002), 3789-3813.
[2] Y. Kamiya and K. Shimomura: The homotopy groups $\pi_{*}\left(L_{2} V(0) \wedge T(k)\right)$, Hiroshima Mathematical Journal, 31 (2001), 391-408.
[3] H.R. Miller, D.C. Ravenel, and W.S. Wilson: Periodic phenomena in the Adams-Novikov spectral sequence, Annals of Mathematics, 106 (1977), 469-516.
[4] H.R. Miller and W.S. Wilson: On Novikov's Ext ${ }^{1}$ modulo an invariant prime ideal, Topology, 15 (1976), 131-141.
[5] H. Nakai and D.C. Ravenel: The first cohomology group of the generalized morava stabilizer algebra, Proceedings of the American Mathematical Society, to appear.
[6] D.C. Ravenel: Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, New York, 1986. Errata available online at http://www.math.rochester.edu/u/drav/mu.html.
[7] D.C. Ravenel: The microstable Adams-Novikov spectral sequence, In D. Arlettaz and K. Hess, editors, Une dégustation topologique [Topological morsels]: homotopy theory in the Swiss Alps (Arolla, 1999), volume 265 of Contemporary Mathematics, 193-209, Providence, Rhode Island, 2000. American Mathematical Society.
[8] K. Shimomura: The homotopy groups of the L_{2}-localized Mahowald spectrum $X\langle 1\rangle$, Forum Mathematicum, 7, 685-707.
[9] K. Shimomura: The homotopy groups $\pi_{*}\left(L_{n} T(m) \wedge V(n-2)\right)$, to appear.

Hirofumi Nakai

General Education Division,
Oshima National College of Maritime Technology, Yamaguchi 742-2193,
Japan
Douglas C. Ravenel
Department of Mathematics,
University of Rochester,
Rochester, New York 14627,
U.S.A.

