Hirose, S.

A COMPLEX OF CURVES AND A PRESENTATION FOR THE MAPPING CLASS GROUP OF A SURFACE

Susumu HIROSE

(Received December 21, 2000)

1. Introduction

Let $\Sigma_{g, n}$ be an oriented surface of genus $g(\geq 2)$ with $n(\geq 0)$ boundary components and denote by $\mathcal{M}_{g, n}$ its mapping class group, that is to say, the group of orientation preserving diffeomorphisms of $\Sigma_{g, n}$ which are the identity on $\partial \Sigma_{g, n}$ modulo isotopy. For a simple closed curve a in $\Sigma_{g, n}$, we define the Dehn twist along a as indicated in Fig. 1. We denote the isotopy class of Dehn twist along a by the same letter a.

It is known that $\mathcal{M}_{g, n}$ is generated by Dehn twists [5], [16]. McCool [19] showed that $\mathcal{M}_{g, n}$ is finitely presented. Hatcher and Thurston [7] defined a simply connected complex whose vertices are isotopy classes of "cut systems" and introduced a method of giving a presentation for $\mathcal{M}_{g, n}$ by making use of this complex. Harer [8] reduced the member of the 2 -simplices of this complex, and Wajnryb [20] gave a simple presentation for $\mathcal{M}_{g, 1}$ and $\mathcal{M}_{g, 0}$. Following Wajnryb's presentation, Gervais [6] gave a symmetric presentation for $\mathcal{M}_{g, n}$. We set some notations indicating circles on $\Sigma_{g, n}$ as in Fig. 2. A triple of integers $(i, j, k) \in\{1, \ldots, 2 g+n-3\}^{3}$ will be said to be good when:

Dehn twist along a

Fig. 1.

[^0]

Fig. 2.
i) $\quad(i, j, k) \notin\{(x, x, x) \mid x \in\{1, \ldots, 2 g+n-2\}\}$,
ii) $i \leq j \leq k$ or $j \leq k \leq i$ or $k \leq i \leq j$.

Gervais' symmetric presentation is as follows,

Theorem 1.1 ([6]). If $g \geq 2, n \geq 0$, then $\mathcal{M}_{g, n}$ is generated by $b, b_{1}, \ldots, b_{g-1}$, $a_{1}, \ldots, a_{2 g+n-2}, c_{i, j}$, and its defining relations are
(A) "HANDLES": $c_{2 i, 2 i+1}=c_{2 i-1,2 i}$ for all $i, 1 \leq i \leq g-1$,
(B) "BRAIDS": for all x, y among the generators, $x y=y x$ if the associated curves are disjoint and $x y x=y x y$ if the associated curves intersect transversely in a single point,
(C) "STARS": $c_{i j} c_{j k} c_{k i}=\left(a_{i} a_{j} a_{k} b\right)^{3}$ for all good triples i, j, k, where $c_{l l}=1$.

Let $G_{g, n}$ denote the group with presentation given by Theorem 1.1.
On the other hand, Harvey [10] introduced a complex of curves for $\Sigma_{g, n}$, whose vertices are isotopy classes of essential (neither homotopic to a point nor any boundary component) simple closed curves and simplices are the set of vertices which are represented by disjoint and non-isotopic curves. Harer [9] showed the higher connectivity of this complex and, by using this complex, proved the stability of the cohomology group of mapping class groups. McCullough [18] defined a disk complex of a handle body (an oriented 3-dimensional manifold obtainted from 3-ball by attaching 1-handles), which is defined from a complex of curves by replacing "curves" with "meridian disks". He showed that the disk complex is contractible. The author [12] gave a presentation for the mapping class group of a handle body by investigating the action of the mapping class group on this complex. The aim of this paper is to
give a Gervais' symmetric presentation for $\mathcal{M}_{g, n}$ with the same method as above, that is to say, by investigating the action of $\mathcal{M}_{g, n}$ on the complex of curves for $\Sigma_{g, n}$. We remark here that our method introduced in this paper does not use Wajnryb's simple presenation. This fact means that we do not need to use Hatcher-Thurston's complex to give a presentation for $\mathcal{M}_{g, n}$. In [21], Wajnryb proved simple connectedness of Hatcher-Thurston's complex without using Cerf Theory, and use this to give his simple presenatation for $\mathcal{M}_{g, 0}$ and $\mathcal{M}_{g, 1}$. On the other hand, Ivanov [13] gave an elementary proof of the simple connectivity of Harvey's complex, and Hatcher [11] gave an elementary proof of the higher connectivity of this complex. Therefore, our method introduced in this paper is another elementary approach to the mapping class group of a surface.

Recently, S. Benvenuti (Pisa Univ.) [1] showed a similar result, independently, using different "complex of curves", which includes separating curves. We remark that Matsumoto [17] gave a beautiful presentation for the mapping class groups of surfaces in terms of Artin groups.

We set notations and conventions used in this paper. Composition of elements of $\mathcal{M}_{g, n}$ will be written from right to left. We will denote by \bar{x} the inverse of x and $y(x)$ the conjugate $y x \bar{y}$ of x by y. The notation \rightleftarrows means "commute with". For example, for two elements x, y of $\mathcal{M}_{g, n}, x \rightleftarrows y$ means $x y=y x$. We use braid relations and handle relations very often. We indicate the place to use a braid relation (resp. handle relation) by an underline together with the letter "braid" (resp. "handle") below it. For example, if x, y, z_{1}, z_{2} are loops on $\Sigma_{g, n}$ and if x and y intersect transversely in a single point and z_{1} and z_{2} are disjoint, then

$$
\cdots \frac{x y x}{\text { braid }} \cdots \frac{z_{1} z_{2}}{\text { braid }} \cdots=\cdots y x y \cdots z_{2} z_{1} \cdots .
$$

2. A presentation for $\mathcal{M}_{2,0}$

Birman and Hilden [4] showed:
Theorem 2.1 ([4]). $\mathcal{M}_{2,0}$ admits the presentation:
generators: $\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, \tau_{5}$,
defining relations:
(i) $\tau_{i} \tau_{j}=\tau_{j} \tau_{i}$, if $|i-j| \geq 2,1 \leq i, j \leq 5$,
(ii) $\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1} \quad 1 \leq i \leq 4$,
(iii) $\left(\tau_{1} \tau_{2} \tau_{3} \tau_{4} \tau_{5}\right)^{6}=1$,
(iv) $\left(\tau_{1} \tau_{2} \tau_{3} \tau_{4} \tau_{5}^{2} \tau_{4} \tau_{3} \tau_{2} \tau_{1}\right)^{2}=1$,
(v) $\tau_{1} \tau_{2} \tau_{3} \tau_{4} \tau_{5}^{2} \tau_{4} \tau_{3} \tau_{2} \tau_{1} \rightleftarrows \tau_{i} \quad 1 \leq i \leq 5$.

As we defined previously, $G_{2,0}$ is a group with the following presentation: generators: $a_{1}, b, a_{2}, b_{1}, c_{1,2}$,
defining relations:
(1) $a_{1} b a_{1}=b a_{1} b, a_{2} b a_{2}=b a_{2} b, a_{2} b_{1} a_{2}=b_{1} a_{2} b_{1}, b_{1} c_{1,2} b_{1}=c_{1,2} b_{1} c_{1,2}$, every other pair of generators commutes,
(2) $\left(a_{1} a_{1} a_{2} b\right)^{3}=c_{1,2}^{2}$.

Let $\psi_{2,0}: G_{2,0} \rightarrow \mathcal{M}_{2,0}$ be an epimorphism defined by $\psi_{2,0}\left(a_{1}\right)=\tau_{1}, \psi_{2,0}(b)=\tau_{2}$, $\psi_{2,0}\left(a_{2}\right)=\tau_{3}, \psi_{2,0}\left(b_{1}\right)=\tau_{4}$ and $\psi_{2,0}\left(c_{1,2}\right)=\tau_{5}$. We want to prove $\psi_{2,0}$ is an isomorphism. We shall construct an inverse map $\phi_{2,0}: \mathcal{M}_{2,0} \rightarrow G_{2,0}$. For each generators of $G_{2,0}$, we define $\phi_{2,0}\left(\tau_{1}\right)=a_{1}, \phi_{2,0}\left(\tau_{2}\right)=b, \phi_{2,0}\left(\tau_{3}\right)=a_{2}, \phi_{2,0}\left(\tau_{4}\right)=b_{1}$, and $\phi_{2,0}\left(\tau_{5}\right)=c_{1,2}$. If the relations (i)-(v) are mapped by $\phi_{2,0}$ onto relations in $G_{2,0}$, then $\phi_{2,0}$ extends to a homomorphism. Then, we can show $\psi_{2,0} \circ \phi_{2,0}=\operatorname{Id}_{\mathcal{M}_{2,0}}$ and $\phi_{2,0}$ is an epimorphism, hence, $\psi_{2,0}$ is an isomorphism. Therefore, in order to prove $\phi_{2,0}$ is an isomorphism, it is enough to show that the defining relations (i)-(v) are satisfied in $G_{2,0}$.

Relations (i) and (ii) are nothing but the relations (1) for $G_{2,0}$. In $G_{2,0}$, the right hand side of relation (v) is $a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1}$, hence we need to show

$$
a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1} \rightleftarrows a_{1}, b, a_{2}, b_{1}, c_{1,2} .
$$

For short, we denote $E=a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1}$. Using the relations (1), we can show $E(b)=b, E\left(a_{2}\right)=a_{2}, E\left(b_{1}\right)=b_{1}, E\left(c_{1,2}\right)=c_{1,2}$. In order to show $E\left(a_{1}\right)=a_{1}$, we have to give another presentation for E.

Lemma 2.2. $\quad\left(c_{1,2} c_{1,2} a_{2} b_{1}\right)^{3}=a_{1} a_{1}$.
Proof. We introduce an element $D=a_{1} b a_{2} b_{1} c_{1,2} a_{1} b a_{2} b_{1} a_{1} b a_{2} a_{1} b a_{1}$ of $\mathcal{M}_{2,0}$. By using the relations (1), we can show $D\left(a_{1}\right)=c_{1,2}, D(b)=b_{1}, D\left(a_{2}\right)=a_{2}$, $D\left(b_{1}\right)=b$, and $D\left(c_{1,2}\right)=a_{1}$. We take a conjugation of the relation (2) by D, then we get the equation we need.

Lemma 2.3. $E=a_{1} a_{1} b a_{1} a_{1} b \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{2} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{2}$.
Proof. By the relations (1), we can show,

$$
\begin{aligned}
c_{1,2} c_{1,2} a_{2} b_{1} c_{1,2} c_{1,2} a_{2} b_{1} \frac{c_{1,2} c_{1,2} a_{2} b_{1}}{\text { braid }} & =c_{1,2} c_{1,2} a_{2} b_{1} c_{1,2} c_{1,2} \frac{a_{2} b_{1} a_{2} c_{1,2} c_{1,2} b_{1}}{\text { braid }} \\
& =c_{1,2} c_{1,2} a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b_{1} c_{1,2} c_{1,2} b_{1} .
\end{aligned}
$$

We have shown $a_{1} a_{1}=\left(c_{1,2} c_{1,2} a_{2} b_{1}\right)^{3}$, in Lemma 2.2. Therefore,

$$
a_{1} a_{1}=c_{1,2} c_{1,2} a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b_{1} c_{1,2} c_{1,2} b_{1} .
$$

From this equation,

$$
a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2}=\frac{\bar{c}_{1,2} \bar{c}_{1,2} a_{1} a_{1} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1}=a_{1} a_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1},}{\text { raid }}
$$

and hence we can show,

$$
\begin{aligned}
E & =a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1}=a_{1} b a_{1} a_{1} \frac{\bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} b a_{1}}{\text { braid }} \quad \text { by the above equation } \\
& =a_{1} b a_{1} \frac{a_{1} b a_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1}=a_{1} \frac{b a_{1} b a_{1} b \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1}}{\text { braid }}}{} \\
& =a_{1} a_{1} b a_{1} a_{1} b \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} .
\end{aligned}
$$

We can show $E\left(a_{1}\right)=a_{1}$ by using the above Lemma and the relations (1).
The relation (iv) is interpreted as $E^{2}=1$ in $G_{2,0}$. By Lemma 2.3,

$$
\begin{aligned}
E^{2} & =a_{1} a_{1} b a_{1} a_{1} b \frac{\bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} a_{1} a_{1} b a_{1} a_{1} b \bar{c}_{1,2}}{b r{ }_{c}^{1,2}} \\
\text { braid } \bar{b}_{1} & \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \\
& =a_{1} a_{1} b a_{1} a_{1} b a_{1} a_{1} b a_{1} a_{1} b \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1} \bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{1}
\end{aligned}
$$

If we can show $\left(a_{1} a_{1} b\right)^{4}=\left(c_{1,2} c_{1,2} b_{1}\right)^{4}$, then $E^{2}=\left(c_{1,2} c_{1,2} b_{1}\right)^{4}\left(\bar{c}_{1,2} \bar{c}_{1,2} \bar{b}_{2}\right)^{4}$. Since we can show $\left(c_{1,2} c_{1,2} b_{1}\right)^{4}=\left(b_{1} c_{1,2} c_{1,2}\right)^{4}$ by the relations (1), we get $E^{2}=1$. Therefore it is enough to show:

Lemma 2.4. $\left(a_{1} a_{1} b\right)^{4}=\left(c_{1,2} c_{1,2} b_{1}\right)^{4}$
Proof. We denote $r_{1}=a_{1} a_{1} b a_{1} a_{1} b, r_{2}=c_{1,2} c_{1,2} b_{1} c_{1,2} c_{1,2} b_{1}$ for short. We can show,

$$
\begin{aligned}
r_{1} a_{2} r_{1} a_{2} & =a_{1} a_{1} b a_{1} a_{1} b a_{2} a_{1} \frac{a_{1} b a_{1} a_{1} b a_{2}=a_{1} a_{1} b a_{1} a_{1} b a_{2} \frac{a_{1} b a_{1}}{\text { braid }} b a_{1} b a_{2}}{\text { braid }} \\
& =a_{1} a_{1} b a_{1} a_{1} \frac{b a_{2} b a_{1} b b a_{1} b a_{2}=a_{1} a_{1} b \frac{a_{1} a_{1} a_{2} b a_{2}}{\text { braid }} \frac{b a a_{2}}{\text { braid }} b b a_{1} b a_{2}}{\text { braid }} \\
& =a_{1} a_{1} b a_{2} a_{1} \frac{a_{1} b a_{1}}{\text { braid }} b b a_{1} b a_{2}=a_{1} a_{1} b a_{2} \frac{a_{1} b a_{1} b a_{2} b b a_{1} b a_{2}}{\text { braid }} \\
& =a_{1} a_{1} \frac{b a_{2} b a_{1} b b a_{2} b b a_{1} b a_{2}=a_{1} a_{1} a_{2} b a_{2} a_{1} b b a_{2} b b a_{1} b a_{2}}{\text { braidd }} \\
& =a_{1} a_{1} a_{2} b a_{2} a_{1} b b a_{2} \frac{b a_{1} b a_{1} a_{2}=a_{1} a_{1} a_{2} b a_{2} a_{1} b b \frac{a_{2} a_{1} b a_{1} a_{1} a_{2}}{\text { braid }} \frac{\text { braid }}{\text { braid }}}{} \\
& =a_{1} a_{1} a_{2} b a_{2} a_{1} b b a_{1} \frac{a_{2} b a_{2} a_{1} a_{1}=a_{1} a_{1} a_{2} b a_{2} a_{1} b b a_{1} b a_{2} b a_{1} a_{1}}{\text { braaid }} \\
& =a_{1} a_{1} a_{2} b a_{2} a_{1} \frac{b a_{1} b a_{1}}{\text { braid }} b a_{2} a_{1}=a_{1} a_{1} b a_{2} a_{1} b a_{1} a_{1} a_{2} b a_{1} a_{1} \\
& =\left(a_{1} a_{1} a_{2} b\right)^{3} a_{1} a_{1}
\end{aligned}
$$

and, by the relation (2), $\left(a_{1} a_{1} a_{2} b\right)^{3} a_{1} a_{1}=c_{1,2} c_{1,2} a_{1} a_{1}$. Hence $r_{1} a_{2} r_{1} a_{2}=c_{1,2} c_{1,2} a_{1} a_{1}$. From the last equation, we can show $r_{1}^{2}=r_{1} \bar{a}_{2} \bar{r}_{1} c_{1,2} c_{1,2} a_{1} a_{1} \bar{a}_{2}$. In the same way as above, but using Lemma 2.2 in place of relation (2), we can show $r_{2}^{2}=$
$r_{2} \bar{a}_{2} \bar{r}_{2} c_{1,2} c_{1,2} a_{1} a_{1} \bar{a}_{2}$. If we can show $r_{1}\left(a_{2}\right)=r_{2}\left(a_{2}\right)$, then we get $r_{1}^{2}=r_{2}^{2}$. In fact,

$$
\begin{aligned}
r_{2}\left(a_{2}\right) & =c_{1,2} \frac{c_{1,2} b_{1} c_{1,2} c_{1,2} b_{1}\left(a_{2}\right)=\frac{c_{1,2} b_{1} c_{1,2}}{\text { braid }} \frac{b_{1} c_{1,2} b_{1}\left(a_{2}\right)}{\text { braid }}}{}=b_{1} c_{1,2} \frac{b_{1} c_{1,2} b_{1} c_{1,2}\left(a_{2}\right)=b_{1} c_{1,2} c_{1,2} b_{1} \frac{c_{1,2} c_{1,2}\left(a_{2}\right)}{\text { braid }}}{\text { braid }} \\
& =b_{1} c_{1,2} c_{1,2} b_{1}\left(a_{2}\right)=b_{1}\left(a_{1} a_{1} a_{2} b\right)^{3} b_{1}\left(a_{2}\right) \quad \text { by the relation (2) } \\
& =b_{1} a_{1} a_{1} a_{2} b a_{1} a_{1} a_{2} b a_{1} a_{1} a_{2} b \frac{b_{1}\left(a_{2}\right)}{\text { braid }}=b_{1} a_{1} a_{1} a_{2} b a_{1} a_{1} a_{2} b a_{1} a_{1} \frac{a_{2} b \bar{a}_{2}\left(b_{1}\right)}{\text { braid }} \\
& =b_{1} a_{1} a_{1} a_{2} b a_{1} a_{1} a_{2} b a_{1} a_{1} \bar{b} a_{2} \frac{b\left(b_{1}\right)}{\text { braid }}=b_{1} a_{1} a_{1} a_{2} b \frac{a_{1} a_{1} a_{2} b a_{1} a_{1} \bar{b} a_{2}\left(b_{1}\right)}{\text { braid }} \\
& =b_{1} a_{1} a_{1} a_{2} b a_{2} a_{1} \frac{a_{1} b a_{1}}{\text { braid }} a_{1} \bar{b} a_{2}\left(b_{1}\right)=b_{1} a_{1} a_{1} a_{2} b a_{2} a_{1} b a_{1} \frac{b a_{1} \bar{b} a_{2}\left(b_{1}\right)}{\text { braid }} \\
& =b_{1} a_{1} a_{1} \frac{a_{2} b a_{2}}{\text { braid }} \frac{a_{1} b a_{1} \bar{a}_{1} b a_{1} \frac{a_{2}}{\text { braid }}\left(b_{1}\right)=b_{1} a_{1} a_{1} b a_{2} b a_{1} b b a_{2} \frac{a_{1}\left(b_{1}\right)}{\text { braid }}}{} \\
& =b_{1} a_{1} a_{1} b a_{2} \frac{b a_{1} b b a_{2}\left(b_{1}\right)=b_{1} a_{1} a_{1} b a_{2} a_{1} \frac{b a_{1} b a_{2}\left(b_{1}\right)=b_{1} a_{1} a_{1} b a_{2} a_{1} a_{1} b \frac{b a_{1} a_{2}\left(b_{1}\right)}{\text { braidid }}}{}}{}=b_{1} a_{1} a_{1} b a_{2} a_{1} a_{1} b a_{2} \frac{a_{1}\left(b_{1}\right)}{\text { braid }}=b_{1} a_{1} a_{1} b \frac{a_{2} a_{1} a_{1} b a_{2}\left(b_{1}\right)=b_{1} a_{1} a_{1} b a_{1} a_{1} \frac{a_{2} b a_{2}\left(b_{1}\right)}{\text { braid }}}{} \\
& =b_{1} a_{1} a_{1} b a_{1} a_{1} b a_{2} \frac{b\left(b_{1}\right)}{\text { braid }}=b_{1} a_{1} a_{1} b a_{1} a_{1} b \frac{a_{2}\left(b_{1}\right)}{\text { braid }}=b_{1} \frac{a_{1} a_{1} b a_{1} a_{1} b \bar{b}_{1}}{\text { braid }}\left(a_{2}\right) \\
& =b_{1} \bar{b}_{1} a_{1} a_{1} b a_{1} a_{1} b\left(a_{2}\right)=a_{1} a_{1} b a_{1} a_{1} b\left(a_{2}\right)=r_{1}\left(a_{2}\right)
\end{aligned}
$$

The relation (iii) is interpreted as $\left(a_{1} b a_{2} b_{1} c_{1,2}\right)^{6}=1$. If we regard a_{1}, b, a_{2}, b_{1}, $c_{1,2}$ as generators of the 6 -string braid group, namely, a_{1} as an interchange of the 1 st and the 2nd string, b as an interchange of the 2 nd and the 3rd string and so on, then $\left(a_{1} b a_{2} b_{1} c_{1,2}\right)^{6}$ is a full twist. By investigating a figure of a 6 -string full twist, or repeatedly applying the relations (1), we can show

$$
\left(a_{1} b a_{2} b_{1} c_{1,2}\right)^{6}=\left(a_{1} b a_{2} b_{1} c_{1,2}\right)^{2} b_{1} a_{2} b a_{1} c_{1,2} b_{1} a_{2} b\left(a_{2} b_{1} c_{1,2}\right)^{4}
$$

By Lemma 2.2,

$$
\begin{aligned}
a_{1} a_{1} & =\left(c_{1,2} c_{1,2} a_{2} b_{1}\right)^{3} \\
& =\frac{c_{1,2} c_{1,2} a_{2} b_{1} c_{1,2} c_{1,2} a_{2} b_{1} c_{1,2} c_{1,2} a_{2} b_{1}=a_{2} c_{1,2} \frac{c_{1,2} b_{1} c_{1,2}}{\text { braid }} c_{1,2} a_{2} b_{1} c_{1,2} c_{1,2} a_{2} b_{1}}{\text { braid }} \\
& =a_{2} \frac{c_{1,2} b_{1} c_{1,2} b_{1} c_{1,2} a_{2} b_{1} c_{1,2} c_{1,2} a_{2} b_{1}=a_{2} b_{1} c_{1,2} b_{1} b_{1} \frac{c_{1,2} a_{2}}{\text { braid }} b_{1} c_{1,2} c_{1,2} a_{2} b_{1}}{\text { braid }} \\
& =a_{2} b_{1} c_{1,2} b_{1} b_{1} a_{2} \frac{c_{1,2} b_{1} c_{1,2} c_{1,2} a_{2} b_{1}=a_{2} b_{1} c_{1,2} b_{1} \frac{b_{1} a_{2} b_{1} c_{1,2} b_{1} c_{1,2} a_{2} b_{1}}{\text { braid }}}{}=a_{2} b_{1} c_{1,2} \frac{b_{1} a_{2} b_{1} a_{2} c_{1,2} b_{1} c_{1,2} a_{2} b_{1}=a_{2} b_{1} c_{1,2} a_{2} b_{1} \frac{a_{2} a_{2} c_{1,2}}{\text { braid }} b_{1} \frac{c_{1,2} a_{2} b_{1}}{\text { braid }}}{}=\text { raid }
\end{aligned}
$$

$$
\begin{aligned}
& =a_{2} b_{1} c_{1,2} a_{2} b_{1} c_{1,2} a_{2} \frac{a_{2} b_{1} a_{2} c_{1,2} b_{1}=a_{2} b_{1} c_{1,2} a_{2} b_{1} c_{1,2} a_{2} b_{1} a_{2} \frac{b_{1} c_{1,2} b_{1}}{\text { braid }}}{=a_{2} b_{1} c_{1,2} a_{2} b_{1} c_{1,2} a_{2} b_{1} \frac{a_{2} c_{1,2} b_{1} c_{1,2}=\left(a_{2} b_{1} c_{1,2}\right)^{4} .}{\text { braid }}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(a_{1} b a_{2} b_{1} c_{1,2}\right)^{6} & =\left(a_{1} b a_{2} b_{1} c_{1,2}\right)^{2} b_{1} a_{2} b a_{1} c_{1,2} b_{1} a_{2} b a_{1} a_{1} \\
& =a_{1} b a_{2} b_{1} c_{1,2} a_{1} b a_{2} \frac{b_{1} c_{1,2} b_{1} a_{2} b a_{1} c_{1,2} b_{1} a_{2} b a_{1} a_{1}}{\text { braid }} \\
& =a_{1} b a_{2} b_{1} c_{1,2} \frac{a_{1} b a_{2} c_{1,2} b_{1}}{\text { braid }} \frac{c_{1,2} a_{2} b a_{1} c_{1,2} b_{1} a_{2} b a_{1} a_{1}}{\text { braid }} \\
& =a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} a_{1} b \frac{a_{2} b_{1} a_{2} b a_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1} a_{1}}{\text { braid }} \\
& =a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} \frac{a_{1} b b_{1}}{\text { braid }} \frac{a_{2}}{b_{1} b a_{1}} \frac{c_{1,2} c_{1,2} b_{1} a_{2} b a_{1} a_{1}}{\text { braid }} \\
& =a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{1} \frac{b a_{2} b a_{1} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1} a_{1}}{\text { braid }} \\
& =a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} \frac{a_{1} a_{2} b \frac{a_{2} a_{1}}{\text { braid }} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1} a_{1}}{\text { braid }} \\
& =a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} \frac{a_{1} b a_{1} a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1} a_{1}}{\text { braid }} \\
& =a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b\left(a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1}\right) a_{1} .
\end{aligned}
$$

We have already shown that $a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1}=E \rightleftarrows a_{1}$. Hence, $\left(a_{1} b a_{2} b_{1} c_{1,2}\right)^{6}=$ $\left(a_{1} b a_{2} b_{1} c_{1,2} c_{1,2} b_{1} a_{2} b a_{1}\right)^{2}=E^{2}=1$.

3. Elementary relations

In this section, we assume $g \geq 3$ or $g=2, n \geq 1$. We shall prove some relations in $G_{g, n}$ which are frequently used in the following sections. The first one is known as the "lantern relation", which is proved in [6, Lemma 3]. So we omit the proof here:

Lemma 3.1. For all good triples (i, j, k), one has in $G_{g, n}$ the relation,

$$
\left(L_{i, j, k}\right): a_{i} c_{i, j} c_{j, k} a_{k}=c_{i, k} a_{j} X a_{j} \bar{X}=c_{i, k} \bar{X} a_{j} X a_{j},
$$

where $X=b a_{i} a_{k} b$.
The next one is:
Lemma 3.2. If $i \neq 2 k$, one has in $G_{g, n}$ the relation,

$$
\left(X_{i, 2 k}\right):(1) \overline{b_{k} a_{2 k} c_{2 k-1,2 k} b_{k}}\left(c_{i, 2 k}\right)=b a_{i} a_{2 k} b\left(a_{2 k-1}\right),
$$

(2) $b_{k} a_{2 k} c_{2 k-1,2 k} b_{k}\left(c_{i, 2 k}\right)=\overline{b a_{i} a_{2 k} b}\left(a_{2 k-1}\right)$,
(3) $\overline{b_{k} a_{2 k} c_{2 k-1,2 k} b_{k}}\left(c_{2 k, i}\right)=b a_{i} a_{2 k} b\left(a_{2 k+1}\right)$,
(4) $b_{k} a_{2 k} c_{2 k-1,2 k} b_{k}\left(c_{2 k, i}\right)=\overline{b a_{i} a_{2 k} b}\left(a_{2 k+1}\right)$.

Proof. We will prove (1). Other relations are proved in the same way. We write $X_{1}=b_{k} a_{2 k} c_{2 k-1,2 k} b_{k}, X_{2}=b a_{i} a_{2 k} b$ for short. Then,

$$
\begin{aligned}
\overline{X_{2}} \overline{X_{1}}\left(c_{i, 2 k}\right) & =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \bar{c}_{2 k-1,2 k} \bar{a}_{2 k} \frac{\bar{b}_{k}\left(c_{i, 2 k}\right)}{\text { braid }} \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \bar{c}_{2 k-1,2 k} \bar{a}_{2 k} c_{i, 2 k}\left(b_{k}\right) .
\end{aligned}
$$

The lantern relation $L_{i, 2 k-1,2 k}$ says $c_{i, 2 k}=a_{2 k} c_{2 k-1,2 k} c_{i, 2 k-1} a_{i} \bar{a}_{2 k-1} \overline{X_{2}} \bar{a}_{2 k-1} X_{2}$. Therefore,

$$
\begin{aligned}
& \overline{X_{2}} \overline{X_{1}}\left(c_{i, 2 k}\right)=\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \bar{c}_{2 k-1,2 k} \bar{a}_{2 k} a_{2 k} c_{2 k-1,2 k} c_{i, 2 k-1} a_{i} \bar{a}_{2 k-1} \bar{X}_{2} \bar{a}_{2 k-1} X_{2}\left(b_{k}\right) \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} c_{i, 2 k-1} a_{i} \bar{a}_{2 k-1} \bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{a}_{2 k-1} b a_{i} a_{2 k} \frac{b\left(b_{k}\right)}{\text { braid }} \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \frac{c_{i, 2 k-1} a_{i} \bar{a}_{2 k-1} \bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{a}_{2 k-1} b a_{i} a_{2 k}\left(b_{k}\right)}{\text { braid }} \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} a_{i} \bar{a}_{2 k-1} \bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{a}_{2 k-1} \frac{b a_{i} a_{2 k} c_{i, 2 k-1}\left(b_{k}\right)}{\text { braid }} \frac{\text { braid }}{} \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} a_{i} \bar{a}_{2 k-1} \bar{b} \bar{a}_{2 k} \frac{\bar{a}_{i} \bar{b} \bar{a}_{2 k-1} b a_{2 k} \frac{a_{i}\left(b_{k}\right)}{\text { bracaid }}}{\text { braid }} \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \frac{a_{i}}{\bar{a}_{2 k-1}} \frac{\bar{b} \bar{a}_{2 k} \bar{a}_{i} a_{2 k-1}}{\text { braid }} \frac{\bar{b}}{\bar{a}_{2 k-1}} \frac{a_{2 k}}{\text { braid }}\left(b_{k}\right) \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \bar{a}_{2 k-1} \frac{a_{i} \bar{b} \bar{b}_{i} a_{2 k-1} \frac{\bar{a}_{2 k} \bar{b} a_{2 k}}{\text { braid }} \frac{\bar{a}_{2 k-1}\left(b_{k}\right)}{\text { braid }}}{\text { brat }} \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \bar{a}_{2 k-1} \bar{b} \bar{a}_{i} \frac{b a_{2 k-1}}{\text { braid }} \bar{a}_{2 k} \frac{\bar{b}\left(b_{k}\right)}{\text { braid }} \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \bar{a}_{2 k-1} \bar{b} \bar{a}_{i} a_{2 k-1} \frac{b a_{2 k-1}}{\text { braid }} \bar{a}_{2 k}\left(b_{k}\right) \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \bar{a}_{2 k-1} \bar{b} \bar{a}_{i} a_{2 k-1} b \bar{a}_{2 k} \frac{a_{2 k-1}\left(b_{k}\right)}{\text { braid }}=\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \bar{a}_{2 k-1} \bar{b} \bar{a}_{i} a_{2 k-1} \frac{b \bar{a}_{2 k}\left(b_{k}\right)}{\text { braid }} \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} \frac{\bar{a}_{2 k-1} \bar{b} \bar{a}_{i} a_{2 k-1} b b_{k}}{\text { braid }}\left(a_{2 k}\right)=\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} \bar{b}_{k} b_{k} \bar{a}_{2 k-1} \frac{\bar{b} \bar{a}_{i} a_{2 k-1}}{\text { braid }} b\left(a_{2 k}\right) \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \frac{\bar{b} \bar{a}_{2 k-1} \bar{b} a_{2 k-1}}{\text { braid }} \bar{a}_{i} b\left(a_{2 k}\right)=\bar{b} \bar{a}_{2 k} \bar{a}_{i} \bar{b} b \bar{a}_{2 k-1} \frac{\bar{b} \bar{a}_{i} b\left(a_{2 k}\right)}{\text { braid }} \\
& =\bar{b} \bar{a}_{2 k} \bar{a}_{i} \frac{\bar{a}_{2 k-1}}{\text { braid }} \frac{a_{i}}{} \frac{\bar{a}_{i}\left(a_{2 k}\right)}{\text { braid }}=\bar{b} \bar{a}_{2 k} \bar{a}_{i} a_{i} \bar{a}_{2 k-1} \frac{\bar{b}\left(a_{2 k}\right)}{\text { braid }}=\bar{b} \bar{a}_{2 k} \frac{\bar{a}_{2 k-1} a_{2 k}}{\text { braid }}(b) \\
& =\bar{b} \bar{a}_{2 k} \frac{a_{2 k} k}{\frac{\bar{a}_{2 k-1}(b)}{\text { braid }}}=\bar{b} b\left(a_{2 k-1}\right)=a_{2 k-1} .
\end{aligned}
$$

The third one is known as the "chain relation":
Lemma 3.3. One has in $G_{g, n}$ the relation:

$$
\left\{\left(c_{2 g-2,2 g-1}\right)^{2} a_{2 g-2} b_{g-1}\right\}^{3}=a_{2 g-3} a_{2 g-1}
$$

Proof. We write

$$
\begin{gathered}
D=c_{2 g-2,2 g-1} b_{g-1} a_{2 g-2} b a_{2 g-3} c_{2 g-2,2 g-1} b_{g-1} a_{2 g-2} b c_{2 g-2,2 g-1} b_{g-1} a_{2 g-2} \\
\times c_{2 g-2,2 g-1} b_{g-1} c_{2 g-2,2 g-1}
\end{gathered}
$$

for short. By using braid relations, we can show $D\left(c_{2 g-2,2 g-1}\right)=a_{2 g-3}, D\left(b_{g-1}\right)=b$, $D\left(a_{2 g-2}\right)=a_{2 g-2}, D\left(a_{2 g-3}\right)=c_{2 g-2,2 g-1}$. For $D\left(a_{2 g-1}\right)$,

$$
\begin{aligned}
& D\left(a_{2 g-1}\right) \\
&= c_{2 g-2,2 g-1} b_{g-1} a_{2 g-2} b a_{2 g-3} c_{2 g-2,2 g-1} b_{g-1} a_{2 g-2} b \\
& \quad \times \frac{c_{2 g-2,2 g-1} b_{g-1} a_{2 g-2} c_{2 g-2,2 g-1} b_{g-1} c_{2 g-2,2 g-1}\left(a_{2 g-1}\right)}{\text { braid }} \\
&= c_{2 g-2,2 g-1} b_{g-1} a_{2 g-2} b a_{2 g-3} c_{2 g-2,2 g-1} b_{g-1} a_{2 g-2} b\left(a_{2 g-1}\right) \\
&= c_{2 g-2,2 g-1} b_{g-1} \frac{a_{2 g-2} b c_{2 g-2,2 g-1}}{\text { braid }} b_{g-1} a_{2 g-2} a_{2 g-3} b\left(a_{2 g-1}\right) \\
&= c_{2 g-2,2 g-1} b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} \frac{b b_{g-1}}{\text { braid }} a_{2 g-2} a_{2 g-3} b\left(a_{2 g-1}\right) \\
&= b_{g-1} c_{2 g-2,2 g-1} \frac{b_{g-1} a_{2 g-2} b_{g-1} b a_{2 g-2} a_{2 g-3} b\left(a_{2 g-1}\right)}{\text { braid }} \\
&= b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} \frac{a_{2 g-2} b a_{2 g-2}}{\text { braid }} a_{2 g-3} b\left(a_{2 g-1}\right) \\
&= b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b a_{2 g-2} \frac{b a_{2 g-3} b\left(a_{2 g-1}\right)}{\text { braid }} \\
&= b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b a_{2 g-2} a_{2 g-3} b a_{2 g-3}\left(a_{2 g-1}\right) \\
& \text { braid }
\end{aligned} \quad b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b a_{2 g-3} a_{2 g-2} b\left(a_{2 g-1}\right) .
$$

The star relation $E_{2 g-3,2 g-3,2 g-2}$ of $G_{g, n}$ says:

$$
\begin{aligned}
\left\{\left(a_{2 g-3}\right)^{2} a_{2 g-2} b\right\}^{4} & =\frac{c_{2 g-3,2 g-2} c_{2 g-2,2 g-3}}{\text { handle }} \\
& =c_{2 g-2,2 g-1} c_{2 g-2,2 g-3} .
\end{aligned}
$$

Fig. 3.
We take a conjugation of this equation by \bar{D}, then we get the equation which we need.

4. A presentation for $\mathcal{M}_{2,1}$

In this section, we give a presentation for $\mathcal{M}_{2,1}$ and show that $\mathcal{M}_{2,1} \cong G_{2,1}$. For this purpose, it is enough to show that all the relations for $\mathcal{M}_{2,1}$ are satisfied in $G_{2,1}$ by the same reason as Section 2.

Let p_{1} be a point on Σ_{2}. We give a presentation for $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}, p_{1}\right)\right)$ along the way of [3]. Let α be a surjection from $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}, p_{1}\right)\right)$ to $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}\right)\right)$ defined by forgetting the point p_{1}. We define a homomorphism β from $\pi_{1}\left(\Sigma_{2}, p_{1}\right)$ to $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}, p_{1}\right)\right)$ as follows: The homotopy classes of loops indicated in Fig. 3 generate $\pi_{1}\left(\Sigma_{2}, p_{1}\right)$. For a loop l corresponding to one of these generators, we take a regular neighborhood A of this loop in Σ_{2}. Since this A is an annulus, its boundary has two connected components. With regard to the orientation for l, we denote by A_{1} the right hand side of these components, and denote by A_{2} the left hand side of them. We define β (which is an element of $\pi_{1}\left(\Sigma_{2}, p_{1}\right)$ corresponding to l) to be equal to $A_{1} \overline{A_{2}}$. For short, we write $x_{i}=\beta\left(x_{i}\right)(i=0,1,2,3)$. For these homomorphisms α, β, there is a short exact sequence:

$$
\begin{equation*}
0 \longrightarrow \pi_{1}\left(\Sigma_{2}, p_{1}\right) \xrightarrow{\beta} \pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}, p_{1}\right)\right) \xrightarrow{\alpha} \pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}\right)\right) \longrightarrow 0 . \tag{S1}
\end{equation*}
$$

There is a natural surjection from $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2,1}\right.\right.$, rel $\left.\left.\partial \Sigma_{2,1}\right)\right)$ to $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2,1} / \partial \Sigma_{2,1}, \partial \Sigma_{2,1} / \partial \Sigma_{2,1}\right)\right)$ and the latter one is isomorphic to $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}, p_{1}\right)\right)$. Hence there is a surjection γ from $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2,1}, \operatorname{rel} \partial \Sigma_{2,1}\right)\right) \cong \mathcal{M}_{2,1}$ to $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}, p_{1}\right)\right)$. The kernel of γ is an infinite cyclic group \mathbb{Z} generated by
the Dehn twist along the loop $\partial \Sigma_{2,1}$, which we denote by $c_{3,1}$. Hence, there is a short exact sequence:

$$
\begin{equation*}
0 \longrightarrow \mathbb{Z} \longrightarrow \mathcal{M}_{2,1} \xrightarrow{\gamma} \pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}, p_{1}\right)\right) \longrightarrow 0 \tag{S2}
\end{equation*}
$$

In general, if there is a short exact sequence,

$$
0 \longrightarrow L \xrightarrow{\phi} G \xrightarrow{\psi} R \longrightarrow 0
$$

and L and R are finitely presented, then a finite presentation for G is given as follows (see, for example, Chapter 10 of [14]). Let l_{1}, \ldots, l_{m} be the generators of L and, r_{1}, \ldots, r_{n} be the generators of R. For each $1 \leq i \leq m$, we denote by \tilde{l}_{i} the image of l_{i} under ϕ, and for each $1 \leq j \leq n$, we fix one of the preimages of r_{j} by ψ and denote this $\tilde{r_{j}}$. Then G is generated by $\tilde{l_{1}}, \ldots, \tilde{l_{m}}$ and $\tilde{r_{1}}, \ldots, \tilde{r_{n}}$, and there are the following three types of relations for G.
(1) For each $1 \leq i \leq m, 1 \leq j \leq n, \tilde{r}_{j} \tilde{l}_{i} \tilde{r}_{j}^{-1}$ is an element of $\phi(L)$. The equation

$$
\tilde{r}_{j} \tilde{l}_{i}{\tilde{r_{j}}}^{-1}=\text { a presentaion of } \tilde{r_{j}} \tilde{l}_{i} \tilde{r}_{j}^{-1} \text { in terms of } \tilde{l_{1}}, \ldots \tilde{l_{m}}
$$

is a relation for G,
(2) Each relation for R is presented by a word $w\left(r_{1}, \ldots, r_{n}\right)$. The element $w\left(\tilde{r_{1}}, \ldots, \tilde{r_{n}}\right)$ is in the kernel of ψ and hence it is an element of $\phi(L)$. The equation

$$
w\left(\tilde{r_{1}}, \ldots, \tilde{r_{n}}\right)=\text { a presentation of } w\left(\tilde{r_{1}}, \ldots, \tilde{r_{n}}\right) \text { in terms of } \tilde{l_{1}}, \ldots \tilde{l_{m}}
$$

is a relation for G,
(3) For each relation for L, the equation obtained from this relation by replacing l_{i} with \tilde{l}_{i} is also a relation for G
We apply this method to the above short exact sequences (S1) and (S2). For (S1), by observing that $a_{1}, b, a_{2}, b_{1}, c_{1,2}$ in $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}, p_{1}\right)\right)$ are mapped, by α, to the elements of $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}\right)\right)$ denoted by the same letters, we can see that $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{2}, p_{1}\right)\right)$ is generated by $x_{0}, x_{1}, x_{2}, x_{3}, a_{1}, b, a_{2}, b_{1}, c_{1,2}$ and its defining relations are:

$$
\begin{array}{ll}
\left(1-a_{1}\right) & a_{1}\left(x_{0}\right)=x_{0}, a_{1}\left(x_{1}\right)=x_{1} \bar{x}_{0}, a_{1}\left(x_{2}\right)=x_{2} \bar{x}_{0}, a_{1}\left(x_{3}\right)=x_{3} \bar{x}_{0}, \\
(1-b) & b\left(x_{0}\right)=x_{1}, b\left(x_{1}\right)=x_{1} \bar{x}_{0} x_{1}, b\left(x_{2}\right)=x_{2}, b\left(x_{3}\right)=x_{3}, \\
\left(1-a_{2}\right) & a_{2}\left(x_{0}\right)=x_{0}, a_{2}\left(x_{1}\right)=x_{2}, a_{2}\left(x_{2}\right)=x_{2} \bar{x}_{1} x_{2}, a_{2}\left(x_{3}\right)=x_{3}, \\
\left(1-b_{1}\right) & b_{1}\left(x_{0}\right)=x_{0}, b_{1}\left(x_{1}\right)=x_{1}, b_{1}\left(x_{2}\right)=x_{2}, b_{1}\left(x_{3}\right)=x_{3} \bar{x}_{2} x_{3}, \\
\left(1-c_{1,2}\right) & c_{1,2}\left(x_{0}\right)=x_{0}, c_{1,2}\left(x_{1}\right)=x_{1}, c_{1,2}\left(x_{2}\right)=x_{2}, c_{1,2}\left(x_{3}\right)=x_{3} \bar{x}_{2} x_{1} \bar{x}_{0}, \\
& a_{1} b a_{1}=b a_{1} b, a_{2} b a_{2}=b a_{2} b, a_{2} b_{1} a_{2}=b_{1} a_{2} b_{1}, b_{1} c_{1,2} b_{1}=c_{1,2} b_{1} c_{1,2}, \\
(2-1) & \text { other pairs of }\left\{a_{1}, b, a_{2}, b_{1}, c_{1,2}\right\} \text { commute each other, } \\
(2-2) & \left(a_{1} a_{1} a_{2} b\right)^{3} \bar{c}_{1,2}^{2} \in \beta\left(\pi_{1}\left(\Sigma_{2}, p_{1}\right)\right),
\end{array}
$$

$$
\begin{equation*}
x_{3} \bar{x}_{2} x_{1} \bar{x}_{0} \bar{x}_{3} x_{2} \bar{x}_{1} x_{0}=1 \tag{3}
\end{equation*}
$$

Among the above relations, $\left(1-a_{1}\right)$ to $\left(1-c_{1,2}\right)$ can be checked by drawing figures of actions of $a_{1}, b, a_{2}, b_{1}, c_{1,2}$ on $\pi_{1}\left(\Sigma_{2}, p_{1}\right),(2-1)$ and (2-2) come from the relation (1) and (2), introduced in Section 2, for $\mathcal{M}_{2,0} \cong G_{2,0}$, and (3) is a relation for $\pi_{1}\left(\Sigma_{2}, p_{1}\right)$ which is obtained by reading the word on the boundary of an octahedron which is obtained by cutting Σ_{2} along $x_{0}, x_{1}, x_{2}, x_{3}$. By making use of (S2), we can show that $\mathcal{M}_{2,1}$ is generated by $x_{0}, x_{1}, x_{2}, x_{3}, a_{1}, b, a_{2}, b_{1}, c_{1,2}, c_{3,1}$, and the defining relations are the relations $\left(1-a_{1}\right)$ to (3) up to the powers of $c_{3,1}$. On the other hand, we can see $x_{0}=a_{1} \bar{a}_{3}, x_{1}=b\left(x_{0}\right), x_{2}=a_{2}\left(x_{1}\right), x_{3}=b_{1}\left(x_{2}\right)$ and hence, $\mathcal{M}_{2,1}$ is generated by $a_{1}, a_{2}, a_{3}, b, b_{1}, c_{1,2}, c_{3,1}$. We can now derive the defining relations for $\mathcal{M}_{2,1}$ from the raltions for $G_{2,1}$ as follows.
(1) It is shown, in the proof of Lemma 9 in [6], that all the relations (1- a_{1}) to (1- $c_{1,2}$) up to the powers of $c_{3,1}$ are derived from the relations for $G_{2,1}$. We remark that

$$
c_{1,2}\left(x_{3}\right)=x_{3} \bar{x}_{2} x_{1} \bar{x}_{0} c_{3,1}
$$

which will be used later.
(2-1) These relations are nothing but braid relations.
(2-2) The lantern relation $L_{2,3,1}$ says

$$
\begin{aligned}
& a_{2} c_{2,3} c_{3,1} a_{1}=c_{2,1} a_{3} X a_{3} \bar{X}=c_{2,1} \bar{X} a_{3} X a_{3} \\
& \text { where } X=b a_{2} a_{1} b
\end{aligned}
$$

that is to say,

$$
\begin{align*}
c_{2,1} \bar{c}_{2,3} & =a_{2} c_{3,1} a_{1} X \bar{a}_{3} \bar{X} \bar{a}_{3} \\
a_{1} c_{2,3} \bar{a}_{3} & =\bar{c}_{3,1} \bar{a}_{2} c_{2,1} \bar{X} a_{3} X
\end{align*}
$$

The star relation $E_{1,1,2}$ says $\left(a_{1} a_{1} a_{2} b\right)^{3}=c_{1,2} c_{2,1}$, so that, $\left(a_{1} a_{1} a_{2} b\right)^{3}\left(\bar{c}_{1,2}\right)^{2}=c_{2,1} \bar{c}_{1,2}$. For the right hand of the last equation, we can show,

$$
\begin{aligned}
c_{2,1} \frac{\bar{c}_{1,2}}{\text { handle }} & =c_{2,1} \bar{c}_{2,3}=\frac{a_{2} c_{3,1}}{\text { braid }} a_{1} X \bar{a}_{3} \bar{X} \bar{a}_{3} \quad \text { by }(\alpha) \\
& =c_{3,1} a_{2} a_{1} X \bar{a}_{3} \bar{X} \bar{a}_{3}=c_{3,1} a_{2} \frac{a_{1} b a_{1}}{\text { braid }} a_{2} b \bar{a}_{3} \bar{b} \bar{a}_{2} \bar{a}_{1} \bar{b} \bar{a}_{3} \\
& =c_{3,1} a_{2} b a_{1} \frac{b a_{2} b \bar{a}_{3} \bar{b} \bar{a}_{2} \bar{a}_{1} \bar{b} \bar{a}_{3}=c_{3,1} a_{2} b a_{1} a_{2} b \frac{a_{2} \overline{a_{3}} \bar{b} \overline{b r a i d}}{\text { braid }} \bar{a}_{2} \bar{b} \bar{b} \bar{a}_{3}}{} \\
& =c_{3,1} a_{2} b a_{1} a_{2} b \bar{a}_{3} \frac{a_{2} \bar{b} \bar{a}_{2}}{\text { braid }} \bar{a}_{1} \bar{b} \bar{a}_{3}=c_{3,1} a_{2} b a_{1} a_{2} \frac{b \bar{a}_{3} \bar{b} \bar{a}_{2} \frac{b \bar{a} 1}{\text { braid }} \bar{b} \bar{a}_{3}}{\text { braid }} \\
& =c_{3,1} a_{2} b a_{1} \frac{a_{2} \bar{a}_{3} \bar{b} \frac{a_{3} \bar{a}_{2}}{\text { braid }} \bar{b} \bar{b}_{1} \bar{a}_{3}=c_{3,1} a_{2} b a_{1} \bar{a}_{3} \frac{a_{2} \bar{b} \bar{a}_{2} \bar{a}_{1} a_{3} b a_{1} \bar{a}_{3}}{\text { braid }}}{} \\
& =c_{3,1} a_{2} b a_{1} \bar{a}_{3} \bar{b} \bar{a}_{2} b \bar{a}_{1} a_{3} b a_{1} \bar{a}_{3}=c_{3,1} x_{2} \bar{x}_{1} x_{0}
\end{aligned}
$$

This shows $c_{2,1} \bar{c}_{1,2} \in \beta\left(\pi_{1}\left(\Sigma_{2}, p_{1}\right)\right) \times \mathbb{Z}$. Therefore, $\left(a_{1} a_{1} a_{2} b\right)^{3}\left(\bar{c}_{1,2}\right)^{2} \in \beta\left(\pi_{1}\left(\Sigma_{2}, p_{1}\right)\right) \times$ \mathbb{Z}.
(3) Using the lantern relation $L_{2,3,1}$ and the braid relations, we can show,

$$
\begin{aligned}
x_{3}\left(c_{2,3}\right) & =b_{1} a_{2} b a_{1} \bar{a}_{3} \bar{b} \bar{a}_{2} \frac{\bar{b}_{1}\left(c_{2,3}\right)}{\text { braid }}=b_{1} a_{2} b a_{1} \frac{\bar{a}_{3} \bar{b} \bar{a}_{2} c_{2,3}}{\text { braid }}\left(b_{1}\right) \\
& =b_{1} a_{2} b a_{1} c_{2,3} \bar{a}_{3} \bar{b} \bar{a}_{2}\left(b_{1}\right) \\
& =b_{1} a_{2} b \bar{c}_{3,1} \bar{a}_{2} c_{2,1} \bar{X} a_{3} X \bar{b} \bar{a}_{2}\left(b_{1}\right) \quad \text { by }(\beta) \\
& =b_{1} a_{2} b \bar{c}_{3,1} \bar{a}_{2} c_{2,1} \bar{b} \frac{\bar{a}_{1} \bar{a}_{2} \bar{b} a_{3} b a_{2} a_{1} b \bar{b} \bar{a}_{2}\left(b_{1}\right)}{\text { braid }} \\
& =b_{1} a_{2} b \bar{c}_{3,1} \bar{a}_{2} c_{2,1} \bar{b} \bar{a}_{2} \bar{a}_{1} \bar{b} a_{3} b a_{1} a_{2} \bar{a}_{2}\left(b_{1}\right) \\
& =b_{1} a_{2} b \bar{c}_{3,1} \bar{a}_{2} c_{2,1} \bar{b} \bar{a}_{2} \frac{\bar{a}_{1} \bar{b} a_{3} b a_{1}\left(b_{1}\right)}{\text { braid }} \\
& \left.=b_{1} a_{2} b \frac{\bar{c}_{3,1} \bar{a}_{2} c_{2,1} \bar{b} \bar{a}_{2}}{\text { braid }} b_{1}\right)=b_{1} a_{2} b \bar{a}_{2} c_{2,1} \bar{b} \bar{a}_{2} \bar{c}_{3,1}\left(b_{1}\right) \\
& =b_{1} \frac{a_{2} b \bar{a}_{2} c_{2,1} \bar{b} \bar{a}_{2}\left(b_{1}\right)=b_{1} c_{2,1} \frac{a_{2} b \bar{a}_{2} \bar{b} \bar{a}_{2}\left(b_{1}\right)}{\text { braid }}}{\text { braid }} \\
& =b_{1} c_{2,1} \bar{b} a_{2} b \bar{b} \bar{a}_{2}\left(b_{1}\right)=b_{1} c_{2,1} \frac{\bar{b}\left(b_{1}\right)}{\text { braid }}=b_{1} \frac{c_{2,1}\left(b_{1}\right)}{\text { braid }}=b_{1} \bar{b}_{1}\left(c_{2,1}\right)=c_{2,1} .
\end{aligned}
$$

Hence we get:

$$
\begin{aligned}
& c_{2,3}\left(\bar{x}_{3}\right)=c_{2,3} \bar{x}_{3} \bar{c}_{2,3}=\bar{x}_{3} x_{3} c_{2,3} \bar{x}_{3} \bar{c}_{2,3} \\
& =\bar{x}_{3} c_{2,1} \bar{c}_{2,3} \quad \text { from the above equation } x_{3}\left(c_{2,3}\right)=c_{2,1} \\
& =\bar{x}_{3} a_{2} c_{3,1} a_{1} X \bar{a}_{3} \bar{X} \bar{a}_{3} \quad \text { by }(\alpha) \\
& =\bar{x}_{3} a_{2} \frac{c_{3,1} a_{1} b a_{2} a_{1} b \bar{a}_{1} \bar{b} \bar{a}_{1} \bar{a}_{2} \bar{b} \bar{a}_{3}}{\text { braid }}=\bar{x}_{3} a_{2} a_{1} b \frac{a_{2} a_{1} b \bar{a}_{3} \bar{b} \bar{a}_{1} \bar{a}_{2} \bar{b} \bar{a}_{3} c_{3,1}}{\text { braid }} \\
& =\bar{x}_{3} a_{2} \frac{a_{1} b a_{1}}{\text { braid }} \frac{a_{2}}{2} \frac{b \bar{a}_{3} \bar{b} \bar{a}_{1}}{\text { braid }} \bar{a}_{2} \bar{b} \bar{a}_{3} c_{3,1}=\bar{x}_{3} a_{2} b a_{1} b \frac{b a_{2} \bar{a}_{2} \bar{b}}{\text { braid }} \frac{a_{3} \bar{a}_{1} \bar{a}_{2}}{\text { braid }} \bar{a}_{3} c_{3,1} \\
& =\bar{x}_{3} a_{2} b a_{1} b \bar{a}_{3} \frac{a_{2} \bar{b} \bar{a}_{2} a_{3} \bar{a}_{1} \bar{b} \bar{a}_{3} c_{3,1}=\bar{x}_{3} a_{2} b a_{1} \frac{b \bar{a}_{3} \bar{b} \bar{a}_{2} b a_{3} \bar{a}_{1} \bar{b} \bar{a}_{3} c_{3,1}}{\text { braid }} \text {. }{ }^{2}}{} \\
& =\bar{x}_{3} a_{2} b a_{1} \bar{a}_{3} \frac{\bar{b} a_{3} \bar{a}_{2} b a_{3}}{\text { braid }} \bar{a}_{1} \bar{b} \bar{a}_{3} c_{3,1}=\bar{x}_{3} a_{2} b a_{1} \bar{a}_{3} \bar{b} \bar{a}_{2} \frac{a_{3} b a_{3}}{\text { braid }} \bar{a}_{1} \bar{b} \bar{a}_{3} c_{3,1} \\
& =\bar{x}_{3} a_{2} b a_{1} \bar{a}_{3} \bar{b} \bar{a}_{2} b a_{3} \frac{b \bar{a}_{1} \bar{b}}{\text { braid }} \bar{a}_{3} c_{3,1}=\bar{x}_{3} a_{2} b a_{1} \bar{a}_{3} \bar{b} \bar{a}_{2} b a_{3} \bar{a}_{1} \bar{b} a_{1} \bar{a}_{3} c_{3,1} \\
& =\bar{x}_{3} x_{2} \bar{x}_{1} x_{0} c_{3,1} .
\end{aligned}
$$

Previously, we remarked that $c_{1,2}\left(x_{3}\right)=x_{3} \bar{x}_{2} x_{1} \bar{x}_{0} c_{3,1}$. Hence,

$$
\begin{aligned}
x_{3} \bar{x}_{2} x_{1} \bar{x}_{0} \bar{x}_{3} x_{2} \bar{x}_{1} x_{0} & =c_{1,2} x_{3} \bar{c}_{1,2} \frac{\bar{c}_{3,1} c_{2,3} \bar{x}_{3} \bar{c}_{2,3} \bar{c}_{3,1}}{\text { braid }} \\
& =c_{1,2} x_{3} \bar{c}_{1,2} \frac{c_{2,3}}{\text { handle }} \bar{x}_{3} \frac{\bar{c}_{2,3}\left(\bar{c}_{3,1}\right)^{2}}{\text { handle }}
\end{aligned}
$$

$$
=c_{1,2} x_{3} \bar{c}_{1,2} c_{1,2} \bar{x}_{3} \bar{c}_{1,2}\left(\bar{c}_{3,1}\right)^{2}=\left(\bar{c}_{3,1}\right)^{2} .
$$

This shows that, modulo powers of $c_{3,1}, x_{3} \bar{x}_{2} x_{1} \bar{x}_{0} \bar{x}_{3} x_{2} \bar{x}_{1} x_{0}=1$ is derived from relations for $G_{2,1}$.

From the above results, we can now conclude:
Proposition 4.1. $\quad \mathcal{M}_{2,1} \cong G_{2,1}$.

5. Action of $\mathcal{M}_{g, n}$ on $X\left(\Sigma_{g, n}\right)$ and a presentation for $\mathcal{M}_{g, n}$

In this section, we assume $g \geq 3$, and $n \geq 1$. We call a simple closed curve on $\Sigma_{g, n}$ non-separating, if its complement is connected. Define a simplicial complex $X\left(\Sigma_{g, n}\right)$ of dimension $g-1$, whose vertices (0 -simplices) are the isotopy classes of non-separating simple closed curves on $\Sigma_{g, n}$, and whose simplices are determined by the rule that a collection of $k+1$ distinct vertices spans a k-simplex if and only if it admits a collection of representative which are pairwise disjoint and the complement of their disjoint union is connected. This complex $X\left(\Sigma_{g, n}\right)$ is defined by Harer [9]. In the same paper, he showed the following Theorem:

Theorem 5.1 ([9, Theorem 1.1]). $X\left(\Sigma_{g, n}\right)$ is homotopy equivalent to a wedge of ($g-1$)-dimensional spheres.

Especially, if $g \geq 3, X\left(\Sigma_{g, n}\right)$ is simply connected.
For each element ϕ of $\mathcal{M}_{g, n}$ and a simplex ($\left[C_{0}\right], \ldots,\left[C_{n}\right]$) of $X\left(\Sigma_{g, n}\right)$, ($\left.\left[\phi\left(C_{0}\right)\right], \ldots,\left[\phi\left(C_{n}\right)\right]\right)$ is also a simplex of $X\left(\Sigma_{g, n}\right)$. Hence, we can define an action of $\mathcal{M}_{g, n}$ on $X\left(\Sigma_{g, n}\right)$ by $\phi\left(\left[C_{0}\right], \ldots,\left[C_{n}\right]\right)=\left(\left[\phi\left(C_{0}\right)\right], \ldots,\left[\phi\left(C_{n}\right)\right]\right)$. We can see that, each of $\left\{2\right.$-simplices of $\left.X\left(\Sigma_{g, n}\right)\right\} / \mathcal{M}_{g, n},\left\{1\right.$-simplices of $\left.X\left(\Sigma_{g, n}\right)\right\} / \mathcal{M}_{g, n}$ and \{vertices of $\left.X\left(\Sigma_{g, n}\right)\right\} / \mathcal{M}_{g, n}$ consists of one element, each of which is represented by $\left(\left[C_{0}\right],\left[C_{1}\right],\left[C_{2}\right]\right),\left(\left[C_{0}\right],\left[C_{1}\right]\right)$, and $\left(\left[C_{0}\right]\right)$, where $C_{0}=c_{2 g-2,2 g-1}, C_{1}=a_{2 g-2}$, $C_{2}=a_{2 g-4}$. If the stabilizer of each vertex is finitely presented, and if that of each 1 -simplex is finitely generated, we can obtain a presentation for $\mathcal{M}_{g, n}$ as in the way of [15], [20]. Here, we shall recall this method.

We fix a vertex v_{0} of $X\left(\Sigma_{g, n}\right)$, fix an edge (= a 1 -simplex with orientation) e_{0} of $X\left(\Sigma_{g, n}\right)$ which emanates from v_{0}, and fix a 2 -simplex f_{0} of $X\left(\Sigma_{g, n}\right)$ which contains v_{0}. Let C_{0}, C_{1} and C_{2} be non-separating simple closed curves defined as above, and we set $v_{0}=\left[C_{0}\right], e_{0}=\left(\left[C_{0}\right],\left[C_{1}\right]\right)$ and $f_{0}=\left(\left[C_{0}\right],\left[C_{1}\right],\left[C_{2}\right]\right)$. We choose an element t_{1} of $\mathcal{M}_{g, n}$ which switches the vertices of e_{0}. In our situation, we set $t_{1}=b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1}$. By this notation, we see $e_{0}=\left(v_{0}, t_{1}\left(v_{0}\right)\right)$. We denote by $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ the stabilizer of v_{0}, by $\left(\mathcal{M}_{g, n}\right)_{e_{0}}$ that of e_{0}, and by $\left\langle t_{1}\right\rangle$ an infinite cyclic group generated by t_{1}. The free product $\left(\mathcal{M}_{g, n}\right)_{v_{0}} *\left\langle t_{1}\right\rangle$ with the following three types of relations defines a presentation for $\mathcal{M}_{g, n}$. (In Subsection 5.1, we give a set of generators for $\left(\mathcal{M}_{g, n}\right)_{\nu_{0}}$. In the following statements, "a presentation of s as an element
of $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ " means a presentation of s as a word of elements of this set of generators.)
(Y1) $t_{1}^{2}=$ a presentation of t_{1}^{2} as an element of $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$.
(Y2) For each generator s of $\left(\mathcal{M}_{g, n}\right)_{e_{0}}$,

$$
\begin{aligned}
& t_{1}\left(\text { a presentation of } s \text { as an element of }\left(\mathcal{M}_{g, n}\right)_{v_{0}}\right) \overline{t_{1}} \\
& \quad=\text { a presentation of } t_{1} s \bar{t}_{1} \text { as an element of }\left(\mathcal{M}_{g, n}\right)_{v_{0}} .
\end{aligned}
$$

(Y3) For the loop ∂f_{0} in $X\left(\Sigma_{g, n}\right)$, we define an element $W_{f_{0}}$ of $\left(\mathcal{M}_{g, n}\right)_{v_{0}} *\left\langle t_{1}\right\rangle$ in the following manner. The loop ∂f_{0} consists of three vertices v_{0}, v_{1}, v_{2} and three edges e_{1}, e_{2}, e_{3} such that $e_{1}=\left(v_{0}, v_{1}\right), e_{2}=\left(v_{1}, v_{2}\right), e_{3}=\left(v_{2}, v_{0}\right)$. There is an element h_{1} of $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ such that $h_{1}\left(e_{0}\right)=e_{1}$ i.e. $e_{1}=\left(v_{0}, h_{1} t_{1}\left(v_{0}\right)\right)$, then $\overline{h_{1} t_{1}}\left(e_{2}\right)$ is an edge emanating from v_{0}. Hence, there is an element h_{2} of $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ such that $h_{2}\left(e_{0}\right)=\overline{h_{1} t_{1}}\left(e_{2}\right)$ i.e. $e_{2}=\left(h_{1} t_{1}\left(v_{0}\right), h_{1} t_{1} h_{2} t_{1}\left(v_{0}\right)\right)$, then $\overline{h_{1} t_{1} h_{2} t_{1}}\left(e_{3}\right)$ is an edge emanating from v_{0}. So, there is an element h_{3} of $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ such that $h_{3}\left(e_{0}\right)=\overline{h_{1} t_{1} h_{2} t_{1}}\left(e_{3}\right)$ i.e. $e_{3}=\left(h_{1} t_{1} h_{2} t_{1}\left(v_{0}\right), h_{1} t_{1} h_{2} t_{1} h_{3} t_{1}\left(v_{0}\right)\right)$. We define $W_{f_{0}}=h_{1} t_{1} h_{2} t_{1} h_{3} t_{1}$. This element $W_{f_{0}}$ fixes v_{0}, so the following is a relation for $\mathcal{M}_{g, n}$:

$$
W_{f_{0}}=\text { a presentation of } W_{f_{0}} \text { as an element of }\left(\mathcal{M}_{g, n}\right)_{v_{0}} .
$$

Under the assumption that $\mathcal{M}_{g-1, n} \cong G_{g-1, n}$, if we can show all the relations for $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ and the relations of the above three types (Y1) (Y2) (Y3) are satisfied in $G_{g, n}$, then we can show the following theorem by the same reason as Section 2.

Theorem 5.2. If $g \geq 3, n \geq 1$ and $\mathcal{M}_{g-1, n} \cong G_{g-1, n}$, then $\mathcal{M}_{g, n} \cong G_{g, n}$.
In the previous section, we have shown $\mathcal{M}_{2,1} \cong G_{2,1}$ (Proposition 4.1), therefore, $\mathcal{M}_{g, 1} \cong G_{g, 1}$ for any $g \geq 2$. On the other hand, Gervais showed the following theorem in $\S 3$ of [6]:

Theorem 5.3. If $g \geq 1, n \geq 1$ and $\mathcal{M}_{g, n} \cong G_{g, n}$, then $\mathcal{M}_{g, n+1} \cong G_{g, n+1}$, $\mathcal{M}_{g, n-1} \cong G_{g, n-1}$.

Theorem 1.1 is proved by Theorem 5.2 and Theorem 5.3. We remark that Theorem 5.3 was proved without using Wajnryb's simple presentation [20]. In the following subsections, we show all relations for $\left(\mathcal{M}_{2,1}\right)_{v_{0}}$ (Subsection 5.1), relations of type (Y1) and (Y2) (Subsection 5.2), and a relation of type (Y3) (Subsection 5.3) are satisfied in $G_{g, n}$.
5.1. A presentation for $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$. We assume that $\mathcal{M}_{g-1, n} \cong G_{g-1, n}$, and $n \geq$ 1. Let $\operatorname{Diff}^{+}\left(\Sigma_{g, n}\right)$ denote the group of orientation preserving diffeomorphisms of $\Sigma_{g, n}$. For subsets A_{1}, \ldots, A_{m} and B of $\Sigma_{g, n}$, we define $\operatorname{Diff}^{+}\left(\Sigma_{g, n}, A_{1}, \ldots, A_{m}\right.$, rel $\left.B\right)=$
$\left\{\phi \in \operatorname{Diff}^{+}\left(\Sigma_{g, n}\right)\left|\phi\left(A_{1}\right)=A_{1}, \ldots, \phi\left(A_{m}\right)=A_{m}, \phi\right|_{B}=\operatorname{id}_{B}\right\}$. In this subsection, we give a presentation for $\left(\mathcal{M}_{g, n}\right)_{v_{0}}=\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}, C_{0}\right.\right.$, rel $\left.\left.\partial \Sigma_{g, n}\right)\right)$. Let $\Sigma_{g, n}^{\prime}$ be a surface obtained from $\Sigma_{g, n}$ by cutting along C_{0}, and let E_{1}, E_{2} be connected components of $\partial \Sigma_{g, n}^{\prime}$ which appeared as a result of cutting. Let α be a natural surjection from $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime}, E_{1} \cup E_{2}, \operatorname{rel} \partial \Sigma_{g, n}\right)\right)$ to \mathbb{Z}_{2} which is a permutation group of E_{1} and E_{2}, and β be an inclusion of $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime}, \operatorname{rel} \partial \Sigma_{g, n}^{\prime}\right)\right)$ into $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime}, E_{1} \cup E_{2}\right.\right.$, rel $\left.\left.\partial \Sigma_{g, n}\right)\right)$. Then, there is a short exact sequence:

$$
\begin{aligned}
0 \longrightarrow & \pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime}, \text { rel } \partial \Sigma_{g, n}^{\prime}\right)\right) \xrightarrow{\beta} \pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime}, E_{1} \cup E_{2}, \text { rel } \partial \Sigma_{g, n}\right)\right) \\
& \xrightarrow{\alpha} \mathbb{Z}_{2} \longrightarrow 0
\end{aligned}
$$

We can see that

$$
\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}, C_{0}, \operatorname{rel} \partial \Sigma_{g, n}\right)\right) \cong \frac{\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime}, E_{1} \cup E_{2}, \operatorname{rel} \partial \Sigma_{g, n}\right)\right)}{c_{2 g-2,2 g-1}=c_{2 g-3,2 g-2}},
$$

and

$$
\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime}, \operatorname{rel} \partial \Sigma_{g, n}^{\prime}\right)\right) \cong \mathcal{M}_{g-1, n+2}
$$

By Theorem 5.3, $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime}\right.\right.$, rel $\left.\left.\partial \Sigma_{g, n}^{\prime}\right)\right) \cong G_{g-1, n+2}$. Let $r_{g-1}=\left\{\left(c_{2 g-3,2 g-2}\right)^{2} b_{g-1}\right\}^{2}$. Then $r_{g-1} \in \pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}, C_{0}\right.\right.$, rel $\left.\left.\partial \Sigma_{g, n}\right)\right)$, that is to say, we can regard r_{g-1} as an element of $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime}, E_{1} \cup E_{2}\right.\right.$, rel $\left.\left.\partial \Sigma_{g, n}\right)\right)$. Then $\alpha\left(r_{g-1}\right)$ generates \mathbb{Z}_{2}. From the above observations, we can see:
$\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}, C_{0}\right.\right.$, rel $\left.\left.\partial \Sigma_{g, n}\right)\right)$ is isomorphic to $G_{g-1, n+2} *\left\langle r_{g-1}\right\rangle$ with the following relations:
(A1) $c_{2 g-2,2 g-1}=c_{2 g-3,2 g-2}$,
(A2) For each generator t of $G_{g-1, n+2}$,

$$
r_{g-1} t \bar{r}_{g-1}=\text { a presentation of } r_{g} t \bar{r}_{g} \text { as an element of } G_{g-1, n+2},
$$

(A3) $r_{g-1}^{2}=c_{2 g-3,2 g-1}$.
We need to show that these relations are derived from relations for $G_{g, n}$.
(1) The relation (A1) is nothing but a handle relation.
(2) By repeatedly applying star relations, we can show $G_{g-1, n+2}$ is generated by $\mathcal{E}=$ $\left\{b, a_{i}(1 \leq i \leq 2 g+n-2), c_{2 j-1,2 j}(1 \leq j \leq g-2), c_{k-1, k}(2 g-2 \leq k \leq 2 g+n-\right.$ 2), $\left.c_{2 g+n-2,1}\right\}$. Here, we remark that $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ is generated by $\mathcal{E} \cup\left\{r_{g-1}\right\}$. By drawing figures, we can show:

$$
\begin{aligned}
& r_{g-1}(b)=b, r_{g-1}\left(a_{i}\right)=a_{i} \quad \text { if } i \neq 2 g-2,1 \leq i \leq 2 g+n-2 \\
& r_{g-1}\left(c_{2 j-1,2 j}\right)=c_{2 j-1,2 j} \quad \text { if } 1 \leq j \leq g-2 \\
& r_{g-1}\left(c_{2 g-3,2 g-2}\right)=c_{2 g-2,2 g-1}, r_{g-1}\left(c_{2 g-2,2 g-1}\right)=c_{2 g-3,2 g-2}
\end{aligned}
$$

$$
\begin{align*}
& r_{g-1}\left(c_{k-1, k}\right)=c_{k-1, k} \quad \text { if } 2 g \leq k \leq 2 g+n-2 \\
& r_{g-1}\left(c_{2 g+n-2,1}\right)=c_{2 g+n-2,1} \\
& r_{g-1} a_{2 g-2} \bar{r}_{g-1} c_{2 g-3,2 g-1} a_{2 g-2}=a_{2 g-1} a_{2 g-3}\left(c_{2 g-3,2 g-2}\right)^{2} \ldots \cdots(\tag{*}
\end{align*}
$$

The above equations except $(*)$ are derived from braid relation. We shall show that the equation $(*)$ is satisfied in $G_{g, n}$.

$$
\begin{aligned}
r_{g-1}\left(a_{2 g-2}\right) & =c_{2 g-3,2 g-2} \frac{c_{2 g-3,2 g-2} b_{g-1} c_{2 g-3,2 g-2} c_{2 g-3,2 g-2} b_{g-1}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =\frac{c_{2 g-3,2 g-2} b_{g-1} c_{2 g-3,2 g-2}}{\text { braid }} \frac{b_{g-1} c_{2 g-3,2 g-2} b_{g-1}}{\text { braid }}\left(a_{2 g-2}\right) \\
& =b_{g-1} c_{2 g-3,2 g-2} \frac{b_{g-1} c_{2 g-3,2 g-2} b_{g-1} c_{2 g-3,2 g-2}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-3,2 g-2} c_{2 g-3,2 g-2} b_{g-1} \frac{c_{2 g-3,2 g-2} c_{2 g-3,2 g-2}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-3,2 g-2} c_{2 g-3,2 g-2} b_{g-1}\left(a_{2 g-2}\right) .
\end{aligned}
$$

By a star relation $E_{2 g-3,2 g-2,2 g-1}$ and a handle relation $c_{2 g-3,2 g-2}=c_{2 g-2,2 g-1}$,

$$
c_{2 g-3,2 g-2} c_{2 g-3,2 g-2} c_{2 g-1,2 g-3}=\left(a_{2 g-3} a_{2 g-2} a_{2 g-1} b\right)^{3}
$$

Therefore we have,

$$
\begin{aligned}
r_{g-1} & \left(a_{2 g-2}\right)=b_{g-1}\left(a_{2 g-3} a_{2 g-2} a_{2 g-1} b\right)^{3} \bar{c}_{2 g-1,2 g-3} b_{g-1}\left(a_{2 g-2}\right) \\
& =b_{g-1}\left(a_{2 g-3} a_{2 g-2} a_{2 g-1} b\right)^{3} b_{g-1} \frac{\bar{c}_{2 g-1,2 g-3}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b_{g-1}\left(a_{2 g-3} a_{2 g-2} a_{2 g-1} b\right)^{3} \frac{b_{g-1}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b_{g-1}\left(a_{2 g-3} a_{2 g-2} a_{2 g-1} b\right)^{2} a_{2 g-3} \frac{a_{2 g-2} a_{2 g-1}}{\text { braid }} \bar{a}_{2 g-2}\left(b_{g-1}\right) \\
& =b_{g-1}\left(a_{2 g-3} a_{2 g-2} a_{2 g-1} b\right)^{2} a_{2 g-3} a_{2 g-1} \frac{a_{2 g-2} b \bar{a}_{2 g-2}}{\text { braid }}\left(b_{g-1}\right) \\
& =b_{g-1}\left(a_{2 g-3} a_{2 g-2} a_{2 g-1} b\right)^{2} a_{2 g-3} a_{2 g-1} \bar{b} a_{2 g-2} \frac{b\left(b_{g-1}\right)}{\text { braid }} \\
& =b_{g-1}\left(a_{2 g-3} a_{2 g-2} a_{2 g-1} b\right)^{2} a_{2 g-3} a_{2 g-1} \bar{b} \frac{a_{2 g-2}\left(b_{g-1}\right)}{\text { braid }} \\
& =b_{g-1}\left(a_{2 g-3} a_{2 g-2} a_{2 g-1} b\right)^{2} \frac{a_{2 g-3} a_{2 g-1} \bar{b} \bar{b} b_{g-1}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b_{g-1}\left(a_{2 g-3} \frac{\left.a_{2 g-2} a_{2 g-1} b\right)^{2} \bar{b}_{g-1} a_{2 g-3} a_{2 g-1} \bar{b}\left(a_{2 g-2}\right)}{\text { braid }}\right. \\
& =\frac{\left(b_{g-1} a_{2 g-3} a_{2 g-1} a_{2 g-2} b \bar{b}_{g-1}\right)^{2} a_{2 g-3} a_{2 g-1} \bar{b}\left(a_{2 g-2}\right)}{\text { braid }}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(a_{2 g-3} a_{2 g-1} \frac{\left.b_{g-1} a_{2 g-2} \bar{b}_{g-1} b\right)^{2} a_{2 g-3} a_{2 g-1} \bar{b}\left(a_{2 g-2}\right)}{\text { braid }}\right. \\
& =a_{2 g-3} a_{2 g-1} \bar{a}_{2 g-2} b_{g-1} a_{2 g-2} b \frac{b a_{2 g-3} a_{2 g-1} \bar{a}_{2 g-2}}{\text { braid }} b_{g-1} a_{2 g-2} b a_{2 g-3} a_{2 g-1} \bar{b}\left(a_{2 g-2}\right) \\
& =a_{2 g-3} a_{2 g-1} \bar{a}_{2 g-2} b_{g-1} \frac{a_{2 g-2} b \bar{a}_{2 g-2}}{\text { braid }} a_{2 g-3} a_{2 g-1} b_{g-1} a_{2 g-2} b a_{2 g-3} a_{2 g-1} \bar{b}\left(a_{2 g-2}\right) \\
& =a_{2 g-3} a_{2 g-1} \bar{a}_{2 g-2} \frac{b_{g-1} \bar{b}}{\text { braid }} a_{2 g-2} \frac{b a_{2 g-3} a_{2 g-1} b_{g-1}}{\text { braid }} a_{2 g-2} b a_{2 g-3} a_{2 g-1} \bar{b}\left(a_{2 g-2}\right) \\
& =a_{2 g-3} a_{2 g-1} \bar{a}_{2 g-2} \bar{b} b_{g-1} a_{2 g-2} b_{g-1} b a_{2 g-3} \frac{a_{2 g-1} a_{2 g-2}}{\text { braid }} \frac{b a_{2 g-3} a_{2 g-1}}{\text { braid }} \bar{b}\left(a_{2 g-2}\right) \\
& =a_{2 g-3} a_{2 g-1} \bar{a}_{2 g-2} \bar{b} b_{g-1} a_{2 g-2} b_{g-1} b a_{2 g-3} a_{2 g-2} \frac{a_{2 g-1} b a_{2 g-1}}{\text { braid }} a_{2 g-3} \bar{b}\left(a_{2 g-2}\right) \\
& =a_{2 g-3} a_{2 g-1} \bar{a}_{2 g-2} \bar{b} b_{g-1} a_{2 g-2} b_{g-1} b a_{2 g-3} a_{2 g-2} b a_{2 g-1} \frac{b a_{2 g-3} \bar{b}}{\text { braid }}\left(a_{2 g-2}\right) \\
& =a_{2 g-3} a_{2 g-1} \bar{a}_{2 g-2} \bar{b} b_{g-1} a_{2 g-2} b_{g-1} b \frac{b a_{2 g-3} a_{2 g-2}}{\text { braid }} \frac{b \text { raid }}{} \frac{a_{2 g-1} \bar{a}_{2 g-3}}{\text { braid }} \frac{b a_{2 g-3}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =a_{2 g-3} a_{2 g-1} \frac{\bar{a}_{2 g-2} \bar{b} a_{2 g-2}}{\text { braid }} b_{g-1} \frac{a_{2 g-2} b a_{2 g-2}}{\text { braid }} \frac{a_{2 g-3} b \bar{a}_{2 g-3}}{\text { braid }} a_{2 g-1} b\left(a_{2 g-2}\right) \\
& =a_{2 g-3} a_{2 g-1} b \bar{a}_{2 g-2} \frac{\bar{b} b_{g-1} b a_{2 g-2} b \bar{b} a_{2 g-3} \frac{b a_{2 g-1} b}{\text { braid }}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =a_{2 g-3} a_{2 g-1} b \bar{a}_{2 g-2} b_{g-1} a_{2 g-2} a_{2 g-3} a_{2 g-1} \frac{b a_{2 g-1}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =a_{2 g-3} a_{2 g-1} b \bar{a}_{2 g-2} b_{g-1} a_{2 g-2} a_{2 g-3} a_{2 g-1} \frac{b\left(a_{2 g-2}\right)}{\text { braid }} \\
& =a_{2 g-3} a_{2 g-1} b \bar{a}_{2 g-2} b_{g-1} a_{2 g-2} \frac{a_{2 g-3} a_{2 g-1} \bar{a}_{2 g-2}}{\text { braid }}(b) \\
& =a_{2 g-3} a_{2 g-1} b \bar{a}_{2 g-2} b_{g-1} a_{2 g-2} \bar{a}_{2 g-2} a_{2 g-3} a_{2 g-1}(b) \\
& =a_{2 g-3} a_{2 g-1} b \bar{a}_{2 g-2} \frac{b_{g-1} a_{2 g-3} a_{2 g-1}}{\text { braid }}(b) \\
& =a_{2 g-3} a_{2 g-1} \frac{b \bar{a}_{2 g-2} a_{2 g-3} a_{2 g-1}}{\text { braid }} \frac{b_{g-1}(b)}{\text { braid }} \\
& =a_{2 g-3} a_{2 g-1} b a_{2 g-3} a_{2 g-1} \frac{\bar{a}_{2 g-2}(b)}{\text { braid }}=\frac{a_{2 g-3} a_{2 g-1}}{\text { braid }} b a_{2 g-3} a_{2 g-1} b\left(a_{2 g-2}\right) \\
& =a_{2 g-1} \frac{a_{2 g-3} b a_{2 g-3}}{\text { braid }} a_{2 g-1} b\left(a_{2 g-2}\right)=a_{2 g-1} b a_{2 g-3} \frac{b a_{2 g-1} b\left(a_{2 g-2}\right)}{\text { braid }} \\
& =a_{2 g-1} b \frac{a_{2 g-3} a_{2 g-1}}{\text { braid }} \frac{b a_{2 g-1}\left(a_{2 g-2}\right)}{\text { braid }}=\frac{a_{2 g-1} b a_{2 g-1} a_{2 g-3} b\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b a_{2 g-1} \frac{b a_{2 g-3} b\left(a_{2 g-2}\right)}{\text { braid }}=\frac{b a_{2 g-1} a_{2 g-3}}{\text { braid }} \frac{b a_{2 g-3}\left(a_{2 g-2}\right)}{\text { braid }}=b a_{2 g-3} a_{2 g-1} b\left(a_{2 g-2}\right) .
\end{aligned}
$$

The lantern relation $L_{2 g-3,2 g-2,2 g-1}$ says,

$$
c_{2 g-3,2 g-1} a_{2 g-2} b a_{2 g-3} a_{2 g-1} b a_{2 g-2} \bar{b} \bar{a}_{2 g-1} \bar{a}_{2 g-3} \bar{b}=a_{2 g-3} c_{2 g-3,2 g-2} c_{2 g-2,2 g-1} a_{2 g-1}
$$

Then,

$$
\begin{aligned}
b a_{2 g-3} a_{2 g-1} b a_{2 g-2} \bar{b} \bar{a}_{2 g-1} \bar{a}_{2 g-1} \bar{b} & =\frac{\bar{a}_{2 g-2} \bar{c}_{2 g-3,2 g-1} a_{2 g-3} c_{2 g-3,2 g-2} c_{2 g-2,2 g-1} a_{2 g-1}}{\text { braid }} \\
& =a_{2 g-1} a_{2 g-3} c_{2 g-3,2 g-2} \frac{c_{2 g-2,2 g-1}}{\text { handle }} \bar{a}_{2 g-2} \bar{c}_{2 g-3,2 g-1} \\
& =a_{2 g-1} a_{2 g-3}\left(c_{2 g-3,2 g-2}\right)^{2} \bar{a}_{2 g-2} \bar{c}_{2 g-3,2 g-1}
\end{aligned}
$$

Therefore,

$$
b a_{2 g-3} a_{2 g-1} b a_{2 g-2} \bar{b} \bar{a}_{2 g-1} \bar{a}_{2 g-3} \bar{b} c_{2 g-3,2 g-1} a_{2 g-2}=a_{2 g-1} a_{2 g-3}\left(c_{2 g-3,2 g-2}\right)^{2}
$$

In the above equation, we exchange

$$
b a_{2 g-3} a_{2 g-1} b a_{2 g-2} \bar{b} \bar{a}_{2 g-1} \bar{a}_{2 g-3} \bar{b}=b a_{2 g-3} a_{2 g-1} b\left(a_{2 g-2}\right)
$$

with $r_{g-1}\left(a_{2 g-2}\right)$, then we get $(*)$. Hence the relation (A2) is satisfied in $G_{g, n}$. (3) At first, we can see:

$$
\begin{aligned}
& r_{g-1} a_{2 g-2} r_{g-1} \frac{a_{2 g-2}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2}}{\text { braid }} \\
&=\left\{(\frac { c _ { 2 g - 3 , 2 g - 2 } } { 2 } b _ { g - 1 } \} ^ { 2 } a _ { 2 g - 2 } \left\{\frac{\left.\left(c_{2 g-3,2 g-2}\right)^{2} b_{g-1}\right\}^{2}}{\text { handle }} \frac{a_{2 g-2}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2}}{\text { braid }}\right.\right. \\
&=\left\{\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1}\right\}^{2} \\
& \times a_{2 g-2} c_{2 g-2,2 g-1} \frac{c_{2 g-2,2 g-1} b_{g-1} c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} b_{g-1}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2} a_{2 g-2}}{\text { braid }} \\
&=\left\{\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1}\right\}^{2} \\
& \times a_{2 g-2} \frac{c_{2 g-2,2 g-1} b_{g-1} c_{2 g-2,2 g-1}}{\text { braid }} \frac{b_{g-1} c_{2 g-2,2 g-1} b_{g-1}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2} a_{2 g-2}}{\text { braid }} \\
&=\left\{\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1}\right\}^{2} \\
& \quad \times a_{2 g-2} b_{g-1} c_{2 g-2,2 g-1} \frac{b_{g-1} c_{2 g-2,2 g-1} b_{g-1} c_{2 g-2,2 g-1}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2} a_{2 g-2}}{\text { braid }} \\
&=\left\{\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1}\right\}^{2} \\
& \quad \times a_{2 g-2} b_{g-1} c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} b_{g-1} c_{2 g-2,2 g-1} c_{2 g-2,2 g-1}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2} a_{2 g-2} \\
&=\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1}\left(c_{2 g-2,2 g-1}\right)^{2} \frac{b_{g-1} a_{2 g-2} b_{g-1}\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1} a_{2 g-2}}{\text { braid }} \\
&=\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1} \frac{\left(c_{2 g-2,2 g-1}\right)^{2} a_{2 g-2} b_{g-1} a_{2 g-2}\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1} a_{2 g-2}}{\text { braid }} \\
&=\left\{\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1} a_{2 g-2}\right\}^{3} \\
&= a_{2 g-3} a_{2 g-1} \quad \text { by Lemma 3.3. }
\end{aligned}
$$

Therefore,

$$
r_{g-1}^{2}=r_{g-1} \bar{a}_{2 g-2} \bar{r}_{g-1} a_{2 g-1} a_{2 g-3}\left(c_{2 g-2,2 g-1}\right)^{2} \bar{a}_{2 g-2}
$$

From the above equation and $(*)$, we can see $r_{g-1}^{2}=c_{2 g-3,2 g-1}$.
5.2. Generators of $\left(\mathcal{M}_{g, n}\right)_{e_{0}}$, and relations of type (Y1) and (Y2). In this subsection, we give generators of

$$
\left(\mathcal{M}_{g, n}\right)_{e_{0}}=\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}, c_{2 g-2,2 g-1}, a_{2 g-4}, \text { rel } \partial \Sigma_{g, n}\right)\right)
$$

and, by investigating the action of t_{1} on these elements, we will give relations of type (Y2), and show that these relations and a relation of type (Y1) are satisfied in $G_{g, n}$.

At first, we show $t_{1}^{2} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$. By Lemma 3.3 and braid relations,

$$
\begin{aligned}
& a_{2 g-3} a_{2 g-1} \\
& =c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} \\
& \quad \times a_{2 g-2} b_{g-1} \frac{c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} a_{2 g-2}}{\text { braid }} b_{g-1} c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} \\
& =c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} \\
& \quad \times a_{2 g-2} b_{g-1} a_{2 g-2} c_{2 g-2,2 g-1} \frac{c_{2 g-2,2 g-1} b_{g-1} c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1}}{\text { braid }} \\
& =c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} \\
& \quad \times a_{2 g-2} b_{g-1} a_{2 g-2} \frac{c_{2 g-2,2 g-1} b_{g-1} c_{2 g-2,2 g-1}}{\text { braid }} b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} \\
& =c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} a_{2 g-2} \frac{b_{g-1} a_{2 g-2} b_{g-1} c_{2 g-2,2 g-1} b_{g-1} b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1}}{\text { braid }} \\
& =c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} a_{2 g-2} a_{2 g-2} b_{g-1} \frac{a_{2 g-2} c_{2 g-2,2 g-1} b_{g-1} b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1}}{\text { braid }} \\
& =\left(c_{2 g-2,2 g-1}\right)^{2}\left(a_{2 g-2}\right)^{2} t_{1}^{2} \quad \text { since } t_{1}=b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} .
\end{aligned}
$$

Therefore, $t_{1}^{2}=\left(\bar{a}_{2 g-2}\right)^{2}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2} a_{2 g-3} a_{2 g-1} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$. This shows that the relation of type (Y1) is satisfied in $G_{g, n}$.

Let $\Sigma_{g, n}^{\prime \prime}$ be a surface obtained from $\Sigma_{g, n}$ by cutting along $C_{0}=c_{2 g-2,2 g-1}$, $C_{1}=a_{2 g-2}$. As in Fig. 4, let C_{0}^{\prime} and $C_{0}^{\prime \prime}$ (resp. C_{1}^{\prime} and $C_{1}^{\prime \prime}$) be connected components of $\partial \Sigma_{g, n}^{\prime \prime}$ which appeared as a result of cutting along C_{0} (resp. C_{1}). We denote the simple closed curve in the interior of $\Sigma_{g, n}^{\prime \prime}$ which is homotopic to C_{0}^{\prime} (resp. $C_{0}^{\prime \prime}, C_{1}^{\prime}$, $\left.C_{1}^{\prime \prime}\right)$ and Dehn twist along this curve by the same letter. We can see that $G_{g-2, n+4} \cong$ $\mathcal{M}_{g-2, n+4}$ is generated by $a_{i}(1 \leq i \leq 2(g-3)+(n+4)), b, b_{j}(1 \leq j \leq g-3)$, $c_{2 k-1,2 k}(1 \leq k \leq g-3), c_{l, l+1}(2(g-3)+1 \leq l \leq 2(g-3)+(n+3))$, and $c_{2(g-3)+(n+4), 1}$. There is a homomorphism γ from $\mathcal{M}_{g-2, n+4}$ to $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime \prime}, \operatorname{rel} \partial \Sigma_{g, n}^{\prime \prime}\right)\right)$ defined by

$$
\gamma\left(a_{i}\right)=c_{i, 2 g-4} \quad \text { if } 1 \leq i \leq 2 g-5
$$

Fig. 4.

$$
\begin{aligned}
\gamma\left(a_{2 g-4}\right) & =c_{2 g-4,2 g-2}, \\
\gamma\left(a_{2 g-3}\right) & =a_{2 g-4}, \\
\gamma\left(a_{i}\right) & =c_{i, 2 g-4} \quad \text { if } 2 g-2 \leq i \leq 2(g-3)+(n+4), \\
\gamma(b) & =b_{g-2}, \\
\gamma\left(b_{j}\right) & =b_{j} \quad \text { if } 1 \leq j \leq g-3, \\
\gamma\left(c_{2 k-1,2 k}\right) & =c_{2 k-1,2 k} \quad \text { if } 1 \leq k \leq g-3, \\
\gamma\left(c_{2(g-3)+1,2(g-3)+2)}\right) & =C_{0}^{\prime \prime}, \\
\gamma\left(c_{2(g-3)+2,2(g-3)+3}\right) & =C_{1}^{\prime \prime}, \\
\gamma\left(c_{2(g-3)+3,2(g-3)+4}\right) & =C_{1}^{\prime}, \\
\gamma\left(c_{2(g-3)+4,2(g-3)+5}\right) & =C_{0}^{\prime}, \\
\gamma\left(c_{l, l+1}\right) & =c_{l, l+1} \quad \text { if } 2(g-3)+5 \leq l \leq 2(g-3)+(n+3), \\
\gamma\left(c_{2(g-3)+(n+4), 1}\right) & =a_{2 g-2} .
\end{aligned}
$$

This homomorphism is induced by a homeomorphism from $\Sigma_{g-2, n+4}$ to $\Sigma_{g, n}^{\prime \prime}$. Hence, γ is an isomorphism, and this fact means that the set

$$
\mathcal{C}_{g, n}^{\prime \prime}=\left\{\begin{array}{l|l}
c_{i, 2 g-4}, \quad c_{2 g-4,2 g-2}, & 1 \leq i \leq 2 g-5, \\
b_{g-2}, \quad b_{j}, \quad c_{2 j-1,2 j}, & 2 g-2 \leq i \leq 2(g-3)+(n+4), \\
C_{0}^{\prime}, C_{0}^{\prime \prime}, C_{1}^{\prime}, \quad C_{1}^{\prime \prime}, & 1 \leq j \leq g-3, \\
c_{l, l+1}, \quad c_{2(g-3)+(n+4), 1} & 2(g-3)+5 \leq l \leq 2(g-3)+(n+3)
\end{array}\right\}
$$

generates $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime \prime}\right.\right.$, rel $\left.\left.\partial \Sigma_{g, n}^{\prime \prime}\right)\right)$. Let $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ denote the group, whose first factor is a permutation group of C_{0}^{\prime} and $C_{0}^{\prime \prime}$ and the second factor is that of C_{1}^{\prime} and $C_{1}^{\prime \prime}$. We denote by δ a natural homomorphism from $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime \prime}, C_{0}^{\prime} \cup C_{0}^{\prime \prime}, C_{1}^{\prime} \cup C_{1}^{\prime \prime}\right.\right.$, rel $\left.\left.\partial \Sigma_{g, n}\right)\right)$ to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and ϵ an inclusion of $\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime \prime}, \operatorname{rel} \partial \Sigma_{g, n}^{\prime \prime}\right)\right)$ into

$$
\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime \prime}, C_{0}^{\prime} \cup C_{0}^{\prime \prime}, C_{1}^{\prime} \cup C_{1}^{\prime \prime}, \operatorname{rel} \partial \Sigma_{g, n}\right)\right)
$$

Then, there is a short exact sequence,

$$
\begin{aligned}
0 \longrightarrow & \pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime \prime}, \text { rel } \partial \Sigma_{g, n}^{\prime \prime}\right)\right) \\
& \xrightarrow{\epsilon} \pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime \prime}, C_{0}^{\prime} \cup C_{0}^{\prime \prime}, C_{1}^{\prime} \cup C_{1}^{\prime \prime}, \operatorname{rel} \partial \Sigma_{g, n}\right)\right) \xrightarrow{\delta} \mathbb{Z}_{2} \times \mathbb{Z}_{2} \longrightarrow 0
\end{aligned}
$$

Let $p=b a_{2 g-2} a_{2 g-2} b, p^{\prime}=t_{1} p \bar{t}_{1}$. Then, by drawing some figures, we can check that p and $p^{\prime} \in\left(\mathcal{M}_{g, n}\right)_{e_{0}}$ and p (resp. $\left.p^{\prime}\right)$ reverse the orientation of C_{1} (resp. C_{0}). Hence, p induces a homeomorphism on $\Sigma_{g, n}^{\prime \prime}$ which exchanges C_{0}^{\prime} with $C_{0}^{\prime \prime}$ (resp. C_{1}^{\prime} with $C_{1}^{\prime \prime}$). On the other hand, there is an isomorphism

$$
\begin{aligned}
& \frac{\pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}^{\prime \prime}, C_{0}^{\prime} \cup C_{0}^{\prime \prime}, C_{1}^{\prime} \cup C_{1}^{\prime \prime}, \operatorname{rel} \partial \Sigma_{g, n}\right)\right)}{\left(C_{0}^{\prime}=C_{0}^{\prime \prime}, C_{1}^{\prime}=C_{1}^{\prime \prime}\right)} \\
& \quad \cong \pi_{0}\left(\operatorname{Diff}^{+}\left(\Sigma_{g, n}, c_{2 g-2,2 g-1}, a_{2 g-2}, \operatorname{rel} \partial \Sigma_{g, n}\right)\right)
\end{aligned}
$$

which maps $C_{0}^{\prime}=C_{0}^{\prime \prime}$ to $c_{2 g-2,2 g-1}, C_{1}^{\prime}=C_{1}^{\prime \prime}$ to $a_{2 g-2}$. Therefore, we can show that $\left(\mathcal{M}_{g, n}\right)_{e_{0}}$ is generated by $\left(\mathcal{C}_{g, n}^{\prime \prime}-\left\{C_{0}^{\prime}, C_{0}^{\prime \prime}, C_{1}^{\prime}, C_{1}^{\prime \prime}\right\}\right) \cup\left\{c_{2 g-2,2 g-1}, a_{2 g-2}, p, p^{\prime}\right\}$. For each element s of $\mathcal{C}_{g, n}^{\prime \prime}-\left\{c_{2 g-2,2 g-4}, c_{2 g-4,2 g-2}, C_{0}^{\prime}, C_{0}^{\prime \prime}, C_{1}^{\prime}, C_{1}^{\prime \prime}\right\}$, the associated curve of s is disjoint from those of $b_{g-1}, a_{2 g-2}$, and $c_{2 g-2,2 g-1}$. Hence, by braid relations, $t_{1} s \bar{t}_{1}=$ $s \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$. This fact shows that, for the above element s, the relation of type (Y2) is satisfied in $G_{g, n}$.

In Subsection 5.1, we showed that $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ is generated by $\mathcal{E} \cup\left\{r_{g-1}\right\}$, so a presentation of some element as an element of $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ means a presentation of this elements as a word of $\mathcal{E} \cup\left\{r_{g-1}\right\}$. Here, we need to present p and p^{\prime} as words of these elements. Since $b, a_{2 g-2} \in \mathcal{E}, p$ is presented as an element of $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$. We shall present p^{\prime} as an element of $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$.

$$
\begin{aligned}
& a_{2 g-2} b t_{1}(b)=a_{2 g-2} b b_{g-1} \frac{c_{2 g-2,2 g-1} a_{2 g-2}}{\text { braid }} \frac{b_{g-1}(b)}{\text { braid }} \\
& =a_{2 g-2} b b_{g-1} a_{2 g-2} \frac{c_{2 g-2,2 g-1}(b)}{\text { braid }}=a_{2 g-2} b b_{g-1} \frac{a_{2 g-2}(b)}{\text { braid }} \\
& \\
& =a_{2 g-2} \frac{b b_{g-1} \bar{b}}{\text { braid }}\left(a_{2 g-2}\right)=a_{2 g-2} \frac{b_{g-1}\left(a_{2 g-2}\right)}{\text { braid }}=a_{2 g-2} \bar{a}_{2 g-2}\left(b_{g-1}\right)=b_{g-1}, \\
& \begin{aligned}
a_{2 g-2} b t_{1}\left(a_{2 g-2}\right) & =a_{2 g-2} b b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} \frac{b_{g-1}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =a_{2 g-2} b b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} \bar{a}_{2 g-2}\left(b_{g-1}\right) \\
& =a_{2 g-2} b b_{g-1} \frac{c_{2 g-2,2 g-1}\left(b_{g-1}\right)}{\text { braid }}=a_{2 g-2} b b_{g-1} \bar{b}_{g-1}\left(c_{2 g-2,2 g-1}\right) \\
& =\frac{a_{2 g-2} b\left(c_{2 g-2,2 g-1}\right)}{\text { braid }}=c_{2 g-2,2 g-1} .
\end{aligned}
\end{aligned}
$$

Here, we remark that these equations show $t_{1}\left(a_{2 g-2}\right) \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$. From these equa-
tions, we can show,

$$
\begin{aligned}
a_{2 g-2} b t_{1} p \bar{t}_{1} \bar{b} \bar{a}_{2 g-2} & =a_{2 g-2} b t_{1} b a_{2 g-2} a_{2 g-2} b \bar{t}_{1} \bar{b} \bar{a}_{2 g-2} \\
& =b_{g-1} c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} b_{g-1}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
r_{g-1} & \left.=\left(\frac{\left(c_{2 g-3,2 g-2}\right.}{\text { handle }}\right)^{2} b_{g-1}\right)^{2} \\
& =\left(\left(c_{2 g-2,2 g-1}\right)^{2} b_{g-1}\right)^{2}
\end{aligned}
$$

Hence, $b_{g-1} c_{2 g-2,2 g-1} c_{2 g-2,2 g-1} b_{g-1}=\left(\bar{c}_{2 g-1,2 g-1}\right)^{2} r_{g-1}$. From the above equations, we can show $p^{\prime}=t_{1} p \bar{t}_{1}=\bar{b} \bar{a}_{2 g-1}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2} r_{g-1} a_{2 g-2} b$. This gives a presentation of p^{\prime} as an element of $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$. For p, the relation of type (Y2) is

$$
t_{1}\left(b a_{2 g-2} a_{2 g-2} b\right) \bar{t}_{1}=t_{1} p \bar{t}_{1}=\bar{b} \bar{a}_{2 g-2}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2} r_{g-1} a_{2 g-2} b
$$

This relation is satisfied in $G_{g, n}$. For p^{\prime}, the relation of type (Y2) is,

$$
t_{1}\left(\bar{b} \bar{a}_{2 g-2}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2} r_{g-1} a_{2 g-2} b\right) \bar{t}_{1} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}
$$

We shall show that this equation is satisfied in $G_{g, n}$. Previously, we have shown $\left(t_{1}\right)^{2}$, $p \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$. By the definition of p^{\prime}, we can show,

$$
t_{1}\left(\bar{b} \bar{a}_{2 g-2}\left(\bar{c}_{2 g-2,2 g-1}\right)^{2} r_{g-1} a_{2 g-2} b\right) \bar{t}_{1}=t_{1}\left(t_{1} p \bar{t}_{1}\right) \bar{t}_{1}=t_{1}^{2} p \bar{t}_{1}^{2} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}
$$

For $c_{2 g-2,2 g-1}, a_{2 g-4}$, we can show t_{1} exchanges $c_{2 g-2,2 g-1}$ and $a_{2 g-4}$,

$$
\begin{gathered}
\begin{aligned}
t_{1}\left(c_{2 g-2,2 g-1}\right) & =b_{g-1} \frac{c_{2 g-2,2 g-1} a_{2 g-1}}{\text { braid }} \frac{b_{g-1}\left(c_{2 g-2,2 g-1}\right)}{\text { braid }} \\
& =b_{g-1} a_{2 g-2} c_{2 g-2,2 g-1} \bar{c}_{2 g-2,2 g-1}\left(b_{g-1}\right) \\
& =b_{g-1} \frac{a_{2 g-2}\left(b_{g-1}\right)}{\text { braid }}=b_{g-1} \bar{b}_{g-1}\left(a_{2 g-2}\right)=a_{2 g-2}
\end{aligned} \\
\begin{aligned}
t_{1}\left(a_{2 g-2}\right) & =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} \frac{b_{g-1}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-2,2 g-1} \frac{a_{2 g-2} \bar{a}_{2 g-2}}{\text { braid }}\left(b_{g-1}\right) \\
& =b_{g-1} \frac{c_{2 g-2,2 g-1}\left(b_{g-1}\right)}{\text { braid }}=b_{g-1} \bar{b}_{g-1}\left(c_{2 g-2,2 g-1}\right)=c_{2 g-2,2 g-1}
\end{aligned}
\end{gathered}
$$

This fact shows $t_{1} c_{2 g-2,2 g-1} \bar{t}_{1}, t_{1} a_{2 g-1} \bar{t}_{1} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$.
For $c_{2 g-2,2 g-4}$,

$$
t_{1}\left(c_{2 g-2,2 g-4}\right)=b_{g-1} \frac{c_{2 g-2,2 g-1} a_{2 g-2}}{\text { braid }} b_{g-1}\left(c_{2 g-2,2 g-4}\right)
$$

$$
\begin{aligned}
& =b_{g-1} a_{2 g-2} \frac{c_{2 g-2,2 g-1}}{\text { handle }} b_{g-1}\left(c_{2 g-2,2 g-4}\right) \\
& =b_{g-1} a_{2 g-2} c_{2 g-3,2 g-2} b_{g-1}\left(c_{2 g-2,2 g-4}\right) \\
& =\overline{b a_{2 g-4} a_{2 g-2} b}\left(a_{2 g-1}\right) \quad\left(\text { by } X_{2 g-4,2 g-2}(4)\right)
\end{aligned}
$$

Since $b, a_{2 g-1}, a_{2 g-2}, a_{2 g-4} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$, this equation shows $t_{1} c_{2 g-2,2 g-4} \bar{t}_{1} \in$ $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$.

For $c_{2 g-4,2 g-2}$, we do the same way as above,

$$
\begin{aligned}
t_{1}\left(c_{2 g-4,2 g-2}\right) & =b_{g-1} \frac{c_{2 g-2,2 g-1} a_{2 g-2}}{\text { braid }} b_{g-1}\left(a_{2 g-4,2 g-2}\right) \\
& =b_{g-1} a_{2 g-2} \frac{c_{2 g-2,2 g-1}}{\text { handle }} b_{g-1}\left(c_{2 g-4,2 g-2}\right) \\
& =b_{g-1} a_{2 g-2} c_{2 g-3,2 g-2} b_{g-1}\left(c_{2 g-4,2 g-2}\right) \\
& =\overline{b a_{2 g-4} a_{2 g-2} b}\left(a_{2 g-3}\right) \quad\left(\text { by } X_{2 g-4,2 g-2}(2)\right)
\end{aligned}
$$

Since $b, a_{2 g-2}, a_{2 g-3}, a_{2 g-4} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$, this equation shows $t_{1} c_{2 g-4,2 g-2} \bar{t}_{1} \in$ $\left(\mathcal{M}_{g, n}\right)_{v_{0}}$.

Here, we conclude that all the relations of type (Y2) are satisfied in $G_{g, n}$.
5.3. Relations of type (Y3). We define $t_{2}=b a_{2 g-2} a_{2 g-4} b$. For the notations used to present a relation of type (Y3), it is possible to set $h_{1}=1, h_{2}=t_{2}$ and $h_{3}=t_{2}$. Then, $W_{f_{0}}=t_{1} t_{2} t_{1} t_{2} t_{1}$. By braid relations, we can show $t_{1} t_{2} t_{1}=t_{2} t_{1} t_{2}$ as follows.

$$
\begin{aligned}
t_{1} t_{2}\left(b_{g-1}\right) & =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b a_{2 g-2} \frac{a_{2 g-4} b\left(b_{g-1}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b \frac{b a_{2 g-2}\left(b_{g-1}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} \frac{b \bar{b}_{g-1}\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} \bar{b}_{g-1} b\left(a_{2 g-2}\right) \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} \frac{b\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} \bar{a}_{2 g-2}(b)=\frac{b_{g-1} c_{2 g-2,2 g-1}(b)}{\text { braid }}=b \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} \frac{b_{g-1}\left(c_{2 g-2,2 g-1}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-2,2 g-1} \frac{a_{2 g-2} \bar{c}_{2 g-2,2 g-1}\left(b_{g-1}\right)}{\text { braid }} \\
t_{1} t_{2}\left(c_{2 g-2,2 g-1}\right) & =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} \frac{b a_{2 g-2} a_{2 g-4} b\left(c_{2 g-2,2 g-1}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-2,2 g-1} \bar{c}_{2 g-2,2 g-1} a_{2 g-2}\left(b_{g-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =b_{g-1} \frac{a_{2 g-2}\left(b_{g-1}\right)}{\text { braid }}=b_{g-1} \bar{b}_{g-1}\left(a_{2 g-2}\right)=a_{2 g-2}, \\
t_{1} t_{2}\left(a_{2 g-2}\right) & =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b a_{2 g-2} a_{2 g-4} \frac{b\left(a_{2 g-2}\right)}{\text { braid }} \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b a_{2 g-2} \frac{a_{2 g-4} \bar{a}_{2 g-2}(b)}{\text { braid }} \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b a_{2 g-2} \bar{a}_{2 g-2} a_{2 g-4}(b) \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b a_{2 g-4}(b) \\
& =b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1} b \bar{b}\left(a_{2 g-4}\right) \\
& =\frac{b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1}\left(a_{2 g-4}\right)}{\text { braid }}=a_{2 g-4} .
\end{aligned}
$$

Therefore, $t_{1} t_{2} t_{1} \bar{t}_{2} \bar{t}_{1}=t_{1} t_{2}\left(b_{g-1} c_{2 g-2,2 g-1} a_{2 g-2} b_{g-1}\right) \bar{t}_{2} \bar{t}_{1}=b a_{2 g-2} a_{2 g-4} b=t_{2}$, that is $t_{1} t_{2} t_{1}=t_{2} t_{1} t_{2}$. Hence, we get $W_{f_{0}}=t_{1} t_{2} t_{1} t_{2} t_{1}=t_{1}^{2} t_{2} t_{1}^{2}$. As we have shown in Subsection $5.2, t_{1}^{2} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$, and, since $b, a_{2 g-2}, a_{2 g-4} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$, we can show $t_{2} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$. By using these facts, we conclude that $W_{f_{0}} \in\left(\mathcal{M}_{g, n}\right)_{v_{0}}$ is satisfied in $G_{g, n}$.

References

[1] S. Benvenuti: Finite presentations for the mapping class group via the ordered complex of curves, Adv. Geom. 1 (2001), 291-321.
[2] J. Birman: On braid groups, Com. Pure and App. Math. 22 (1969), 41-72.
[3] J. Birman: Mapping class groups and their relationship to braid groups, Com. Pure and App. Math. 22 (1969), 213-238.
[4] J. Birman and H. Hilden: On the mapping class group of closed surface as covering spaces, In Advances in the theory of Riemann surfaces Ann. of Math. Studies, 66 (1971), 81-115.
[5] M. Dehn: Die Gruppe der Abbildungsklassen Acta Math. 69 (1938), 135-206.
[6] S. Gervais: A finite presentation of the mapping class group of an oriented surface, preprint (math. GT/9811162).
[7] A. Hatcher and W. Thurston: A presentation for the mapping class group of a closed orientable surface, Topology, 19 (1980), 221-237.
[8] J. Harer: The second homology group of the mapping class group of an orientable surface, Inv. Math. 71 (1982), 221-239.
[9] J. Harer: Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985), 215-249.
[10] W. Harvey: Boundary structure for the modular group, In Riemann surface and related Topics: Proc. 1978 Stony Brook Conf. Princeton University Press, (1978), 245-251.
[11] A. Hatcher: On triangulations of surfaces, Topology and its Applications, 40 (1991), 189-194.
[12] S. Hirose: A presentation for a mapping class group of a 3-dimensional handlebody, preprint (1999).
[13] N. Ivanov: On the virtual cohomology dimension of the Teichüller modular group, Lecture notes in Math. 1060, Springer, (1984), 306-318.
[14] D.L. Johnson: Presentation of groups, London Math. Soc. Stu. Texts 15.
[15] F. Laudenbach: Présentation du groupe de difféotopies d'une suface compact orientable, Ex-
posé 15 de Travaux de Thurston sur les surfaces Astérisque 66-67 (1991).
[16] W.B.R. Lickorish: A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778, Corrigendum Proc. Cambridge Philos. Soc. 62 (1966), 679-681.
[17] M. Matsumoto: A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000), 401-418.
[18] D. McCullough: Virtually geometrically finite mapping class groups of 3-manifolds, J. Diff. Geom. 33 (1991), 1-65.
[19] J. McCool: Some finitely presented subgroups of the automorphism group of a free group, J. Algebra, 35 (1975), 205-213.
[20] B. Wajnryb: A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), 157-174.
[21] B. Wajnryb: An elementary approach to the mapping class group of a surface, Geometry and Topology, 3 (1999), 405-466.

Department of Mathematics
Faculty of Science and Engineering
Saga University
Saga 840-8502, Japan
e-mail: hirose@ms.saga-u.ac.jp

[^0]: This research was partially supported by Grant-in-Aid for Encouragement of Young Scientists (No. 10740035), Minsitry of Education, Science, Sports and Culture, Japan.

