ELEMENTARY INTERSECTION NUMBERS ON PUNCTURED SPHERES

Yungyen CHIANG

(Received October 6, 2000)

Introduction

According to Thurston, for any analytically finite Riemann surface \mathcal{R}, the set $\overline{\mathcal{G}}(\mathcal{R})$ of all projective geodesic laminations in \mathcal{R} can be made into a topological space homeomorphic to a sphere of dimension depending on the topology of \mathcal{R}. Understanding the space $\overline{\mathcal{G}}(\mathcal{R})$ is important for various approaches to the Teichmüller space and the mapping class group of \mathcal{R}. The space $\overline{\mathcal{G}}(\mathcal{R})$ was then investigated by several authors from many different points of view. See [3-10], [12, 13, 15], and references there in.

In this paper, we consider the space $\overline{\mathcal{G}}_{n}=\overline{\mathcal{G}}\left(\Sigma_{n}\right)$ for any integer $n \geq 4$, where Σ_{n} is an n-punctured sphere endowed with a hyperbolic metric. Note that $\overline{\mathcal{G}}_{n}$ is homeomorphic to a sphere of dimension $2 n-7$.

This work was an attempt to generalize the projective coordinates defined in [3, 4] to an arbitrary $\overline{\mathcal{G}}_{n}$. This work and that of Keen, Parker and Series [10] are essentially based on cutting sequence technique developed by Birman and Series [2], and complement the works of Masur and Minsky [12, 13].

Let \mathcal{G}_{n} be the set of all simple closed geodesics on Σ_{n}. For $n=4$ or 5 , the author has defined a set of projective coordinates for \mathcal{G}_{n} so that the completion of these coordinates parametrize $\overline{\mathcal{G}}_{n}$, (see [3, 4]). The coordinates of each $\gamma \in \mathcal{G}_{n}$ are geometric intersection numbers of γ with $2(n-3)$ fixed geodesics in \mathcal{G}_{n}, and read off directly from the topology of γ. Moreover, these coordinates have three remarkable applications. First, the geometric intersection number of any two geodesics in \mathcal{G}_{n} can be formulated explicitly in terms of the corresponding coordinates. Secondly, the coordinates of each $\gamma \in \mathcal{G}_{n}$ determine a canonical expression of γ as a word in a given set of generators for the fundamental group $\pi_{1}\left(\Sigma_{n}\right)$. Finally, the coordinates of each $\gamma \in \mathcal{G}_{n}$ are related to trace polynomials of the transformations corresponding to γ in a family of regular B-groups uniformizing Σ_{n}.

For an arbitrary $n \geq 5$, following [3, 4], we shall choose $n-3$ fixed triples $\left(\gamma_{j}^{1}, \gamma_{j}^{2}, \gamma_{j}^{3}\right)$ of geodesics in $\mathcal{G}_{n}(1 \leq j \leq n-3)$, and compute the geometric intersec-

[^0]tion numbers $i\left(\gamma, \gamma_{j}^{k}\right)$, called the elementary intersection numbers of γ. The elementary intersection numbers of γ will determine a set of parameters for γ.

The geodesics γ_{j}^{k} are defined explicitly in $\S 1.2$. They are chosen intuitively as described below. First, we line up the punctures of Σ_{n}, say $\zeta_{1}, \ldots, \zeta_{n}$. For every j, the geodesic γ_{j}^{1} is chosen to separate $\zeta_{1}, \ldots, \zeta_{j+1}$ from $\zeta_{j+2}, \ldots, \zeta_{n}$. These geodesics γ_{j}^{1} determine $n-3$ subsurfaces of Σ_{n} each of which is homeomorphic to a four punctured sphere. Two of them are isometric to spheres with three punctures and one hole, denoted by $\Sigma_{4}^{(1)}$ and $\Sigma_{4}^{(n-3)}$, and the others are isometric to spheres with two punctures and two holes, denoted by $\Sigma_{4}^{(j)}, 2 \leq j \leq n-4$. More explicitly, $\Sigma_{4}^{(1)}$ is the subsurface containing ζ_{1}, ζ_{2} and ζ_{3} with the boundary geodesic $\gamma_{2}^{1} ; \Sigma_{4}^{(n-3)}$ is the subsurface containing ζ_{n-2}, ζ_{n-1} and ζ_{n} with the boundary geodesic $\gamma_{n-4}^{1} ; \Sigma_{4}^{(j)}$ is the subsurface bounded by γ_{j-1}^{1} and γ_{j+1}^{1} for $2 \leq j \leq n-4$. For every j, we choose γ_{j}^{2} so that γ_{j}^{1} and γ_{j}^{2} form a marking of a four punctured sphere as γ_{∞} and γ_{0} given in [3]. The geodesic γ_{j}^{3} plays the role of γ_{1} given [3] which is obtained from γ_{j}^{2} by a halftwist along γ_{j}^{1}.

The main work of this paper is to find formulas for computing elmentary intersection numbers so that the formulas agree with that given in [4] when $n=5$. These formulas will be called elementary intersection formulas. To derive these formulas, we introduce $2(n-3)$ integers for each $\gamma \in \mathcal{G}_{n}$, denoted by $I_{j}(\gamma)$ and $N_{j}(\gamma)$ for $1 \leq j \leq n-3$, (see $\S 2.1$ and $\S 2.4$). These integers are defined analogously to the projective coordinates given in [3, 4]. For $\gamma \in \mathcal{G}_{n}$, every $I_{j}(\gamma)$ is defined to be $(1 / 2) i\left(\gamma, \gamma_{j}^{1}\right)$, and the sign of every $N_{j}(\gamma)$ is determined by the symmetry of a fundamental domain for a Fuchsian representation of $\pi_{1}\left(\Sigma_{n}\right)$ acting on the upper half plane. With these integer valued functions I_{j} and N_{j}, we prove in $\S 2.5$ the elementary intersection formulas (Theorem 2.10) by applying induction to the number n of punctures. In this paper, we develop a new idea that makes the induction work for $n \geq 5$, (cf. Remark 2.3).

As an application of elementary intersection formulas, at the end of the paper, we construct a continuous map Ψ from $\overline{\mathcal{G}}_{n}$ into a sphere $\Delta_{n} \subset \mathbb{R}^{3(n-3)}$ of dimension $2 n-7$ whose restriction to \mathcal{G}_{n} is written explicitly in terms of I_{j} and N_{j}.

It would be very interesting to derive a geometric intersection formula as given in [3, Theorem 2.6] and [4, Theorem 3.1] for any two geodesics in \mathcal{G}_{n}. With the formula, one proves easily the injectivity of Ψ. To prove that the integers $I_{j}(\gamma)$ and $N_{j}(\gamma)$ form a set of projective coordinates for $\gamma \in \mathcal{G}_{n}$, one also need the surjectivity of the map $\Psi: \overline{\mathcal{G}}_{n} \longrightarrow \Delta_{n}$. This will follow if $\Psi\left(\mathcal{G}_{n}\right)$ is dense in Δ_{n}. For the proof, one may consider π_{1}-train tracks introduced by Birman and Series [1], (cf. [3, 4]). The work will appear elsewhere.

1. Preliminaries

1.1. The space of complete simple geodesics. For any integer $n \geq 4$, a loop on Σ_{n} with no self intersections will be called a simple loop. An essential simple loop
on Σ_{n} is a simple loop which is neither homotopically trivial nor homotopic to a simple closed curve around to a puncture of Σ_{n}. A finite union of mutually disjoint essential simple loops on Σ_{n} will be called a multiple simple loop. The set of all free homotopy classes of non-oriented essential simple loops on Σ_{n} is denoted by \mathcal{G}_{n}, while the set of all free homotopy classes of non-oriented multiple simple loops is denoted by $\mathcal{G} \mathcal{L}_{n}$. Obviously, $\mathcal{G}_{n} \subset \mathcal{G} \mathcal{L}_{n}$.

In general, we shall use $[\alpha]$ for the free homotopy class represented by a curve α lying on Σ_{n}. Every element of \mathcal{G}_{n} contains a unique geodesic γ on Σ_{n}. By abuse of notation, we shall also use γ for the free homotopy class containing γ.

We shall write every element of $\mathcal{G} \mathcal{L}_{n}$ as an integral combination of elements of \mathcal{G}_{n}. For every integer $m>1$, we use \mathcal{Z}_{+}^{m} for the set of m-tuples $\left(k_{1}, \ldots, k_{m}\right)$ of integers $k_{j} \geq 0$ with $\sum_{j=1}^{m} k_{j}>0$, and Λ_{n}^{m} for the set of m-tuples $\left(\gamma_{1}, \ldots, \gamma_{m}\right)$ of mutually disjoint geodesics in \mathcal{G}_{n}.

Let α be an arbitrary multiple simple loop on Σ_{n}. All connected components of α fall into at most $n-3$ distinct free homotopy classes. There exist $\left(k_{1}, \ldots, k_{n-3}\right) \in$ \mathcal{Z}_{+}^{n-3} and $\left(\gamma_{1}, \ldots, \gamma_{n-3}\right) \in \Lambda_{n}^{n-3}$ such that, for every j, α has exactly k_{j} connected components freely homotopic to γ_{j}. We shall write:

$$
[\alpha]=k_{1} \gamma_{1} \oplus \cdots \oplus k_{n-3} \gamma_{n-3}=\bigoplus_{j=1}^{n-3} k_{j} \gamma_{j}
$$

Let $\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$be the set of all functions from \mathcal{G}_{n} into the set \mathbb{R}_{+}of all non-negative real numbers. We provide \mathcal{G}_{n} with the discrete topology, and provide $\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$with the compact-open topology.

Two elements f and g of $\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]-\{0\}$ are called projectively equivalent if there is a positive number t such that $f=t g$. Let $\mathrm{P}\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$be the set of all projective equivalence classes in $\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]-\{0\}$ provided with the quotient topology. Let π_{n} be the quotient map of $\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]-\{0\}$ onto $\mathrm{P}\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$.

Following [5], we embed $\mathcal{G} \mathcal{L}_{n}$ into $\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$by using geometric intersection numbers of elements of $\mathcal{G} \mathcal{L}_{n}$. For any two curves α_{1} and α_{2} on Σ_{n}, let $\#\left(\alpha_{1} \cap \alpha_{2}\right)$ denote the cardinality of the intersection $\alpha_{1} \cap \alpha_{2}$. The geometric intersection number $i\left(\left[\alpha_{1}\right],\left[\alpha_{2}\right]\right)$ of $\left[\alpha_{1}\right]$ with $\left[\alpha_{2}\right]$ is defined by

$$
i\left(\left[\alpha_{1}\right],\left[\alpha_{2}\right]\right)=\min \left\{\#\left(\alpha_{1}^{\prime} \cap \alpha_{2}^{\prime}\right):\left[\alpha_{j}^{\prime}\right]=\left[\alpha_{j}\right] \quad \text { for } j=1,2\right\} .
$$

It follows immediately from the definition that, for any curve β on Σ_{n},

$$
i\left(\bigoplus_{j=1}^{n-3} k_{j} \gamma_{j},[\beta]\right)=\sum_{j=1}^{n-3} k_{j} \cdot i\left(\gamma_{j},[\beta]\right)
$$

Every $\alpha \in \mathcal{G} \mathcal{L}_{n}$ induces a function $\mathcal{I}_{\alpha}^{(n)}: \mathcal{G}_{n} \longrightarrow \mathbb{R}_{+}$given by

$$
\mathcal{I}_{\alpha}^{(n)}(\gamma)=i(\alpha, \gamma) \quad \text { for all } \quad \gamma \in \mathcal{G}_{n}
$$

Let $\mathcal{I}^{(n)}: \mathcal{G} \mathcal{L}_{n} \longrightarrow\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$be defined by

$$
\mathcal{I}^{(n)}(\alpha)=\mathcal{I}_{\alpha}^{(n)} \quad \text { for all } \quad \alpha \in \mathcal{G} \mathcal{L}_{n} .
$$

When there is no risk of confusion, we shall simply write π_{n} as π, write $\mathcal{I}_{\alpha}^{(n)}$ as \mathcal{I}_{α}, and write $\mathcal{I}^{(n)}$ as \mathcal{I}.

It is well known that the composition $\pi \mathcal{I}$ is injective [5, Exposé 3], and that $\overline{\pi \mathcal{I}\left(\mathcal{G} \mathcal{L}_{n}\right)}=\overline{\pi \mathcal{I}\left(\mathcal{G}_{n}\right)}$ [5, Exposé 4, Theorem 4], where $\overline{\pi \mathcal{I}\left(\mathcal{G} \mathcal{L}_{n}\right)}$ and $\overline{\pi \mathcal{I}\left(\mathcal{G}_{n}\right)}$ denote the closures of $\pi \mathcal{I}\left(\mathcal{G} \mathcal{L}_{n}\right)$ and $\pi \mathcal{I}\left(\mathcal{G}_{n}\right)$ in $\mathrm{P}\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$, respectively. These results are original due to Thurston [15].

Note that an element \mathcal{L} of $\mathrm{P}\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$is in $\overline{\pi \mathcal{I}\left(\mathcal{G}_{n}\right)}$ if and only if for any l in $\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]-\{0\}$ with $\pi(l)=\mathcal{L}$ there exist a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ of positive numbers and a sequence $\left\{\gamma_{k}\right\}_{k=1}^{\infty}$ of geodesics in \mathcal{G}_{n} such that the sequence $\left\{t_{k} \mathcal{I}_{\gamma_{k}}\right\}_{k=1}^{\infty}$ converges to l. A sequence $\left\{l_{k}\right\}_{k=1}^{\infty}$ in $\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$is called convergent to $l \in\left[\mathcal{G}_{n}, \mathbb{R}_{+}\right]$if for every $\gamma \in \mathcal{G}_{n}$ the sequence $\left\{l_{k}(\gamma)\right\}_{k=1}^{\infty}$ converges in \mathbb{R} to $l(\gamma)$.
1.2. Cyclic reduced words. It is well known that every free homotopy class in \mathcal{G}_{n} corresponds to a unique conjugacy class in the fundamental group of Σ_{n}. Now, we consider a Fuchsian representation G_{n} of the fundamental group of Σ_{n} acting on the upper half plane $\mathcal{U}=\{z \in \mathbf{C}: \operatorname{Im} z>0\}$, and find a representative for each conjugacy class in G_{n} by using Birman and Series' cutting sequence techenique [2].

Let G_{n} be the subgroup of $\operatorname{PSL}(2, \mathbb{R})$ generated by the following transformations

$$
S_{1}=\left(\begin{array}{ll}
1 & 2(n-2) \\
0 & 1
\end{array}\right), S_{2}=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right), T_{n-j-2}=\left(\begin{array}{ll}
2 j+1 & 2 j(j+1) \\
2 & 2 j+1
\end{array}\right)
$$

where $1 \leq j \leq n-3$ are integers.
For every integer j with $1 \leq j \leq n-3$, let C_{j} be the isometric circle of T_{j}, and C_{j}^{\prime} be the isometric circle of T_{j}^{-1}. Let C_{n-2} be the isometric circle of S_{2}, and C_{n-2}^{\prime} be the isometric circle of S_{2}^{-1}. Let

$$
C_{0}^{\prime}=\{z \in \mathbf{C}: \operatorname{Re} z=-(n-2)\} \quad \text { and } C_{0}=\{z \in \mathbf{C}: \operatorname{Re} z=n-2\} .
$$

Note that $S_{1}\left(C_{0}^{\prime}\right)=C_{0}$, and that the polygon $\mathcal{D}_{n} \subset \mathcal{U}$ bounded by C_{j} and $C_{j}^{\prime}, 0 \leq j \leq$ $n-2$, is a fundamental domain for G_{n} acting on \mathcal{U}.

For simplicity, we shall schematically draw \mathcal{D}_{n} as a rectangular region. See Fig. 1 for $n=4,5,6$, where the points on the boundary of \mathcal{D}_{n} marked by " \times " correspond to punctures of Σ_{n}.

Fig. 1. The fundamental domain \mathcal{D}_{n} for $n=4,5,6$.
Let Γ_{n} denote the set of all side pairings of \mathcal{D}_{n}, i.e.,

$$
\Gamma_{n}=\left\{S_{1}, S_{1}^{-1}, S_{2}, S_{2}^{-1}, T_{j}, T_{j}^{-1}: j=1, \ldots, n-3\right\}
$$

For every $X \in \Gamma_{n}$, we label the common side s of \mathcal{D}_{n} and $X\left(\mathcal{D}_{n}\right)$ by X^{-1} on the side inside \mathcal{D}_{n} and by X on the side inside $X\left(\mathcal{D}_{n}\right)$, (cf. Fig. 1). This side s will be called the X-side of \mathcal{D}_{n}.

For every $g \in G_{n}$, the image $g\left(\mathcal{D}_{n}\right)$ will be called a G_{n}-translate of \mathcal{D}_{n}. We transport the above side labelling to all G_{n}-translates of \mathcal{D}_{n}.

For any closed curve γ in Σ_{n}, let $\tilde{\gamma}$ be a lift of γ to \mathcal{U} which starts on a side of a G_{n}-translate of \mathcal{D}_{n} and projects to γ bijectively, except the endpoints of $\tilde{\gamma}$. Let $z_{0} \in \mathcal{U}$ be an endpoint of $\tilde{\gamma}$, and we orient $\tilde{\gamma}$ so that its initial point is z_{0}. The arc $\tilde{\gamma}$ cuts in order the G_{n}-translates $g_{0}\left(\mathcal{D}_{n}\right), g_{1}\left(\mathcal{D}_{n}\right), \ldots, g_{k}\left(\mathcal{D}_{n}\right)$ of \mathcal{D}_{n}. For every integer j with $1 \leq j \leq k$, let $X_{j} \in \Gamma_{n}$ be the label of the common side of $\left.g_{j-1} \mathcal{D}_{n}\right)$ and $g_{j}\left(\mathcal{D}_{n}\right)$, interior to $g_{j}\left(\mathcal{D}_{n}\right)$. Then $X_{j}=g_{j-1}^{-1} \circ g_{j}$ for every j, and γ is represented by

$$
\left(g_{0}^{-1} \circ g_{1}\right) \circ\left(g_{1}^{-1} \circ g_{2}\right) \circ \cdots \circ\left(g_{k-1}^{-1} \circ g_{k}\right)=X_{1} \circ X_{2} \circ \cdots \circ X_{k}=\prod_{j=1}^{k} X_{j}
$$

Such an expression is called a Γ_{n}-word representing γ. See [4, §1.2] for a full discussion.

A Γ_{n}-word $\prod_{j=1}^{k} X_{j}$ will be called reduced if $X_{j} \neq X_{j+1}^{-1}$ for $1 \leq j \leq k-1$. It is called cyclically reduced if in addition $X_{1} \neq X_{k}^{-1}$.

Let γ be a simple loop on Σ_{n} represented by a Γ_{n}-word given above. For every $1 \leq j \leq k$, let l_{j} be the image of the intersection of $\tilde{\gamma}$ with $g_{j}\left(\overline{\mathcal{D}}_{n}\right)$ mapped by g_{j}^{-1}, where $\overline{\mathcal{D}}_{n}$ is the relative closure of \mathcal{D}_{n} in \mathcal{U}. Note that each l_{j} is a simple arc in $\overline{\mathcal{D}}_{n}$ connecting the X_{j}^{-1}-side to the X_{j+1}-side, where $X_{k+1}=X_{1}$. Each l_{j} will be called a strand of γ.

Let α be a multiple simple loop on Σ_{n}. A strand of a connected component of α will be also called a strand of α.

Fig. 2. From the left to the right : $\gamma_{1}^{1}, \gamma_{1}^{2}, \gamma_{1}^{3}$.

Fig. 3. From the left to the right : $\gamma_{j}^{1}, \gamma_{j}^{2}, \gamma_{j}^{3}, 2 \leq j \leq n-4$.
A loop on Σ_{n} is called reduced if it is represented by a cyclically reduced Γ_{n}-word. A multiple simple loop α on Σ_{n} is called reduced if every connected component of α is reduced. Note that a simple loop or a multiple simple loop on Σ_{n} is reduced if and only if every strand of the loop connects two different sides of \mathcal{D}_{n}. It is easy to see that every simple closed geodesic on Σ_{n} is a reduced loop. Thus every free homotopy class of multiple simple loops on Σ_{n} contains a reduced one.

If $\gamma \in \mathcal{G}_{n}$ is a geodesic represented by a reduced Γ_{n}-word W, then γ is also represented by an arbitrary cyclic permutation of W. If γ^{\prime} is a geodesic which has the same underlying set with γ but opposite orientation, then γ^{\prime} is represented by W^{-1}. Because we are only interested in non-oriented simple loops, we shall identify all reduced Γ_{n}-words which are cyclic permutations of W or cyclic permutations of W^{-1}, and call any one of them a cyclic reduced Γ_{n}-word representing γ. Every cyclic reduced Γ_{n}-word is cyclically reduced.

As examples, let $\gamma_{j}^{k} \in \mathcal{G}_{n}$ be the geodesics given in Fig. 2, Fig. 3 and Fig. 4, where j and k are integers with $1 \leq j \leq n-3$ and $1 \leq k \leq 3$. See introduction for a geometric interpretation of γ_{j}^{k}. Each γ_{j}^{k} is represented by a cyclic reduced Γ_{n}-word W_{j}^{k} as given below:
(i) $W_{1}^{1}=T_{1}, W_{1}^{2}=S_{1} T_{2}^{-1}, W_{1}^{3}=S_{1} T_{1}^{-1} T_{2}$;
(ii) $W_{j}^{1}=T_{j}, W_{j}^{2}=T_{j-1} T_{j+1}^{-1}, W_{j}^{3}=T_{j+1} T_{j}^{-1} T_{j-1} \quad$ for $\quad 2 \leq j \leq n-4$;
(iii) $W_{n-3}^{1}=T_{n-3}, W_{n-3}^{2}=S_{2} T_{n-4}^{-1} \quad$ and $\quad W_{n-3}^{3}=S_{2} T_{n-3}^{-1} T_{n-4}$.

Fig. 4. From the left to the right : $\gamma_{n-3}^{1}, \gamma_{n-3}^{2}, \gamma_{n-3}^{3}$.
1.3. Subwords and admissible subarcs. Let $\hat{\mathcal{G}}_{n}=\mathcal{G}_{n}-\left\{\gamma_{j}^{1}: 1 \leq j \leq n-3\right\}$. Let $\gamma \in \hat{\mathcal{G}}_{n}$ be a geodesic represented by a cyclic reduced Γ_{n}-word $W=\prod_{j=1}^{k} X_{j}$. Note that $k>1$. For any two integers $1 \leq j \leq k$ and $1 \leq l \leq k$, the reduced Γ_{n}-word

$$
\begin{equation*}
W^{\prime}=X_{j} \cdots X_{j+l-1} \tag{1}
\end{equation*}
$$

will be called a subword of W, where $X_{j+i}=X_{j+i-k}$ whenever $1 \leq i \leq l$ and $i+j>k$.
We shall relate W^{\prime} to γ geometrically. For every i, let l_{i} be the strand of γ connecting the X_{i-1}^{-1}-side to the X_{i}-side, where $X_{i-1}=X_{k}$ if $i=1$. Assume that $1 \leq l<k$, i.e., $W^{\prime} \neq W$. We think that W^{\prime} "represents" a subarc γ^{\prime} of γ. We choose γ^{\prime} to be the projection to Σ_{n} of the union $\cup_{i=j}^{j+l-1} l_{i}$. Each of the arcs l_{1}, \ldots, l_{j+l-1} is called a strand of γ^{\prime}.

This arc γ^{\prime} has two distinct endpoints. One of the two endpoints is the projection of the endpoint of l_{j} on the X_{j-1}^{-1}-side, and the other one is the projection of the endpoint of l_{j+l-1} on the X_{j+l-1}-side. The word given in (1) is not clear enough to indicate the endpoint on the X_{j-1}^{-1}-side. To distinguish it from cyclic reduced words representing simple closed geodesics, we write the reduced Γ_{n}-word representing γ^{\prime} as

$$
\begin{equation*}
\vec{X}_{j-1} W^{\prime}=\vec{X}_{j-1} X_{j} \cdots X_{j+l-1} \tag{2}
\end{equation*}
$$

where \vec{X}_{j-1} is to indicate that $\vec{X}_{j-1} W^{\prime}$ is not cyclic, and to indicate that one of the endpoints of γ^{\prime} is the projection of a point on the X_{j-1}^{-1}-side.

A subarc of a geodesic $\gamma \in \mathcal{G}_{n}$ will be called admissible if either it is γ itself, or is represented by a reduced Γ_{n}-word as given in (2).

Remark 1.1. For $\varepsilon= \pm 1, X \in \Gamma_{n}, X_{1}, X_{2} \in \Gamma_{n}-\left\{X^{ \pm 1}\right\}$, and an integer $k>1$, we shall write

$$
X_{1} \underbrace{X^{\varepsilon} \cdots X^{\varepsilon}}_{k \text { times }} X_{2}=X_{1} X^{k \varepsilon} X_{2} .
$$

Let $\gamma \in \hat{\mathcal{G}_{n}}$ be a geodesic represented by a cyclic reduced Γ_{n}-word $W(\gamma)$. By the
same reasoning as that in [3, §3], there are no admissible subarcs of $\gamma \in \mathcal{G}_{n}$ represented by any one of the following words:

$$
\begin{array}{llll}
\vec{S}_{1}^{\varepsilon} S_{1}^{\varepsilon}, & \vec{S}_{2}^{\varepsilon} S_{2}^{\varepsilon}, & \vec{T}_{1}^{\delta} S_{1}^{\varepsilon} T_{1}^{\delta}, & \vec{T}_{n-3}^{\delta} S_{2}^{\varepsilon} T_{n-3}^{\delta}, \\
\vec{S}_{1}^{\varepsilon} T_{1}^{k} S_{1}^{\delta}, & \vec{S}_{2}^{\varepsilon} T_{n-3}^{k} S_{2}^{\delta}, & \vec{T}_{j}^{\varepsilon} T_{j+1}^{\delta} T_{j}^{\varepsilon}, & \vec{T}_{j+1}^{\varepsilon} T_{j}^{\delta} T_{j+1}^{\varepsilon},
\end{array}
$$

where $\varepsilon, \delta \in\{1,-1\}, k \neq 0$ is an integer, and $1 \leq j \leq n-4$. Therefore, none of the words $S_{1}^{\varepsilon} S_{1}^{\varepsilon}, S_{2}^{\varepsilon} S_{2}^{\varepsilon}, T_{1}^{\delta} S_{1}^{\varepsilon} T_{1}^{\delta}, T_{n-3}^{\delta} S_{2}^{\varepsilon} T_{n-3}^{\delta}, S_{1}^{\varepsilon} T_{1}^{k} S_{1}^{\delta}, S_{2}^{\varepsilon} T_{n-3}^{k} S_{2}^{\delta}, T_{j}^{\varepsilon} T_{j+1}^{\delta} T_{j}^{\varepsilon}$ and $T_{j+1}^{\varepsilon} T_{j}^{\delta} T_{j+1}^{\varepsilon}$ is a subword of $W(\gamma)$.
1.4. The free homotopy relative to $\partial \mathcal{D}_{n}$. To be able to relate the geometric intersection number of two geodesics in \mathcal{G}_{n} to the intersection of their admissible subarcs, we shall define the free homotopy relative to $\partial \mathcal{D}_{n}$ on a family of curves on Σ_{n} which contains all admissible subarcs of geodesics in \mathcal{G}_{n}.

The union of a finite number of mutually disjoint simple curves on Σ_{n} will be called a multiple simple curve. Let \mathcal{A} be the family of all multiple simple curves β on Σ_{n} satisfying the following three properties.
(i) β lifts to a finite number of mutually disjoint simple arcs in \mathcal{D}_{n}, called the strands of β.
(ii) Except the endpoints, each strand of β lies in the interior of \mathcal{D}_{n}.
(iii) Each strand of β connects two different sides of \mathcal{D}_{n}.

Note that \mathcal{A} contains all reduced multiple simple loops on Σ_{n}, and contains all admissible subarcs of geodesics in \mathcal{G}_{n}.

Two multiple simple curves β_{1} and β_{2} in \mathcal{A} will be called freely homotopic relative to $\partial \mathcal{D}_{n}$, written by $\beta_{1} \sim \beta_{2}$ (rel. $\partial \mathcal{D}_{n}$), if for any two distinct $X, X^{\prime} \in \Gamma_{n}$

$$
\begin{aligned}
& \#\left(\text { strands of } \beta_{1} \text { connecting the } X \text {-side and the } X^{\prime} \text {-side }\right) \\
= & \#\left(\text { strands of } \beta_{2} \text { connecting the } X \text {-side and the } X^{\prime} \text {-side }\right) \text {. }
\end{aligned}
$$

Note that two reduced multiple simple loops on Σ_{n} are freely homotopic if and only if they are freely homotopic relative to $\partial \mathcal{D}_{n}$. For $\beta \in \mathcal{A}$, let

$$
[\beta]_{\partial \mathcal{D}_{n}}=\left\{\beta^{\prime} \in \mathcal{A}: \beta^{\prime} \sim \beta\left(\text { rel. } \partial \mathcal{D}_{n}\right)\right\}
$$

and we shall call a strand of β a strand of $[\beta]_{\partial \mathcal{D}_{n}}$.
Now, we may define the strands of a free homotopy class $\alpha \in \mathcal{G} \mathcal{L}_{n}$ as follows. Write $\alpha=\bigoplus_{j=1}^{m} k_{j} \gamma_{j}$, where $\left(\gamma_{1}, \ldots, \gamma_{m}\right) \in \Lambda_{n}^{m}$, and m, k_{1}, \ldots, k_{m} are positive integers with $m \leq n-3$. A strand of some γ_{j} is called a strand of α. Similarly, an admissible subarc of some γ_{j} is called an admissible subarc of α.

For $\beta_{1}, \beta_{2} \in \mathcal{A}$, we define

$$
i\left(\left[\beta_{1}\right]_{\partial \mathcal{D}_{n}},\left[\beta_{2}\right]_{\partial \mathcal{D}_{n}}\right)=\min \left\{\#\left(\beta_{1}^{\prime} \cap \beta_{2}^{\prime}\right): \beta_{1}^{\prime} \sim \beta_{1} \text { and } \beta_{2}^{\prime} \sim \beta_{2}\left(\text { rel. } \partial \mathcal{D}_{n}\right)\right\}
$$

where $\#\left(\beta_{1}^{\prime} \cap \beta_{2}^{\prime}\right)$ denotes the cardinality of the intersection $\beta_{1}^{\prime} \cap \beta_{2}^{\prime}$. For simplicity, from now on we shall write

$$
i\left(\left[\beta_{1}\right]_{\partial \mathcal{D}_{n}},\left[\beta_{2}\right]_{\partial \mathcal{D}_{n}}\right)=i\left(\left[\beta_{1}\right],\left[\beta_{2}\right]\right)_{\partial \mathcal{D}_{n}}
$$

for $\beta_{1}, \beta_{2} \in \mathcal{A}$. Note that if β_{1} and β_{2} are reduced multiple simple loops, then $i\left(\left[\beta_{1}\right],\left[\beta_{2}\right]\right)_{\partial \mathcal{D}_{n}}=i\left(\left[\beta_{1}\right],\left[\beta_{2}\right]\right)$.
1.5. Four automorphisms of $\mathcal{G} \mathcal{L}_{n}$. We have set up a very symmetric fundamental domain \mathcal{D}_{n} for G_{n}. As we did in [4], by use of the symmetry of \mathcal{D}_{n}, we may cut down our discussion to fewer cases by introducing four automorphisms $\Theta_{1}, \Theta_{2}, \mathcal{T}_{1}$ and \mathcal{T}_{2} of G_{n} defined by

$$
\begin{aligned}
& \Theta_{1}(X)=X^{-1} \text { for } X \in\left\{S_{1}, S_{2}, T_{j}: 1 \leq j \leq n-3\right\} ; \\
& \Theta_{2}\left(S_{1}\right)=S_{2}, \Theta_{2}\left(S_{2}\right)=S_{1}, \text { and } \Theta_{2}\left(T_{j}\right)=T_{n-j-2} \text { for } 1 \leq j \leq n-3 . \\
& \mathcal{T}_{1}\left(S_{1}\right)=S_{1}^{-1} T_{1} \text { and } \mathcal{T}_{1}(X)=X \text { for } X \in\left\{S_{2}, T_{j}: 1 \leq j \leq n-3\right\} ; \\
& \mathcal{T}_{2}\left(S_{2}\right)=S_{2}^{-1} T_{n-3} \text { and } \mathcal{T}_{2}(X)=X \text { for } X \in\left\{S_{1}, T_{j}: 1 \leq j \leq n-3\right\} .
\end{aligned}
$$

It follows from Nielsen's isomorphism theorem ([14] or [11, Theorem V.H.1]) that for $j=1$ or 2 , each of the automorphisms Θ_{j} and \mathcal{T}_{j} induces a homeomorphism of Σ_{n} onto itself, still denoted by Θ_{j} and \mathcal{T}_{j}.

Let φ be any one of the four homeomorphisms $\Theta_{1}, \Theta_{2}, \mathcal{T}_{1}$ and \mathcal{T}_{2}. The action of φ on $\mathcal{G} \mathcal{L}_{n}$ is defined as follows. For every geodesic $\gamma \in \mathcal{G}_{n}$, let $\varphi(\gamma)$ denote the free homotopy class containing the homeomorphic image of γ under φ. As before, let $\varphi(\gamma)$ also denote the geodesic in the free homotopy class $\varphi(\gamma)$. Thus φ extends naturally to $\mathcal{G} \mathcal{L}_{n}$ such that

$$
\varphi\left(\bigoplus_{j=1}^{n-3} k_{j} \gamma_{j}\right)=\bigoplus_{j=1}^{n-3} k_{j} \varphi\left(\gamma_{j}\right)
$$

where $\left(k_{1}, \ldots, k_{n-3}\right) \in \mathcal{Z}_{+}^{n-3}$ and $\left(\gamma_{1}, \ldots, \gamma_{n-3}\right) \in \Lambda_{n}^{n-3}$.
Note that if $\gamma \in \mathcal{G}_{n}$ is represented by a cyclic reduced Γ_{n}-word W, then $\varphi(\gamma)$ is represented by $\varphi(W)$.

2. Elementary Intersection Numbers

In this section, we generalize elementary intersection numbers of elements of $\mathcal{G} \mathcal{L}_{5}$ [4, $\S 2.1]$ to elements of $\mathcal{G} \mathcal{L}_{n}$, and prove the elementary intersection formulas.
2.1. The integer valued functions $\boldsymbol{I}_{\boldsymbol{j}}$. Let $\gamma_{j}^{k} \in \mathcal{G}_{n}$ be the geodesics given in $\S 1.2$. For any $\alpha \in \mathcal{G} \mathcal{L}_{n}$, the geometric intersection numbers $i\left(\alpha, \gamma_{j}^{k}\right)$ are called the elementary intersection numbers of α.

Note that if β_{1} and β_{2} are two simple closed curves on a 2 -sphere, and if they intersect transversally at every point of intersection, then $\#\left(\beta_{1} \cap \beta_{2}\right)$ is an even integer. Thus $i\left(\alpha_{1}, \alpha_{2}\right)$ is an even integer for any two $\alpha_{1}, \alpha_{2} \in \mathcal{G} \mathcal{L}_{n}$. We shall write

$$
I_{j}(\alpha)=\frac{i\left(\alpha, \gamma_{j}^{1}\right)}{2}
$$

for $\alpha \in \mathcal{G} \mathcal{L}_{n}$, and for $1 \leq j \leq n-3$. Note that if $\gamma \in \mathcal{G}_{n}$ is represented by a cyclic reduced Γ_{n}-word $W(\gamma)=W$, then

$$
\begin{aligned}
I_{1}(\gamma) & =\#\left(\text { strands of } \alpha \text { with an endpoint on the } S_{1}\right. \text {-side) } \\
& =\text { the total number of the letters } S_{1} \text { and } S_{1}^{-1} \text { appearing in } W \\
I_{n-3}(\gamma) & =\#\left(\text { strands of } \alpha \text { with an endpoint on the } S_{2}\right. \text {-side) } \\
& =\text { the total number of the letters } S_{2} \text { and } S_{2}^{-1} \text { appearing in } W .
\end{aligned}
$$

Thus for $\alpha \in \mathcal{G} \mathcal{L}_{n}$ we have

$$
\begin{aligned}
I_{1}(\alpha) & =\#\left(\text { strands of } \alpha \text { with an endpoint on the } S_{1}\right. \text {-side); } \\
I_{n-3}(\alpha) & =\#\left(\text { strands of } \alpha \text { with an endpoint on the } S_{2}\right. \text {-side). }
\end{aligned}
$$

Since $\Theta_{1}\left(\gamma_{j}^{1}\right)=\gamma_{j}^{1}$ and $\Theta_{2}\left(\gamma_{j}^{1}\right)=\gamma_{n-j-2}^{1}$, the following proposition is an immediate consequence of the definition.

Proposition 2.1. If $\alpha \in \mathcal{G} \mathcal{L}_{n}$, then

$$
I_{j}(\alpha)=I_{j}\left(\Theta_{1}(\alpha)\right) \text { and } I_{j}(\alpha)=I_{n-j-2}\left(\Theta_{2}(\alpha)\right) \quad \text { for } 1 \leq j \leq n-3
$$

By an argument similar to the one in the proof of [4, Proposition 2.2 (i), (ii)], we obtain:

Proposition 2.2. Let $\alpha \in \mathcal{G} \mathcal{L}_{n}$. For any integer $m, \mathcal{T}_{1}^{m}(\alpha)=\alpha$ when $I_{1}(\alpha)=0$, while $\mathcal{T}_{2}^{m}(\alpha)=\alpha$ if $I_{n-3}(\alpha)=0$.

Proposition 2.3. If $\alpha \in \mathcal{G} \mathcal{L}_{n}$, and if m is an integer, then

$$
I_{1}(\alpha)=I_{1}\left(\mathcal{T}_{j}^{m}(\alpha)\right) \quad \text { and } \quad I_{n-3}(\alpha)=I_{n-3}\left(\mathcal{T}_{j}^{m}(\alpha)\right) \quad \text { for } j=1,2 .
$$

Proof. Since γ_{1}^{1} and γ_{n-3}^{1} are invariant under each \mathcal{T}_{j}, the proof is straightforward.

Proposition 2.4. If $\alpha \in \mathcal{G} \mathcal{L}_{n}$, and if j, k and m are integers with $1 \leq k \leq 3$, then

$$
i\left(\alpha, \gamma_{j}^{k}\right)=i\left(\mathcal{T}_{1}^{m}(\alpha), \gamma_{j}^{k}\right) \quad \text { for } \quad 1<j \leq n-3, \text { and }
$$

$$
i\left(\alpha, \gamma_{j}^{k}\right)=i\left(\mathcal{T}_{2}^{m}(\alpha), \gamma_{j}^{k}\right) \quad \text { for } \quad 1 \leq j<n-3 .
$$

Proof. By Proposition 2.2, we have $\mathcal{T}_{1}\left(\gamma_{j}^{k}\right)=\gamma_{j}^{k}$ for $1<j \leq n-3$, and $\mathcal{T}_{2}\left(\gamma_{j}^{k}\right)=$ γ_{j}^{k} for $1 \leq j<n-3$. The proof is complete.
2.2. Cyclic semi-reduced words. To compute elementary intersection numbers, we associate to geodesics in \mathcal{G}_{n} cyclic semi-reduced Γ_{n}-words, which are defined analogously to those in [4, §2.2].

Let $\gamma \in \mathcal{G}_{n}$ with $I_{n-3}(\gamma)>0$. Assume that γ is represented by a cyclic reduced Γ_{n}-word $W(\gamma)$. If $S_{2}^{\varepsilon} X$ or $X S_{2}^{\varepsilon}$ is a subword of $W(\gamma)$ with $\varepsilon= \pm 1$ and $X \in \Gamma_{n}-$ $\left\{S_{2}^{ \pm 1}, T_{n-3}^{ \pm 1}\right\}$, we shall write

$$
S_{2}^{\varepsilon} X=S_{2}^{\varepsilon} T_{n-3}^{0} X \quad \text { and } \quad X S_{2}^{\varepsilon}=X T_{n-3}^{0} S_{2}^{\varepsilon}
$$

Similarly, for a geodesic $\gamma \in \mathcal{G}_{n}$ with $I_{1}(\gamma)>0$, if $X \in \Gamma_{n}-\left\{S_{1}^{ \pm 1}, T_{1}^{ \pm 1}\right\}$, and if $S_{1}^{\varepsilon} X$ or $X S_{1}^{\varepsilon}$ is a subword of $W(\gamma)$, then we write $S_{1}^{\varepsilon} X=S_{1}^{\varepsilon} T_{1}^{0} X$ and $X S_{1}^{\varepsilon}=X T_{1}^{0} S_{1}^{\varepsilon}$. The resulting cyclic Γ_{n}-word is called a semi-reduced, still denoted by $W(\gamma)$.

As in $[4, \S 2.5]$, we shall write cyclic semi-reduced Γ_{n}-words in two canonical forms. First, we subdivide $\mathcal{G} \mathcal{L}_{n}$ into four classes.

Note that every geodesic in \mathcal{G}_{n} can not simultaneously have a strand joining the S_{2}^{ε}-side to the T_{n-3}-side and a strand joining the S_{2}^{ε}-side to the T_{n-3}^{-1}-side for $\varepsilon=1$ or -1 , (see Remark 1.1).

Let $\mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$ be the set of elements of $\mathcal{G} \mathcal{L}_{n}$ which have no strands connecting the T_{n-3}-side to the S_{2}^{ε}-side for $\varepsilon= \pm 1$. Let

$$
\mathcal{G} \mathcal{L}_{n}^{-}\left(T_{n-3}\right)=\Theta_{1}\left(\mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)\right),
$$

and let

$$
\mathcal{G} \mathcal{L}_{n}^{+}\left(T_{1}\right)=\Theta_{2}\left(\mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)\right) \quad \text { and } \quad \mathcal{G} \mathcal{L}_{n}^{-}\left(T_{1}\right)=\Theta_{2}\left(\mathcal{G} \mathcal{L}_{n}^{-}\left(T_{n-3}\right)\right) .
$$

Consequently, $\mathcal{G} \mathcal{L}_{n}^{-}\left(T_{1}\right)=\Theta_{1}\left(\mathcal{G} \mathcal{L}_{n}^{+}\left(T_{1}\right)\right)$. We remark that $\alpha \in \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{1}\right)$ if and only if α has no strands connecting the T_{1}-side to the S_{1}^{ε}-side for $\varepsilon= \pm 1$. The set \mathcal{G}_{n} is then subdivided into four subclasses as:

$$
\begin{aligned}
\mathcal{G}_{n}^{+}\left(T_{1}\right) & =\mathcal{G}_{n} \cap \mathcal{G L}_{n}^{+}\left(T_{1}\right) \quad \text { and } \quad \mathcal{G}_{n}^{-}\left(T_{1}\right)=\Theta_{1}\left(\mathcal{G}_{n}^{+}\left(T_{1}\right)\right) . \\
\mathcal{G}_{n}^{+}\left(T_{n-3}\right) & =\mathcal{G}_{n} \cap \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right) \quad \text { and } \quad \mathcal{G}_{n}^{-}\left(T_{n-3}\right)=\Theta_{1}\left(\mathcal{G}_{n}^{+}\left(T_{n-3}\right)\right) .
\end{aligned}
$$

Now, by the same reasoning as in [4, §2.5], every $\gamma \in \mathcal{G}_{n}$ with $I_{1}(\gamma)>0$ or $I_{n-3}(\gamma)>0$ is represented by a cyclic semi-reduced Γ_{n}-word W as given below.

First, assume that $I_{n-3}(\gamma)=m>0$. There exist m triples $\left(\varepsilon_{j}, p_{j}, q_{j}\right)$ of integers with $\varepsilon_{j}= \pm 1, p_{j} \geq 0$ and $q_{j} \geq 0$, and there exist m reduced Γ_{n}-words $W_{j}=\prod_{i=1}^{\nu_{j}} X_{j i}$
with $X_{j 1}, X_{j \nu_{j}} \in \Gamma_{n}-\left\{S_{2}^{ \pm 1}, T_{n-3}^{ \pm 1}\right\}$, and $X_{j i} \in \Gamma_{n}-\left\{S_{2}^{ \pm 1}\right\}$ when $1<i<\nu_{j}$ such that

$$
\begin{align*}
& \gamma \in \mathcal{G}_{n}^{-}\left(T_{n-3}\right) \Longrightarrow W=\prod_{j=1}^{m} T_{n-3}^{-p_{j}} S_{2}^{\varepsilon_{j}} T_{n-3}^{q_{j}} W_{j} \tag{3}\\
& \gamma \in \mathcal{G}_{n}^{+}\left(T_{n-3}\right) \Longrightarrow W=\prod_{j=1}^{m} T_{n-3}^{p_{j}} S_{2}^{\varepsilon_{j}} T_{n-3}^{-q_{j}} W_{j} \tag{4}
\end{align*}
$$

If $I_{1}(\gamma)=m>0$, by considering $\Theta_{2}(\gamma)$, then γ is represented by

$$
W=\prod_{j=1}^{m} T_{1}^{-p_{j}} S_{1}^{\varepsilon_{j}} T_{1}^{q_{j}} W_{j}
$$

where $\left(\varepsilon_{j}, p_{j}, q_{j}\right)$ are integers with $\varepsilon_{j}= \pm 1$ and $p_{j} q_{j} \geq 0$, and where $W_{j}=\prod_{i=1}^{\nu_{j}} X_{j i}$ are reduced Γ_{n}-words with $X_{j 1}, X_{j \nu_{j}} \in \Gamma_{n}-\left\{S_{1}^{ \pm 1}, T_{1}^{ \pm 1}\right\}$, and $X_{j i} \in \Gamma_{n}-\left\{S_{1}^{ \pm 1}\right\}$ when $1<i<\nu_{j}$. Moreover, $\gamma \in \mathcal{G}_{n}^{-}\left(T_{1}\right)$ if and only if $p_{j} \geq 0$ and $q_{j} \geq 0$ for all j, while $\gamma \in \mathcal{G}_{n}^{+}\left(T_{1}\right)$ if and only if $p_{j} \leq 0$ and $q_{j} \leq 0$ for all j.

We remark that any word given above is reduced if each $p_{j} q_{j}>0$.
2.3. Essential blocks and puncture-like blocks. We shall compute elementary intersection numbers by applying mathematical induction to the number n of punctures. From now on, we assume that $n \geq 5$.

To be able to apply mathematical induction to n, we first embed $\mathcal{G} \mathcal{L}_{n-1}$ into $\mathcal{G} \mathcal{L}_{n}$. Let $\Phi_{n}: G_{n-1} \longrightarrow G_{n}$ be the monomorphism defined by

$$
\Phi_{n}\left(S_{1}\right)=S_{1}, \quad \Phi_{n}\left(S_{2}\right)=T_{n-3} \quad \text { and } \quad \Phi_{n}\left(T_{j}\right)=T_{j} \quad \text { for } 1 \leq j \leq n-4
$$

The monomorphism Φ_{n} induces an injective map of \mathcal{G}_{n-1} into \mathcal{G}_{n}, also denoted by Φ_{n}. If $\gamma \in \mathcal{G}_{n-1}$ is represented by a cyclic reduced (or semi-reduced) Γ_{n-1}-word W, then $\Phi_{n}(\gamma)$ is represented by $\Phi_{n}(W)$.

Let $\mathcal{G}_{n}^{(n-1)}$ be the image of \mathcal{G}_{n-1} mapped by Φ_{n}, and let $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$ be the set of all elements of $\mathcal{G} \mathcal{L}_{n}$ of the form

$$
\bigoplus_{j=1}^{n-4} k_{j} \gamma_{j}
$$

where $\left(k_{1}, \ldots, k_{n-4}\right) \in \mathcal{Z}_{+}^{n-4}$, and $\gamma_{j} \in \mathcal{G}_{n}^{(n-1)}$ are mutually disjoint geodesics. Note that if $\gamma \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$, then $2 I_{n-3}(\gamma)=i\left(\gamma, \gamma_{n-3}^{1}\right)=0$.

The geodesic γ_{n-3}^{1} divides Σ_{n} into two connected components. One of them is a sphere with $n-2$ punctures and one hole, denoted by $\Sigma_{n}^{(n-1)}$, and the other one is a sphere with two punctures and one hole, denoted by $\Sigma_{n}^{(3)}$. Note that the punctures of $\Sigma_{n}^{(3)}$ correspond to the fixed points of the transformations S_{2} and $S_{2} T_{n-3}^{-1}$. Also note
that $\Sigma_{n}^{(n-1)}$ is homeomorphic to Σ_{n-1}, and $\Sigma_{n}^{(3)}$ is homeomorphic to a 3-punctured sphere. It follows from the definition that every $\gamma \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$ contains a representative lying on $\Sigma_{n}^{(n-1)}$. Thus we can do an induction after we relate free homotopy classes in $\mathcal{G} \mathcal{L}_{n}$ to free homotopy classes in $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$.

To relate free homotopy classes in $\mathcal{G} \mathcal{L}_{n}$ to that in $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$, we consider the set $\mathcal{G} \mathcal{L}_{n}^{0}$ of all free homotopy classes in $\mathcal{G} \mathcal{L}_{n}$ which have no strands connecting the S_{2}^{ε}-side to the X-side, where $\varepsilon= \pm 1$, and where $X \in \Gamma_{n}-\left\{S_{2}^{ \pm 1}, T_{n-3}^{ \pm 1}\right\}$. Let $\mathcal{G}_{n}^{0}=\mathcal{G}_{n} \cap \mathcal{G} \mathcal{L}_{n}^{0}$.

It follows immediately from the definition that if $\gamma \in \mathcal{G} \mathcal{L}_{n}$ with $I_{n-3}(\gamma)=0$, then $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0}$. In particular, $\mathcal{G} \mathcal{L}_{n}^{(n-1)} \subset \mathcal{G} \mathcal{L}_{n}^{0}$.

Let $\gamma \in \mathcal{G}_{n}$ with $I_{n-3}(\gamma)=m>0$. Then $\gamma \in \mathcal{G}_{n}^{-}\left(T_{n-3}\right) \cap \mathcal{G}_{n}^{0}$ if and only if it is represented by a cyclic reduced Γ_{n}-word as given in (3), while $\gamma \in \mathcal{G}_{n}^{+}\left(T_{n-3}\right) \cap \mathcal{G}_{n}^{0}$ if and only if it is represented by a cyclic reduced Γ_{n}-word as given in (4) with $p_{j}>0$ and $q_{j}>0$ for all j.

The admissible subarcs of every $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0}$ fall into two classes. One contains admissible subarcs of γ which are freely homotopic relative to $\partial \mathcal{D}_{n}$ to simple curves lying on $\Sigma_{n}^{(n-1)}$. The other class contains admissible subarcs of γ which are freely homotopic relative to $\partial \mathcal{D}_{n}$ to simple curves lying on $\Sigma_{n}^{(3)}$. We shall relate γ to free homotopy classes in $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$ by relating the admissible subarcs of γ in the first class to elements of $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$.

Any $\gamma \in \mathcal{G} \mathcal{L}_{n}$ can be related to an element of $\mathcal{G} \mathcal{L}_{n}^{0}$ as follows.
Proposition 2.5. Let $\gamma \in \mathcal{G} \mathcal{L}_{n}$.
(i) If $\gamma \in \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$, then $\mathcal{T}_{2}^{-2}(\gamma) \in \mathcal{G} \mathcal{L}_{n}^{0} \cap \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$.
(ii) If $\gamma \in \mathcal{G} \mathcal{L}_{n}^{-}\left(T_{n-3}\right)$, then $\mathcal{T}_{2}^{2}(\gamma) \in \mathcal{G} \mathcal{L}_{n}^{0} \cap \mathcal{G} \mathcal{L}_{n}^{-}\left(T_{n-3}\right)$.

Proof. It suffices to prove (i) for $\gamma \in \mathcal{G}_{n}^{+}\left(T_{n-3}\right)$. There is nothing to prove if $I_{n-3}(\gamma)=0$. If $I_{n-3}(\gamma)=m>0$, then γ is represented by the cyclic semi-reduced Γ_{n}-word given in (4). Now, the assertion follows since $\mathcal{T}_{2}^{-2}(W)=$ $\prod_{j=1}^{m} T_{n-3}^{p_{j}+1} S_{2}^{\varepsilon_{j}} T_{n-3}^{-q_{j}-1} W_{j}$.

With Proposition 2.5, we may restrict our attention to the subclass $\mathcal{G} \mathcal{L}_{n}^{0}$ of $\mathcal{G} \mathcal{L}_{n}$.
Before continuing our discussion, we choose once for all an orientation for the X-side of \mathcal{D}_{n}, where $X \in\left\{T_{n-3}, T_{n-3}^{-1}, T_{n-4}, T_{n-4}^{-1}\right\}$. Note that $T_{n-4} T_{n-3}^{-1}$ is parabolic since the trace of $T_{n-4} T_{n-3}^{-1}$ is -2 . Let ζ be the fixed point of the transformation $T_{n-4} T_{n-3}^{-1}$. For $X=T_{n-3}$ or T_{n-4}, if P_{1} and P_{2} are two points lying on the X-side, and if P_{1} lies between ζ and P_{2}, then we write $P_{1} \prec P_{2}$. If Q_{1} and Q_{2} are two points lying on the X^{-1}-side, we write $Q_{1} \prec Q_{2}$ whenever $X\left(Q_{1}\right) \prec X\left(Q_{2}\right)$.

Proposition 2.6. Let $\gamma \in \mathcal{G}_{n}^{+}\left(T_{n-3}\right)$ with $I_{n-3}(\gamma)=m>0$, and let γ be represented by the cyclic reduced Γ_{n}-word given in (4).

If γ has a strand joining the T_{n-3}-side to the T_{n-4}-side, and has a strand joining
the T_{n-3}-side to the T_{n-4}^{-1}-side, then $W_{j}=T_{n-4}$ or $W_{j}=T_{n-4}^{-1}$ for some j.

Proof. Let $P_{1} \prec \cdots \prec P_{k}$ be the points where the strands of γ meet the T_{n-4}-side. For every integer l with $1 \leq l \leq k$, let P_{l}^{\prime} be the point on the T_{n-4}^{-1}-side identified with P_{l} by the transformation T_{n-4}. Let l be the strand of γ with an endpoint at P_{1}, and let l^{\prime} be the strand of γ with an endpoint at P_{1}^{\prime}.

By assumption, l must connect the T_{n-3}-side and the T_{n-4}-side, and l^{\prime} must connect the T_{n-3}-side and the T_{n-4}^{-1}-side. The union $l \cup l^{\prime}$ projects to an admissible subarc γ^{\prime} of γ rerpresented by $\vec{T}_{n-3}^{-1} T_{n-4} T_{n-3}$ or $\vec{T}_{n-3}^{-1} T_{n-4}^{-1} T_{n-3}$.

Assume that γ^{\prime} is represented by $\vec{T}_{n-3}^{-1} T_{n-4} T_{n-3}$. Let Q be the endpoint of l on the T_{n-3}-side. We orient γ^{\prime} so that the projection of Q to Σ_{n} is the initial point of γ^{\prime}. Since $\gamma \in \mathcal{G}_{n}^{0}$, then the subword $W^{\prime}=T_{n-3}^{-1} T_{n-4} T_{n-3}$ of W must be followed by a subword of the form $T_{n-3}^{p} S_{2}^{\varepsilon} T_{n-3}^{-q}$ for some integers $\varepsilon= \pm 1, p \geq 0$ and $q>0$.

On the other hand, consider the subarc $\gamma^{\prime \prime}$ of γ which has the same underlying set with γ^{\prime} but with the opposite orientation. Then $\gamma^{\prime \prime}$ is represented by $\vec{T}_{n-3}^{-1} T_{n-4}^{-1} T_{n-3}$. Thus $T_{n-3}^{-1} T_{n-4}^{-1} T_{n-3}$ is a subword of W^{-1} and is followed by a subword of the form $T_{n-3}^{p^{\prime}} S_{2}^{\varepsilon^{\prime}} T_{n-3}^{-q^{\prime}}$ for some integers $\varepsilon^{\prime}= \pm 1, p^{\prime} \geq 0$ and $q^{\prime}>0$. We conclude that

$$
T_{n-3}^{q^{\prime}} S_{2}^{-\varepsilon^{\prime}} T_{n-3}^{-p^{\prime}} \cdot W^{\prime} \cdot T_{n-3}^{p} S_{2}^{\varepsilon} T_{n-3}^{-q}=T_{n-3}^{q^{\prime}} S_{2}^{-\varepsilon^{\prime}} T_{n-3}^{-p^{\prime}-1} T_{n-4} T_{n-3}^{p+1} S_{2}^{\varepsilon} T_{n-3}^{-q}
$$

is a subword of W. This proves that $W_{j}=T_{n-4}$ for some j.
Similarly, if γ^{\prime} is represented by $\vec{T}_{n-3}^{-1} T_{n-4}^{-1} T_{n-3}$, then there is an integer j such that $W_{j}=T_{n-4}^{-1}$.

Blocks of simple closed geodesics. Let γ be given in Proposition 2.6. For every integer j with $1 \leq j \leq m=I_{n-3}(\gamma)$, let γ_{j} be the admissible subarc of γ represented by $\vec{T}_{n-3}^{-1} W_{j} T_{n-3}$. Every γ_{j} will be called a block of γ.

Let $l_{0}^{(j)}$ be the strand of γ_{j} joining the T_{n-3}-side to the $X_{j 1}$-side with P the endpoint on the T_{n-3}-side, and let $l_{1}^{(j)}$ be the strand of γ_{j} joining the $X_{j \nu_{j}}^{-1}$-side to the T_{n-3}-side with Q the endpoint on the $X_{j \nu_{j}}^{-1}$-side. Let P^{\prime} be the point on the $T_{n-3^{-}}^{-1}$ side which is identified with P by the transformation T_{n-3}.

Now, we replace $l_{1}^{(j)}$ by a simple arc $\tilde{l}_{1}^{(j)}$ joining Q to P^{\prime} so that $\tilde{l}_{1}^{(j)}$ is disjoint from all strands of γ_{j} except possibly $l_{1}^{(j)}$. Let \mathcal{L}_{j} be the union of all strands of γ_{j} other than $l_{1}^{(j)}$. The union $\mathcal{L}_{j} \cup \tilde{l}_{1}^{(j)}$ projects to a simple closed curve $\tilde{\gamma}_{j}$ on Σ_{n}. See the proof of [4, Theorem 5.3].

If $W_{j}=T_{n-4}$ or T_{n-4}^{-1}, then $\tilde{\gamma}_{j}$ is a simple loop around the puncture corresponding to the fixed point of $T_{n-3} T_{n-4}^{-1}$. In this case, we shall call γ_{j} a puncture-like block of γ.

We call γ_{j} an essential block of γ if γ_{j} is not a puncture-like block. Thus γ_{j} is an essential block if and only if $\tilde{\gamma}_{j} \in \mathcal{G}_{n}^{(n-1)}$.

Next, let $\gamma \in \mathcal{G}_{n}^{0} \cap \mathcal{G}_{n}^{-}\left(T_{n-3}\right)$ with $I_{n-3}(\gamma)>0$. An admissible subarc γ^{\prime} of γ is
called a puncture-like block if $\Theta_{1}\left(\gamma^{\prime}\right)$ is a puncture-like block of $\Theta_{1}(\gamma)$, and is called an essential block if $\Theta_{1}\left(\gamma^{\prime}\right)$ is a essential block of $\Theta_{1}(\gamma)$. By Proposition 2.6, γ^{\prime} is a puncture-like block of γ if and only if it is represented by $\vec{T}_{n-3} T_{n-4}^{\varepsilon} T_{n-3}^{-1}$ with $\varepsilon=$ ± 1.

Blocks of free homotopy classes in $\mathcal{G} \mathcal{L}_{\boldsymbol{n}}^{\mathbf{0}}$. For $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0}$ with $I_{n-3}(\gamma)>0$, there are positive integers k_{1}, \ldots, k_{m}, and mutually disjoint geodesics $\beta_{1}, \ldots, \beta_{m}$ in \mathcal{G}_{n}^{0} such that

$$
\gamma=\bigoplus_{i=1}^{m} k_{i} \beta_{i}
$$

where m is a positive integer with $m \leq n-3$. An admissible subarc γ^{\prime} of γ is called a block of γ if it is either a connected component of γ with $I_{n-3}\left(\gamma^{\prime}\right)=0$, or is a block of some β_{i}. A block γ^{\prime} of γ is called puncture-like if it is a puncture-like block of some β_{i}, and is called essential if it is not a puncture-like block. Note that if γ^{\prime} is a connected component of γ with $I_{n-3}\left(\gamma^{\prime}\right)=0$, then $\gamma^{\prime} \in \mathcal{G}_{n}^{(n-1)}$. Such an essential block will be called of the second kind. An essential block of γ will be called of the first kind if it is not of the second kind.

Remark 2.1. It follows from Proposition 2.6 that if $\gamma \in \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$ has a strand joining the T_{n-3}-side to the T_{n-4}-side, and has a strand joining the T_{n-3}-side to the T_{n-4}^{-1}-side, then γ has a puncture-like block. Similarly, if $\gamma \in \mathcal{G L}_{n}^{-}\left(T_{n-3}\right)$ has a strand joining the T_{n-3}^{-1}-side to the T_{n-4}-side, and has a strand joining the T_{n-3}^{-1}-side to the T_{n-4}^{-1}-side, then γ has a puncture-like block.

Remark 2.2. Let $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0}$ with $I_{n-3}(\gamma)>0$. If γ has no essential blocks, then $I_{1}(\gamma)=0$ and $I_{n-3}\left(\Theta_{2}(\gamma)\right)=0$. Note that $\Theta_{2}(\gamma) \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$. Thus the elementary intersection numbers of γ will be obtained from that of $\Theta_{2}(\gamma)$ by applying induction to n. Therefore, we shall only consider the case where γ has essential blocks.

The following theorem plays an important role in the sequel.
Theorem 2.7. Let $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0}$ with $I_{n-3}(\gamma)>0$. If γ has essential blocks, then there is an $\alpha_{\gamma} \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$ such that

$$
i\left(\alpha_{\gamma}, \gamma_{n-4}^{1}\right)=i\left(\gamma, \gamma_{n-4}^{1}\right) \quad \text { and } \quad i\left(\alpha_{\gamma}, \gamma_{j}^{k}\right)=i\left(\gamma, \gamma_{j}^{k}\right)
$$

for $1 \leq j<n-4$ and $1 \leq k \leq 3$. Furthermore, α_{γ} can be chosen so that $\Theta_{1}\left(\alpha_{\Theta_{1}(\gamma)}\right)=$ α_{γ}.

Since for all j, k,

$$
i\left(\Theta_{1}\left(\alpha_{\Theta_{1}(\gamma)}\right), \gamma_{j}^{k}\right)=i\left(\alpha_{\Theta_{1}(\gamma)}, \Theta_{1}\left(\gamma_{j}^{k}\right)\right)=i\left(\Theta_{1}(\gamma), \Theta_{1}\left(\gamma_{j}^{k}\right)\right)=i\left(\gamma, \gamma_{j}^{k}\right)
$$

α_{γ} can be chosen so that $\Theta_{1}\left(\alpha_{\Theta_{1}(\gamma)}\right)=\alpha_{\gamma}$ since for all j, k. Thus, we may assume that $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0} \cap \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$.

First, we prove Theorem 2.7 for γ which has no puncture-like blocks. Let \mathcal{E} be the set of all essential blocks of γ, and for every $\gamma^{\prime} \in \mathcal{E}$ let

$$
t\left(\gamma^{\prime}\right)=\text { the number of strands of } \gamma^{\prime} \text { meeting the } T_{n-3} \text {-side. }
$$

If γ has no essential blocks of the first kind, then any essential block of γ serves as α_{γ}.

Now, we assume that γ has exactly $e>0$ essential blocks of the first kind, say $\gamma_{1}, \ldots, \gamma_{e}$. Let $\tilde{\gamma}_{j}$ be the geodesic in $\mathcal{G}_{n}^{(n-1)}$ corresponding to γ_{j} (see the definition of blocks), and let t_{j} be the number of strands of $\tilde{\gamma}_{j}$ meeting the T_{n-3}-side. Note that $t\left(\gamma_{j}\right)=t_{j}+1$, and the strands of γ_{j} meet the T_{n-3}^{-1}-side in exactly $t_{j}-1$ points. Then the strands of $\cup_{j=1}^{e} \gamma_{j}$ meet the T_{n-3}^{-1}-side in exactly $t_{0}=\sum_{j=1}^{e}\left(t_{j}-1\right)$ points, and meet the T_{n-3}-side in exactly $t_{0}+2 e$ points.

We consider the disjoint union \mathcal{L} of strands of all essential blocks of γ. Let $Q_{1} \prec$ $Q_{2} \prec \cdots \prec Q_{q}$ be the points where \mathcal{L} meets the T_{n-3}-side, where q is an integer with $q \geq t_{0}+2 e$.

Claim 1. For every integer j with $q-2 e+1 \leq j \leq q$, the point Q_{j} is an endpoint of a strand L_{j} of $\cup_{j=1}^{e} \gamma_{j}$.

We shall show that Claim 1 implies Theorem 2.7 when γ has no puncture-like blocks. For every integer j with $q-e+1 \leq j \leq q$, let P_{j} be the endpoint of L_{j} other than Q_{j}, and let Q_{j-e}^{\prime} be the point lying on the T_{n-3}^{-1}-side which is identified with Q_{j-e} by the transformation T_{n-3}. There are mutually disjoint simple arcs $L_{j}^{\prime}, q-e+$ $1 \leq j \leq q$, in \mathcal{D}_{n} satisfying the following two properties:
(i) Each L_{j}^{\prime} connects P_{j} to Q_{j-e}^{\prime}.
(ii) Each L_{j}^{\prime} is disjoint from the strands of any essential block of γ except possibly the strands L_{q-e+1}, \ldots, L_{q}.
The set $\mathcal{L}^{\prime}=\left(\mathcal{L}-\cup_{j=q-e+1}^{q} L_{j}\right) \cup\left(\cup_{j=q-e+1}^{q} L_{j}^{\prime}\right)$ projects to a multiple simple loop α_{γ} in $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$, and the free homotopy class represented by α_{γ}, still denoted by α_{γ}, satisfies the required conditions since $i\left(\alpha_{\gamma}, \gamma_{n-4}^{1}\right)=\sum_{\gamma^{\prime} \in \mathcal{E}} i\left(\gamma^{\prime}, \gamma_{n-4}^{1}\right)_{\partial \mathcal{D}_{n}}$ and $i\left(\alpha_{\gamma}, \gamma_{j}^{k}\right)=$ $\sum_{\gamma^{\prime} \in \mathcal{E}} i\left(\gamma^{\prime}, \gamma_{j}^{k}\right)_{\partial \mathcal{D}_{n}}$ for $1 \leq j<n-4$ and $1 \leq k \leq 3$.

Proof of Claim 1. There is nothing to prove if γ has no essential blocks γ^{\prime} of the second kind with $t\left(\gamma^{\prime}\right)>0$. Assume that γ has exactly $p>0$ essential blocks $\gamma_{e+1}, \ldots, \gamma_{e+p}$ of the second kind with $t\left(\gamma_{e+j}\right)>0,1 \leq j \leq p$.

For every j with $1 \leq j \leq e$, the block γ_{j} is represented by a reduced Γ_{n}-word $\vec{T}_{n-3}^{-1} W_{j} T_{n-3}$, where $W_{j} \neq T_{n-4}^{ \pm 1}$ is of the form $W_{j}=\prod_{i=1}^{\nu_{j}} X_{j i}$ with $X_{j 1}, X_{j \nu_{j}} \in \Gamma_{n}-$ $\left\{T_{n-3}^{ \pm 1}, S_{2}^{ \pm 1}\right\}$ and $X_{j i} \in \Gamma_{n}-\left\{S_{2}^{ \pm 1}\right\}$ for $1<i<\nu_{j}$. Let
$l_{j}^{(1)}$ be the strand of γ_{j} joining the T_{n-3}-side to the $X_{j 1}$-side,
$l_{j}^{(2)}$ be the strand of γ_{j} joining the $X_{j \nu_{j}}^{-1}$-side to the T_{n-3}-side,
$Q_{j k}$ be the endpoint of $l_{j}^{(k)}$ on the T_{n-3}-side for $k=1,2$, and
$Q_{j k}^{\prime}$ be the point on the T_{n-3}^{-1}-side identified with $Q_{j k}$ by the transformation T_{n-3}. By the definition of γ_{j}, the point $Q_{j k}^{\prime}$ is an endpoint of a strand $L_{j}^{(k)}$ of γ joining the T_{n-3}^{-1}-side to the X-side with $X \in\left\{T_{n-3}, S_{2}^{ \pm 1}\right\}$.

Suppose that there is an integer m with $q-2 e+1 \leq m \leq q$ such that Q_{m} is an endpoint of a strand of $\cup_{j=1}^{p} \gamma_{e+j}$. Then there is a $Q_{j k}$ such that $Q_{j k} \prec Q_{m}$. Let Q_{m}^{\prime} be the point on the T_{n-3}^{-1}-side identified with Q_{m} by the transformation T_{n-3}. It follows from the definition of γ_{e+j} that Q_{m}^{\prime} is an endpoint of a strand L of γ joining the T_{n-3}^{-1}-side to some X-side with $\left.X \in \Gamma_{n}-T_{n-3}^{ \pm 1}, S_{2}^{ \pm 1}\right\}$. Since $Q_{j k} \prec Q_{m}$, then $Q_{j k}^{\prime} \prec Q_{m}^{\prime}$, and thus $L_{j}^{(k)}$ must intersect L transversally. This contradiction completes the proof of the claim.

In the following, we prove Theorem 2.7 for γ which has puncture-like blocks. For this case, we need the following two lemmas.

Lemma 2.8. If $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0} \cap \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$ with $I_{n-3}(\gamma)>0$, and if γ has a puncturelike block, then every essential block of γ has no strands meeting the T_{n-3}^{-1}-side.

Proof. Let γ_{0} be a puncture-like block of γ. There is a strand l_{0} of γ_{0} connecting the T_{n-4}-side and the T_{n-3}-side. Let Q_{0} be the endpoint of l_{0} on the T_{n-3}-side. We may choose γ_{0} so that $Q_{0} \prec Q$ whenever Q is an endpoint of a strand of γ on the T_{n-3}-side. Let Q_{0}^{\prime} be the point on the T_{n-3}^{-1}-side which is identified with Q_{0} by the transformation T_{n-3}. Note that Q_{0}^{\prime} is an endpoint of a strand L_{0} of γ joining the T_{n-3}^{-1}-side to the X-side with $X \in\left\{T_{n-3}, S_{2}, S_{2}^{-1}\right\}$. Also note that if Q^{\prime} is an endpoint of a strand of γ on the T_{n-3}^{-1}-side, then $Q_{0}^{\prime} \prec Q^{\prime}$ by the definition of Q_{0}.

Now, suppose that there is an essential bolck γ^{\prime} of γ such that γ^{\prime} has a strand l^{\prime} meeting the T_{n-3}^{-1}-side at a point Q^{\prime}. Since $Q_{0}^{\prime} \prec Q^{\prime}$, and since γ^{\prime} has no strands joining the T_{n-3}^{-1}-side to the X-side with $X \in\left\{T_{n-3}, S_{2}, S_{2}^{-1}\right\}$, then l^{\prime} must intersect L_{0} transversally. This is a contradiction.

Lemma 2.9. Let $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0} \cap \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$ with $I_{n-3}(\gamma)>0$, and for an arbitrary block γ^{\prime} of γ, let $t\left(\gamma^{\prime}\right)$ be the number of strands of γ^{\prime} meeting the T_{n-3}-side. If γ has
puncture-like blocks, then

$$
t\left(\gamma^{\prime}\right)= \begin{cases}2 & \text { if } \gamma^{\prime} \text { is a puncture-like block, } \\ 2 & \text { if } \gamma^{\prime} \text { is an essential block of the first kind, } \\ 0 & \text { if } \gamma^{\prime} \text { is an essential block of the second kind. }\end{cases}
$$

Proof. It follows immediately from the definition that $t\left(\gamma^{\prime}\right)=2$ whenever γ^{\prime} is a puncture-like block of γ.

Let γ^{\prime} be an essential block of the second kind, i.e., γ^{\prime} is a simple closed geodesic in $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$. If γ^{\prime} has a strand meeting the T_{n-3}-side, then γ^{\prime} must have a strand meeting the T_{n-3}^{-1}-side. This contradicts to Lemma 2.8. Therefore, $t\left(\gamma^{\prime}\right)=0$.

If γ^{\prime} is an essential block of the first kind, then γ^{\prime} is represented by a reduced Γ_{n}-word $\vec{T}_{n-3}^{-1} W T_{n-3}$, where $W \neq T_{n-4}^{ \pm 1}$ is of the form $W=\prod_{j=1}^{m} X_{j}$ with X_{1}, $X_{m} \in \Gamma_{n}-\left\{T_{n-3}^{ \pm 1}, S_{2}^{ \pm 1}\right\}$, and $X_{j} \in \Gamma_{n}-\left\{S_{2}^{ \pm 1}\right\}$ for $1<j<m$. There is a strand l_{0} of γ^{\prime} joining the T_{n-3}-side to the X_{1}-side, and there is another strand l_{1} of γ^{\prime} joining the X_{m}-side to the T_{n-3}-side. Thus $t\left(\gamma^{\prime}\right) \geq 2$.

Suppose that $t\left(\gamma^{\prime}\right)>2$. There is a $k \in\{2, \ldots, m-1\}$ such that $X_{k}=T_{n-3}$ or $X_{k}=$ T_{n-3}^{-1}. If $X_{k}=T_{n-3}$, then γ^{\prime} has a strand joining the T_{n-3}^{-1}-side to the X_{k+1}-side. This is a contradiction to Lemma 2.8. If $X_{k}=T_{n-3}^{-1}$, then γ^{\prime} has a strand joining the X_{k-1}-side to the T_{n-3}^{-1}-side. This is a contradiction to Lemma 2.8 again. Therefore, $t\left(\gamma^{\prime}\right)=2$.

Now, we complete the proof of Theorem 2.7 as follows. Let $\gamma_{1}, \ldots, \gamma_{e}$ be all the first kind essential blocks of γ, and assume that γ has exactly $p>0$ puncturelike blocks, say $\gamma_{e+1}, \ldots, \gamma_{e+p}$. Note that $t\left(\gamma_{j}\right)=2$ for all j by Lemma 2.9.

Let $Q_{1} \prec \cdots \prec Q_{k}$ be the points where the strands of γ meet the T_{n-3}-side. Note that $k \geq 2 p+2 e$. Since $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0}$, and since $t\left(\gamma^{\prime}\right)=0$ whenever γ^{\prime} is an essential block of γ of the second kind, then $Q_{1}, \ldots, Q_{2 p+2 e}$ are endpoints of strands of $\cup_{j=1}^{p+e} \gamma_{j}$, and, for $2 p+2 e+1 \leq j \leq k$, each Q_{j} is an endpoint of a strand of γ connecting the T_{n-3}-side and the T_{n-3}^{-1}-side whenever $2 p+2 e+1 \leq j \leq k$.

Claim 2. $Q_{p+1}, \ldots, Q_{p+2 e}$ are the points where the strands of $\cup_{j=1}^{e} \gamma_{j}$ meet the T_{n-3}-side.

Now, for every integer j with $1 \leq j \leq e$, let L_{j} be the strand of $\cup_{j=1}^{e} \gamma_{j}$ with Q_{p+e+j} an endpoint, let P_{j} be the other endpoint of L_{j}. Let Q_{p+j}^{\prime} be the point on the T_{n-3}^{-1}-side which is identified with Q_{p+j} by the transformation T_{n-3}.

There are e mutually disjoint simple arcs L_{j}^{\prime} in \mathcal{D}_{n} connecting P_{j} to Q_{p+j}^{\prime} for every j such that every L_{j}^{\prime} is disjoint from the strands of any essential block of γ except possibly the strands L_{1}, \ldots, L_{e}. As before, let \mathcal{E} be the set of all essential blocks of $\mathcal{L}^{\prime}=\left(\mathcal{L}-\cup_{j=1}^{e} L_{j}\right) \cup\left(\cup_{j=1}^{e} L_{j}^{\prime}\right)$ projects to Σ_{n} a multiple simple loop α_{γ}
in $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$. Let α_{γ} also denote the corresponding free homotopy class. Note that if γ^{\prime} is a puncture-like block of γ, then $i\left(\gamma^{\prime}, \gamma_{n-4}^{1}\right)_{\partial \mathcal{D}_{n}}=0=i\left(\gamma^{\prime}, \gamma_{j}^{k}\right)_{\partial \mathcal{D}_{n}}$ for $1 \leq j<n-4$ and $1 \leq k \leq 3$. This completes the proof of Theorem 2.7.

Proof of Claim 2. It suffices to prove that if Q is the endpoint of a strand of $\cup_{j=1}^{e} \gamma_{j}$ lying on the T_{n-3}-side, then $Q_{j} \prec Q \prec Q_{p+2 e+j}$ for all j with $1 \leq j \leq p$.

Let γ^{\prime} be the essential block of γ of the first kind such that Q is one of the two points where the strands of γ^{\prime} meet the T_{n-3}-side, and let L be the strand of γ^{\prime} with Q as an endpoint.

If $Q \in\left\{Q_{1}, \ldots, Q_{p}\right\}$, then there is an integer m with $p<m \leq 2 p+2 e$ such that Q_{m} is the endpoint of a strand l of $\cup_{j=1}^{p} \gamma_{e+j}$ connecting the T_{n-3}-side to the T_{n-4}-side. Thus the other endpoint P of L must lie on the T_{n-4}-side with $P \prec$ P_{m}, where P_{m} is the endpoint of l other than Q_{m}. Let P^{\prime} and P_{m}^{\prime} be the points lying on the T_{n-4}^{-1}-side which are identified with P and P_{m} respectively by the transformation T_{n-4}. Let L^{\prime} be the strand of γ^{\prime} with P^{\prime} as an endpoint. Since $P^{\prime} \prec P_{m}^{\prime}$, then L^{\prime} must connect the T_{n-4}-side to the T_{n-3}-side. This implies that γ^{\prime} is a puncture-like block of γ, which is a contradiction. Therefore, $Q_{j} \prec Q$ for all j with $1 \leq j \leq p$.

By a similar argument, one proves that $Q \prec Q_{p+2 e+j}$ for $1 \leq j \leq p$.
2.4. The integer valued functions $\boldsymbol{N}_{\boldsymbol{j}}$. To formulate elementary intersection numbers, in addition to the integer valued functions I_{j} defined in $\S 2.1$, we shall need other $n-3$ integer valued functions $N_{j}, 1 \leq j \leq n-3$. These functions N_{j} are analogues of the integer valued functions N_{T} and N_{S} defined in [4].

We shall define an integer valued function $N_{j}^{(n)}$ on $\mathcal{G} \mathcal{L}_{n}$ for any given integer $j>0$ with $j \leq n-3$ so that

$$
N_{j}^{(n)}(\gamma)=N_{j}^{(n-1)}\left(\Phi_{n}^{-1}(\gamma)\right)
$$

whenever $\gamma \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$ and $j \leq n-4$, where Φ_{n} is defined in $\S 2.3$. This means that $N_{j}^{(n-1)}$ can be regarded as the restriction of $N_{j}^{(n)}$ to $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$ whenever $1 \leq j \leq n-4$. Thus $N_{j}^{(n)}$ can be simply written as N_{j}. Furthermore, this allows us to define N_{j} inductively by using Theorem 2.7.

First, we define the functions $N_{1}^{(n)}$ and $N_{n-3}^{(n)}$. If $\gamma=\bigoplus_{j=1}^{n-3} k_{j} \gamma_{j}^{1}$ with $\left(k_{1}, \ldots\right.$, $\left.k_{n-3}\right) \in \mathcal{Z}_{+}^{n-3}$, we define

$$
N_{j}^{(n)}(\gamma)=k_{j}=\#\left(\text { strands of } \gamma \text { connecting the } T_{j} \text {-side and the } T_{j}^{-1} \text {-side }\right),
$$

for $j=1$ or $n-3$.
Now, we define $N_{1}^{(n)}(\gamma)$ and $N_{n-3}^{(n)}(\gamma)$ for $\gamma \in \widehat{\mathcal{G \mathcal { L }}}$, where

$$
\widehat{\mathcal{G}}_{n}=\mathcal{G} \mathcal{L}_{n}-\left\{\bigoplus_{j=1}^{n-3} k_{j} \gamma_{j}^{1}:\left(k_{1}, \ldots, k_{n-3}\right) \in \mathcal{Z}_{+}^{n-3}\right\}
$$

If $\gamma \in \mathcal{G \mathcal { L }}_{n}^{+}\left(T_{1}\right)$, let

$$
\begin{aligned}
N_{1}^{(n)}(\gamma) & =\text { \#(strands of } \gamma \text { joining the } T_{1}^{-1} \text {-side to the } S_{1}^{\varepsilon} \text {-side) } \\
& + \text { \#(strands of } \gamma \text { joining the } T_{1} \text {-side to the } T_{1}^{-1} \text {-side) }
\end{aligned}
$$

where $\varepsilon= \pm 1$. If $\gamma \in \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$, let

$$
\begin{aligned}
N_{n-3}^{(n)}(\gamma) & =\#\left(\text { strands of } \gamma \text { joining the } T_{n-3}^{-1} \text {-side to the } S_{2}^{\varepsilon}\right. \text {-side) } \\
& + \text { \#(strands of } \gamma \text { joining the } T_{n-3} \text {-side to the } T_{n-3}^{-1} \text {-side) } .
\end{aligned}
$$

For $j=1$ or $n-3$, and for $\gamma \in \mathcal{G \mathcal { L }}_{n}^{-}\left(T_{j}\right) \cap \widehat{\mathcal{G L}}_{n}$, let

$$
N_{j}^{(n)}(\gamma)=-N_{j}^{(n)}\left(\Theta_{1}(\gamma)\right)
$$

It is clear that the definition of $N_{1}^{(n)}$ is independent of n since $n \geq 5$. Thus $N_{1}^{(n)}$ will be simply written as N_{1}.

Remark 2.3. For $n=5$, let N_{T} and N_{S} be the integer valued functions defined in [4], and let N_{1} and $N_{2}=N_{n-3}^{(n)}$ be the integer valued functions defined above. Then for $\gamma \in \mathcal{G} \mathcal{L}_{5}$ we have

$$
N_{1}(\gamma)=N_{T}(\gamma) \quad \text { and } \quad N_{2}(\gamma)=-N_{S}(\gamma)
$$

Note that the geodesic γ_{23} defined in [4] and the geodesic γ_{2}^{3} defined in this article are imgaes of each other under Θ_{1}. Thus, the following equations are also valid for $\gamma \in \mathcal{G} \mathcal{L}_{5}$ (see [4, Corollary 3.4]):

$$
\begin{aligned}
& i\left(\gamma, \gamma_{1}^{2}\right)=2\left|N_{1}(\gamma)\right|+\left|I_{2}(\gamma)-I_{1}(\gamma)\right|+I_{2}(\gamma)-I_{1}(\gamma) \\
& i\left(\gamma, \gamma_{1}^{3}\right)=2\left|N_{1}(\gamma)-I_{1}(\gamma)\right|+\left|I_{2}(\gamma)-I_{1}(\gamma)\right|+I_{2}(\gamma)-I_{1}(\gamma) \\
& i\left(\gamma, \gamma_{2}^{2}\right)=2\left|N_{2}(\gamma)\right|+\left|I_{1}(\gamma)-I_{2}(\gamma)\right|+I_{1}(\gamma)-I_{2}(\gamma) \\
& i\left(\gamma, \gamma_{2}^{3}\right)=2\left|N_{2}(\gamma)-I_{2}(\gamma)\right|+\left|I_{1}(\gamma)-I_{2}(\gamma)\right|+I_{1}(\gamma)-I_{2}(\gamma)
\end{aligned}
$$

In $\S 2.5$, we shall prove similar formulas for elementary intersection numbers of $\gamma \in$ $\mathcal{G} \mathcal{L}_{n}$ for an arbitrary integer $n \geq 5$.

For integers n and j with $1<j \leq n-4$, the integer valued functions $N_{j}^{(n)}$ on $\mathcal{G} \mathcal{L}_{n}$ are defined as follows. We first define $N_{j}^{(n)}(\gamma)$ for $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0}$.
(i) If $I_{n-3}(\gamma)=0$, then there exist $\left(k_{1}, \ldots, k_{n-3}\right) \in \mathcal{Z}_{+}^{n-3}$ and mutually disjoint geodesics $\gamma_{1}, \ldots, \gamma_{n-4}$ in $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$ such that

$$
\begin{equation*}
\gamma=\bigoplus_{i=1}^{n-4} k_{i} \gamma_{i} \oplus k_{n-3} \gamma_{n-3}^{1} . \tag{5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\alpha_{\gamma}=\bigoplus_{i=1}^{n-4} k_{i} \gamma_{i} \tag{6}
\end{equation*}
$$

and we define

$$
N_{j}^{(n)}(\gamma)=N_{j}^{(n-1)}\left(\Phi_{n}^{-1}\left(\alpha_{\gamma}\right)\right)
$$

In particular, if $\gamma \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$, then $k_{n-3}=0, \alpha_{\gamma}=\gamma$, and

$$
N_{j}^{(n)}(\gamma)=N_{j}^{(n-1)}\left(\Phi_{n}^{-1}(\gamma)\right)
$$

(ii) If $I_{n-3}(\gamma)>0$, and if γ has essential blocks, we define

$$
N_{j}^{(n)}(\gamma)=N_{j}^{(n-1)}\left(\Phi_{n}^{-1}\left(\alpha_{\gamma}\right)\right)
$$

where $\alpha_{\gamma} \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$ is given in Theorem 2.7.
(iii) If $I_{n-3}(\gamma)>0$, and if γ has no essential blocks, we define

$$
N_{j}^{(n)}(\gamma)=0
$$

From (i), we know that $N_{j}^{(n-1)}$ is the restriction of $N_{j}^{(n)}$ to $\mathcal{G} \mathcal{L}_{n}^{(n-1)} \equiv \mathcal{G} \mathcal{L}_{n-1}$ for any two integers j and n with $1<j \leq n-4$. Note that $N_{n-4}^{(n-1)}=N_{\nu-3}^{(\nu)}$, where $\nu=n-1$. From now on, we shall write $N_{j}^{(n)}$ as N_{j} for $1 \leq j \leq n-3$.

Now, for an arbitrary $\gamma \in \mathcal{G} \mathcal{L}_{n}$ and for an arbitrary integer j with $1<j \leq n-4$, we define

$$
N_{j}(\gamma)= \begin{cases}N_{j}\left(\mathcal{T}_{2}^{-2}(\gamma)\right) & \text { if } \gamma \in \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right) \\ N_{j}\left(\mathcal{T}_{2}^{2}(\gamma)\right) & \text { if } \gamma \in \mathcal{G} \mathcal{L}_{n}^{-}\left(T_{n-3}\right)\end{cases}
$$

To prove that N_{j} is well-defined, we have to show that

$$
N_{j}(\gamma)= \begin{cases}N_{j}\left(\mathcal{T}_{2}^{-2}(\gamma)\right) & \text { for all } \gamma \in \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right) \cap \mathcal{G} \mathcal{L}_{n}^{0} \\ N_{j}\left(\mathcal{T}_{2}^{2}(\gamma)\right) & \text { for all } \gamma \in \mathcal{G} \mathcal{L}_{n}^{-}\left(T_{n-3}\right) \cap \mathcal{G} \mathcal{L}_{n}^{0}\end{cases}
$$

Without loss of generality, we may assume that $\gamma \in \mathcal{G}_{n}^{0}$. There is nothing to prove if $I_{n-3}(\gamma)=0$ since in this case $\mathcal{T}_{2}(\gamma)=\gamma$. Assume that $\gamma \in \mathcal{G}_{n}^{-}\left(T_{n-3}\right)$ with $I_{n-3}(\gamma)=$ $m>0$. Then γ is represented by a cyclic reduced Γ_{n}-word as given in (3), say $W=$ $\prod_{i=1}^{m} T_{n-3}^{-p_{i}} S_{2}^{\varepsilon_{i}} T_{n-3}^{q_{i}} W_{i}$ with $p_{i}>0$ and $q_{i}>0$ for all i. Since

$$
\mathcal{T}_{2}^{2}(W)=\prod_{i=1}^{m} T_{n-3}^{-p_{i}-1} S_{2}^{\varepsilon_{i}} T_{n-3}^{q_{i}+1} W_{i},
$$

γ has essential blocks if and only if $\mathcal{T}_{2}^{2}(\gamma)=\tilde{\gamma}$ has essential blocks. Thus $N_{j}(\gamma)=$ $0=N_{j}(\tilde{\gamma})$ whenever γ has no essential blocks. When γ has essential blocks, α_{γ} is completely determined by the subwords $T_{n-3} W_{i} T_{n-3}^{-1}, 1 \leq i \leq m$, and so is $\alpha_{\tilde{\gamma}}$. This proves that $N_{j}(\gamma)=N_{j}(\tilde{\gamma})$ since $\alpha_{\gamma}=\alpha_{\tilde{\gamma}}$.

If $\gamma \in \mathcal{G}_{n}^{0} \cap \mathcal{G}_{n}^{+}\left(T_{n-3}\right)$, then γ is represented by a cyclic reduced Γ_{n}-word as given in (4). A similar argument as above, one proves easily that $N_{j}(\gamma)=N_{j}\left(\mathcal{T}_{2}^{-2}(\gamma)\right)$. Therefore, N_{j} is well-defined.

Note that since $N_{n-4}^{(n)} \equiv N_{\nu-3}^{(\nu)}$ with $\nu=n-1$, from the definition of N_{n-3}, we may interpretate N_{n-4} geometrically. This gives N_{j} a geometric interpretation for every integer j with $1<j \leq n-4$. From Proposition 2.5 , we assume that $\gamma \in \mathcal{G \mathcal { L }}{ }_{n}^{0}$.

Let $\mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-4}\right)$ be the set of all γ in $\mathcal{G} \mathcal{L}_{n}^{0}$ which satisfy either one of the following two conditions:
(i) If $I_{n-3}(\gamma)=0$, then γ has no strands connecting the T_{n-4}-side to the T_{n-3}^{ε}-side, where $\varepsilon= \pm 1$.
(ii) If $I_{n-3}(\gamma)>0$, then every essential block of γ has no strands connecting the T_{n-4}-side to the T_{n-3}^{ε}-side, where $\varepsilon= \pm 1$.
Let $\mathcal{G} \mathcal{L}_{n}^{-}\left(T_{n-4}\right)=\Theta_{1}\left(\mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-4}\right)\right)$. If $\gamma=\bigoplus_{j=1}^{n-3} k_{j} \gamma_{j}^{1}$ with $\left(k_{1}, \ldots, k_{n-3}\right) \in \mathcal{Z}_{+}^{n-3}$, then

$$
N_{n-4}^{(n)}(\gamma)=k_{n-4}=\#\left(\text { strands of } \gamma \text { joining the } T_{n-4} \text {-side to the } T_{n-4}^{-1} \text {-side }\right) .
$$

Let $\varepsilon= \pm 1$. If $\gamma \in \mathcal{G \mathcal { L }}_{n}^{+}\left(T_{n-4}\right) \cap \widehat{\mathcal{G L}}_{n}$ with $I_{n-3}(\gamma)=0$, then

$$
\begin{aligned}
N_{n-4}^{(n)}(\gamma) & =\#\left(\text { strands of } \gamma \text { joining the } T_{n-4} \text {-side to the } T_{n-4}^{-1}\right. \text {-side) } \\
& +\# \text { (strands of } \gamma \text { joining the } T_{n-3}^{\varepsilon} \text {-side to the } T_{n-4}^{-1} \text {-side) } .
\end{aligned}
$$

If $\gamma \in \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-4}\right) \cap \widehat{\mathcal{G}}{ }_{n}$ with $I_{n-3}(\gamma)>0$, then

$$
\begin{equation*}
N_{n-4}^{(n)}(\gamma)=\sum_{\gamma^{\prime} \in \mathcal{E}} N_{n-4}^{(n)}\left(\gamma^{\prime}\right), \tag{7}
\end{equation*}
$$

where \mathcal{E} is the set of all essential blocks of γ, and where

$$
\begin{aligned}
N_{n-4}^{(n)}\left(\gamma^{\prime}\right) & =\#\left(\text { strands of } \gamma^{\prime} \text { joining the } T_{n-4} \text {-side to the } T_{n-4}^{-1} \text {-side }\right) \\
& +\#\left(\text { strands of } \gamma^{\prime} \text { joining the } T_{n-3}^{\varepsilon} \text {-side to the } T_{n-4}^{-1} \text {-side }\right)
\end{aligned}
$$

for $\gamma^{\prime} \in \mathcal{E}$. When \mathcal{E} is empty, the integer on the right of (7) is defined to be zero. If $\gamma \in \mathcal{G} \mathcal{L}_{n}^{-}\left(T_{n-4}\right) \cap \widehat{\mathcal{G L}}_{n}$, then $N_{n-4}^{(n)}(\gamma)=-N_{n-4}^{(n)}\left(\Theta_{1}(\gamma)\right)$.
2.5. Elementary intersection formulas. This subsection is devoted to proving the main theorem:

Theorem 2.10 (Elementary intersection formulas). For an arbitrary integer $n \geq 6$, if $\gamma \in \mathcal{G} \mathcal{L}_{n}$, then

$$
\begin{aligned}
i\left(\gamma, \gamma_{1}^{2}\right) & =2\left|N_{1}(\gamma)\right|+\left|I_{2}(\gamma)-I_{1}(\gamma)\right|+I_{2}(\gamma)-I_{1}(\gamma), \\
i\left(\gamma, \gamma_{1}^{3}\right) & =2\left|N_{1}(\gamma)-I_{1}(\gamma)\right|+\left|I_{2}(\gamma)-I_{1}(\gamma)\right|+I_{2}(\gamma)-I_{1}(\gamma), \\
i\left(\gamma, \gamma_{n-3}^{2}\right) & =2\left|N_{n-3}(\gamma)\right|+\left|I_{n-4}(\gamma)-I_{n-3}(\gamma)\right|+I_{n-4}(\gamma)-I_{n-3}(\gamma), \\
i\left(\gamma, \gamma_{n-3}^{3}\right) & =2\left|N_{n-3}(\gamma)-I_{n-3}(\gamma)\right|+\left|I_{n-4}(\gamma)-I_{n-3}(\gamma)\right|+I_{n-4}(\gamma)-I_{n-3}(\gamma),
\end{aligned}
$$

and for every integer j with $1<j<n-3$

$$
\begin{aligned}
i\left(\gamma, \gamma_{j}^{2}\right)= & \left.2\left|N_{j}(\gamma)\right|+\mid I_{j-1} \gamma\right)-I_{j}(\gamma) \mid+I_{j-1}(\gamma)-I_{j}(\gamma) \\
& +\left|I_{j+1}(\gamma)-I_{j}(\gamma)\right|+I_{j+1}(\gamma)-I_{j}(\gamma), \\
i\left(\gamma, \gamma_{j}^{3}\right)= & 2\left|N_{j}(\gamma)-I_{j}(\gamma)\right|+\left|I_{j-1}(\gamma)-I_{j}(\gamma)\right|+I_{j-1}(\gamma)-I_{j}(\gamma) \\
& +\left|I_{j+1}(\gamma)-I_{j}(\gamma)\right|+I_{j+1}(\gamma)-I_{j}(\gamma) .
\end{aligned}
$$

For the proof of Theorem 2.10, we need the following two immediate consequences of the definition of N_{j}.

Lemma 2.11. If $\gamma \in \mathcal{G} \mathcal{L}_{n}$, then $N_{1}(\gamma)=N_{n-3}\left(\Theta_{2}(\gamma)\right)$.
Lemma 2.12. If $\left(k_{1}, \ldots, k_{n-3}\right) \in \mathcal{Z}_{+}^{n-3}$ and $\left(\gamma_{1}, \ldots, \gamma_{n-3}\right) \in \Lambda_{n}^{n-3}$, then

$$
N_{j}\left(\bigoplus_{i=1}^{n-3} k_{i} \gamma_{i}\right)=\sum_{j=i}^{n-3} k_{i} N_{j}\left(\gamma_{j}\right) \quad \text { for every integer } j \text { with } 1 \leq j \leq n-3
$$

For $k=2$ or 3 , the elementary intersection numbers $i\left(\gamma, \gamma_{1}^{k}\right)$ and $i\left(\gamma, \gamma_{n-3}^{k}\right)$ are related as follows:

$$
i\left(\gamma, \gamma_{n-3}^{k}\right)=i\left(\Theta_{2}(\gamma), \Theta_{2}\left(\gamma_{n-3}^{k}\right)\right)=i\left(\Theta_{2}(\gamma), \gamma_{1}^{k}\right) .
$$

From Proposition 2.1, we obtain $\left.I_{1}\left(\Theta_{2}(\gamma)\right)=I_{n-3} \gamma\right)$ and $I_{2}\left(\Theta_{2}(\gamma)\right)=I_{n-4}(\gamma)$. Now, by Lemma 2.11, the elementary intersection formulas for $i\left(\gamma, \gamma_{n-3}^{2}\right)$ and $i\left(\gamma, \gamma_{n-3}^{3}\right)$ follow immediately from those for $i\left(\gamma, \gamma_{1}^{2}\right)$ and $i\left(\gamma, \gamma_{1}^{3}\right)$.

On the other hand, $i\left(\gamma, \gamma_{1}^{3}\right)=i\left(\mathcal{T}_{1}(\gamma), \gamma_{1}^{2}\right)$ since $\gamma_{1}^{3}=\mathcal{T}_{1}^{-1}\left(\gamma_{1}^{2}\right)$. Thus, by Proposition 2.3, one derives easily the elementary intersection formula for $i\left(\gamma, \gamma_{1}^{3}\right)$ from that for $i\left(\gamma, \gamma_{1}^{2}\right)$ if

$$
N_{1}\left(\mathcal{T}_{1}(\gamma)\right)=N_{1}(\gamma)-I_{1}(\gamma)
$$

By use of the word given in (3), one proves easily the following more general results by a similar argument as that in [4, Proposition 2.8].

Lemma 2.13. Let $\gamma \in \mathcal{G} \mathcal{L}_{n}$, and let ν be an arbitrary integer. Then

$$
\begin{aligned}
N_{1}\left(\mathcal{T}_{2}^{\nu}(\gamma)\right) & =N_{1}(\gamma), & N_{1}\left(\mathcal{T}_{1}^{\nu}(\gamma)\right) & =N_{1}(\gamma)-\nu I_{1}(\gamma), \\
N_{n-3}\left(\mathcal{T}_{1}^{\nu}(\gamma)\right) & =N_{n-3}(\gamma), & N_{n-3}\left(\mathcal{T}_{2}^{\nu}(\gamma)\right) & =N_{n-3}(\gamma)-\nu I_{n-3}(\gamma) .
\end{aligned}
$$

For the proof of Theorem 2.10, it remains to prove the elementary intersection formulas for $i\left(\gamma, \gamma_{1}^{2}\right), i\left(\gamma, \gamma_{j}^{2}\right)$ and $i\left(\gamma, \gamma_{j}^{3}\right)$ for $1<j<n-3$.

First, we prove the elementary intersection formula for $i\left(\gamma, \gamma_{1}^{2}\right)$ by applying induction to n for $n \geq 5$. For the case of $n=5$, the assertion is proved in [4, Corollary 3.4]. Assume that $n>5$, and that the equation holds for $\gamma \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$.

Now, let $\gamma \in \mathcal{G} \mathcal{L}_{n}$. If $I_{n-3}(\gamma)=0$, write γ as given in (5), and let $\alpha_{\gamma} \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$ be given in (6). By the definition, $N_{1}(\gamma)=N_{1}\left(\alpha_{\gamma}\right)$. Since $i\left(\gamma_{n-3}^{1}, \beta\right)=0$ for $\beta \in$ $\mathcal{G} \mathcal{L}_{n}^{(n-1)}$, then $I_{j}(\gamma)=I_{j}\left(\alpha_{\gamma}\right)$ for $j=1,2$. The assertion follows for the case since $i\left(\gamma, \gamma_{1}^{2}\right)=i\left(\alpha_{\gamma}, \gamma_{1}^{2}\right)$.

Assume that $I_{n-3}(\gamma)>0$. Since $i\left(\gamma, \gamma_{1}^{2}\right)=i\left(\Theta_{1}(\gamma), \gamma_{1}^{2}\right)$, we may assume that $\gamma \in$ $\mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$. Moreover, by considering $\mathcal{T}_{2}^{-2}(\gamma)$, from Proposition 2.4, Proposition 2.5 and Lemma 2.13 we may assume that $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0} \cap \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$.

If γ has no essential blocks, we have $I_{1}(\gamma)=I_{2}(\gamma)=0=i\left(\gamma, \gamma_{1}^{2}\right)$. By the definition of N_{1}, we have $N_{1}(\gamma)=0$ since $I_{1}(\gamma)=0$. Now, the intersection formula for $i\left(\gamma, \gamma_{1}^{2}\right)$ holds trivially in this case.

If γ has essential blocks, then $I_{j}\left(\alpha_{\gamma}\right)=I_{j}(\gamma)$ for $j=1,2$, and $i\left(\alpha_{\gamma}, \gamma_{1}^{2}\right)=i\left(\gamma, \gamma_{1}^{2}\right)$, where α_{γ} is given in Theorem 2.7. Note that $\alpha_{\gamma} \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$ and $N_{1}(\gamma)=N_{1}\left(\alpha_{\gamma}\right)$. The proof of the intersection formula for $i\left(\gamma, \gamma_{1}^{2}\right)$ is then completed by induction hypothesis.

In the rest of this subsection, we prove the intersection formulas for $i\left(\gamma, \gamma_{j}^{2}\right)$ and $i\left(\gamma, \gamma_{j}^{3}\right)$ with $1<j<n-3$, by applying induction to $n \geq 6$. If $n=6$, then the formulas are exactly the same as given below.

Lemma 2.14. If $n \geq 6$, and if $\gamma \in \mathcal{G} \mathcal{L}_{n}$, then

$$
\begin{aligned}
i\left(\gamma, \gamma_{n-4}^{2}\right)= & \left.2\left|N_{n-4}(\gamma)\right|+\mid I_{n-5} \gamma\right)-I_{n-4}(\gamma) \mid+I_{n-5}(\gamma)-I_{n-4}(\gamma) \\
& +\left|I_{n-3}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-3}(\gamma)-I_{n-4}(\gamma) \\
i\left(\gamma, \gamma_{n-4}^{3}\right)= & 2\left|N_{n-4}(\gamma)-I_{n-4}(\gamma)\right| \\
& +\left|I_{n-5}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-5}(\gamma)-I_{n-4}(\gamma) \\
& +\left|I_{n-3}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-3}(\gamma)-I_{n-4}(\gamma)
\end{aligned}
$$

With Lemma 2.14, we first complete induction step as follows. Assume that $n>6$. From Lemma 2.14, we may assume that $1<j<n-4$. If $I_{n-3}(\gamma)=0$, then we write γ and $\alpha_{\gamma} \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$, respectively, as in (5) and (6). Since $N_{j}\left(\alpha_{\gamma}\right)=N_{j}(\gamma)$ and $I_{k}\left(\alpha_{\gamma}\right)=I_{k}(\gamma)$ for $0<j-1 \leq k \leq j<n-4$, the assertions hold for this case by induction hypothesis.

Assume that $I_{n-3}(\gamma)>0$. If γ has no essential blocks, then $I_{j}(\gamma)=0=N_{j}(\gamma)$ for $1<j<n-3$, and $i\left(\gamma, \gamma_{j}^{k}\right)=0$ for $1<j<n-4$ and for $k=2$, 3 . If γ has essential blocks, we may assume that $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0}$. Let $\alpha_{\gamma} \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$ be given in Theorem 2.7. By the induction hypothesis again, the proof is complete.

For the proof of Lemma 2.14, we need:
Lemma 2.15. If $\gamma \in \mathcal{G} \mathcal{L}_{n}^{0}$ with $I_{n-3}(\gamma)>0$, then γ has exactly

$$
\frac{\left|I_{n-3}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-3}(\gamma)-I_{n-4}(\gamma)}{2}
$$

puncture-like blocks.

Proof. Without loss of generality, we assume that $\gamma \in \mathcal{G} \mathcal{L}_{n}^{+}\left(T_{n-3}\right)$. Let \mathcal{E} denote the set of all essential blocks of γ. If γ^{\prime} is a puncture-like block of γ, then $i\left(\gamma^{\prime}, \gamma_{n-4}^{1}\right)=0$ and $2 I_{n-4}(\gamma)=\sum_{\gamma^{\prime} \in \mathcal{E}} i\left(\gamma^{\prime}, \gamma_{n-4}^{1}\right)_{\partial \mathcal{D}_{n}}$.

Let $I_{n-3}(\gamma)=m$, and let $p \geq 0$ be the number of puncture-like blocks of γ. Then γ has exactly $e=m-p$ essential blocks of the first kind. If $p=0$, then $2 I_{n-4}(\gamma) \geq$ $\sum_{\gamma^{\prime} \in \mathcal{E}} i\left(\gamma^{\prime}, \gamma_{n-4}^{1}\right)_{\partial \mathcal{D}_{n}} \geq 2 m=2 I_{n-3}(\gamma)$, and $\left|I_{n-3}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-3}(\gamma)-I_{n-4}(\gamma)=$ $0=2 p$.

Now, assume that $p>0$. It follows from Lemma 2.9 that

$$
i\left(\gamma^{\prime}, \gamma_{n-4}^{1}\right)_{\partial \mathcal{D}_{n}}= \begin{cases}2 & \text { if } \gamma^{\prime} \text { is an essential block of } \gamma \text { of the first kind } \\ 0 & \text { if } \gamma^{\prime} \text { is an essential block of } \gamma \text { of the second kind. }\end{cases}
$$

If $p=m$, then γ has no essential blocks of the first kind, and

$$
2 I_{n-4}(\gamma)=\sum_{\gamma^{\prime} \in \mathcal{E}} i\left(\gamma^{\prime}, \gamma_{n-4}^{1}\right)_{\partial \mathcal{D}_{n}}=0
$$

Thus $\left|I_{n-3}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-3}(\gamma)-I_{n-4}(\gamma)=2 m=2 p$.
If $0<p<m$, let $\gamma_{1}, \ldots, \gamma_{e}$ be the essential blocks of γ of the first kind. Then $2 I_{n-4}(\gamma)=\sum_{j=1}^{e} i\left(\gamma_{j}, \gamma_{n-4}^{1}\right)_{\partial \mathcal{D}_{n}}=2 e=2 I_{n-3}(\gamma)-2 p$, and

$$
2 p=2\left\{I_{n-3}(\gamma)-I_{n-4}(\gamma)\right\}=\left|I_{n-3}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-3}(\gamma)-I_{n-4}(\gamma)
$$

Proof of Lemma 2.14. It suffices to prove the lemma for $\gamma \in \mathcal{G}_{n}$. We shall prove the lemma for $\gamma \in \mathcal{G}_{n}^{+}\left(T_{n-3}\right)$. By a similar argument, one proves the lemma for $\gamma \in$ $\mathcal{G}_{n}^{-}\left(T_{n-3}\right)$.

If $\gamma \in \mathcal{G}_{n}^{+}\left(T_{n-3}\right)$, then $N_{n-4}\left(\mathcal{T}^{-2}(\gamma)\right)=N_{n-4}(\gamma)$ by the definition of N_{n-4}. Note that $i\left(\gamma, \gamma_{n-4}^{k}\right)=i\left(\mathcal{T}_{2}^{-2}(\gamma), \gamma_{n-4}^{k}\right)$ for $k=2$, 3, and that $2 I_{j}(\gamma)=2 I_{j}\left(\mathcal{T}_{2}^{-2}(\gamma)\right)$ for $n-5 \leq j \leq n-3$. By Proposition 2.5, we may assume that $\gamma \in \mathcal{G}_{n}^{0} \cap \mathcal{G}_{n}^{+}\left(T_{n-3}\right)$.

If $I_{n-3}(\gamma)=0$, then $\gamma \in \mathcal{G}_{n}^{(n-1)}$, and

$$
\left|I_{n-3}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-3}(\gamma)-I_{n-4}(\gamma)=0
$$

By letting $\nu=n-1$, we have

$$
\begin{aligned}
i\left(\gamma, \gamma_{n-4}^{2}\right)= & 2\left|N_{\nu-3}(\gamma)\right|+\left|I_{\nu-4}(\gamma)-I_{\nu-3}(\gamma)\right|+I_{\nu-4}(\gamma)-I_{\nu-3}(\gamma) \\
= & 2\left|N_{n-4}(\gamma)\right|+\left|I_{n-5}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-5}(\gamma)-I_{n-4}(\gamma) \\
& +\left|I_{n-3}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-3}(\gamma)-I_{n-4}(\gamma)
\end{aligned}
$$

Similarly, we obtain the intersection formula for $i\left(\gamma, \gamma_{n-4}^{3}\right)$.
If $I_{n-3}(\gamma)=m>0$, then γ is represented by a cyclic reduced Γ_{n}-word W as given in (3). Note that $p_{j}>0$ and $q_{j}>0$ for $1 \leq j \leq m$. For every j, let γ_{j} be the block of γ represented by $\vec{T}_{n-3}^{-1} W_{j} T_{n-3}$, and let $\beta\left(\gamma_{j}\right)$ be the admissible subarc of γ represented by

$$
\vec{T}_{n-3} T_{n-3}^{p_{j}-1} S_{2}^{\varepsilon_{j}} T_{n-3}^{-q_{j}} W_{j} T_{n-3}
$$

Note that every γ_{j} is a subarc of $\beta\left(\gamma_{j}\right)$, and that $i\left(\beta\left(\gamma_{j}\right), \gamma_{n-4}^{k}\right)=2$ for $k=2$ or 3 whenever γ_{j} is puncture-like. Let \mathcal{E} be the set of all essential blocks of γ. From Lemma 2.15, we have, for $k=2$ or 3 ,

$$
i\left(\gamma, \gamma_{n-4}^{k}\right)=\left|I_{n-3}(\gamma)-I_{n-4}(\gamma)\right|+I_{n-3}(\gamma)-I_{n-4}(\gamma)+\sum_{\gamma_{j} \in \mathcal{E}} i\left(\beta\left(\gamma_{j}\right), \gamma_{n-4}^{k}\right)_{\partial \mathcal{D}_{n}} .
$$

If γ has no essential blocks, then the lemma holds trivially for γ since $I_{n-3}(\gamma)=$ $I_{n-4}(\gamma)=N_{n-4}(\gamma)=0$.

Now, assume that \mathcal{E} is not empty. Note that every essential block of γ is of the first kind since $\gamma \in \mathcal{G}_{n}$. Let \mathcal{L} be the union of all strands of γ which connect the T_{n-3}^{-1}-side to the X-side with $X \in\left\{T_{n-3}, S_{2}, S_{2}^{-1}\right\}$.

For $k=2$ or 3 , each γ_{n-4}^{k} has a unique strand l_{k} meeting the T_{n-3}^{-1}-side. Let Q_{k}^{\prime} be the endpoint of l_{k} lying on the T_{n-3}^{-1}-side, and let Q_{k} be the point on the T_{n-3}-side which is identified with Q_{k}^{\prime} by the transformation T_{n-3}^{-1}.

Since $i\left(\gamma_{n-4}^{k}, \gamma_{n-3}^{1}\right)=0$, we may assume that l_{k} is disjoint from \mathcal{L}. This implies that $Q_{k}^{\prime} \prec Q^{\prime}$ whenever Q^{\prime} is an endpoint of some strand in \mathcal{L} meeting the T_{n-3}^{-1}-side, and that $Q_{k} \prec Q$ whenever Q is the endpoint of some strand of γ lying on the T_{n-3}-side. Thus, we have

$$
\sum_{\gamma_{j} \in \mathcal{E}} i\left(\beta\left(\gamma_{j}\right), \gamma_{n-4}^{k}\right)_{\partial \mathcal{D}_{n}}=\sum_{\gamma_{j} \in \mathcal{E}} i\left(\gamma_{j}, \gamma_{n-4}^{k}\right)_{\partial \mathcal{D}_{n}}=i\left(\alpha_{\gamma}, \gamma_{n-4}^{k}\right),
$$

where $\alpha_{\gamma} \in \mathcal{G} \mathcal{L}_{n}^{(n-1)}$ is given in Theorem 2.7. By letting $\nu=n-1$, we obtain

$$
\begin{aligned}
i\left(\alpha_{\gamma}, \gamma_{n-4}^{2}\right)= & 2\left|N_{\nu-3}\left(\alpha_{\gamma}\right)\right|+\left|I_{\nu-4}\left(\alpha_{\gamma}\right)-I_{\nu-3}\left(\alpha_{\gamma}\right)\right| \\
& \left.+I_{\nu-4} \alpha_{\gamma}\right)-I_{\nu-3}\left(\alpha_{\gamma}\right) \\
i\left(\alpha_{\gamma}, \gamma_{n-4}^{3}\right)= & 2\left|N_{\nu-3}\left(\alpha_{\gamma}\right)-I_{\nu-3}\left(\alpha_{\gamma}\right)\right|+\left|I_{\nu-4}\left(\alpha_{\gamma}\right)-I_{\nu-3}\left(\alpha_{\gamma}\right)\right| \\
& +I_{\nu-4}\left(\alpha_{\gamma}\right)-I_{\nu-3}\left(\alpha_{\gamma}\right)
\end{aligned}
$$

The proof of Lemma 2.14 is complete.

3. A Mapping of $\overline{\pi \mathcal{I}\left(\mathcal{G}_{n}\right)}$ into a Sphere

In this section, we construct a continuous mapping Ψ from $\overline{\pi \mathcal{I}\left(\mathcal{G}_{n}\right)}$ into $\mathbb{R}^{3(n-3)}$ whose image set is a sphere of dimension $2 n-7$. The mapping Ψ will be constructed in a similar way as that given in [4] for the case of $n=5$. We shall first define the restriction of Ψ on $\mathcal{G} \mathcal{L}_{n}$ homogeneously, and extend it to $\pi^{-1} \pi \mathcal{I}\left(\mathcal{G} \mathcal{L}_{n}\right)$. Note that $\overline{\pi \mathcal{I}\left(\mathcal{G}_{n}\right)}=\overline{\pi \mathcal{I}\left(\mathcal{G} \mathcal{L}_{n}\right)}$. By a continuity argument as in [4, §4.3], one proves that Ψ extends continuously to $\pi^{-1} \overline{\pi \mathcal{I}\left(\mathcal{G}_{n}\right)}$. Since the restriction π to $\pi^{-1} \overline{\pi \mathcal{I}\left(\mathcal{G}_{n}\right)}$ is a quotient map, the required continuous mapping Ψ is then obtained.

For the definition of Ψ on $\mathcal{G} \mathcal{L}_{n}$, we first construct a function ψ_{0} from $\mathcal{G} \mathcal{L}_{n}$ into $\mathbb{R}^{3(n-3)}$ whose values are written in terms of elementary intersection numbers. For every $\gamma \in \mathcal{G} \mathcal{L}_{n}$, we write

$$
\psi_{0}(\gamma)=\left(x_{1}^{1}(\gamma), x_{1}^{2}(\gamma), x_{1}^{3}(\gamma), \ldots, x_{n-3}^{1}(\gamma), x_{n-3}^{2}(\gamma), x_{n-3}^{3}(\gamma)\right),
$$

where $x_{j}^{k}(\gamma)=i\left(\gamma, \gamma_{j}^{k}\right) / \lambda(\gamma)$ for $1 \leq j \leq n-3$ and for $1 \leq k \leq 3$, and where $\lambda(\gamma)=\sum_{j=1}^{n-3} \sum_{k=1}^{3} i\left(\gamma, \gamma_{j}^{k}\right)$. Note that the image of ψ_{0} lies in

$$
\Pi^{\prime}=\Pi \cap\left\{\left(t_{1}, t_{2}, \ldots, t_{3(n-3)}\right) \in \mathbb{R}^{3(n-3)}: 1-2 \sum_{j=1}^{n-4}\left|t_{3 j-2}-t_{3 j+1}\right|>0\right\}
$$

where $\Pi=\left\{\left(t_{1}, t_{2}, \ldots, t_{3(n-3)}\right) \in \mathbb{R}^{3(n-3)}: \sum_{j=1}^{3(n-3)} t_{j}=1\right\}$. For later use, we define the function $f: \mathbb{R}^{3(n-3)} \longrightarrow \mathbb{R}$ by

$$
f\left(t_{1}, t_{2}, \ldots, t_{3(n-3)}\right)=1-2 \sum_{j=1}^{n-4}\left|t_{3 j-2}-t_{3 j+1}\right| .
$$

Following [4], we define the mapping $\Psi: \mathcal{G} \mathcal{L}_{n} \longrightarrow \mathbb{R}^{3(n-3)}$ by

$$
\Psi(\gamma)=\left(\xi_{1}^{1}(\gamma), \xi_{1}^{2}(\gamma), \xi_{1}^{3}(\gamma), \ldots, \xi_{n-3}^{1}(\gamma), \xi_{n-3}^{2}(\gamma), \xi_{n-3}^{3}(\gamma)\right),
$$

where for every $1 \leq j \leq n-3$

$$
\xi_{j}^{1}(\gamma)=\frac{2 I_{j}(\gamma)}{\rho(\gamma)}, \quad \xi_{j}^{2}(\gamma)=\frac{2\left|N_{j}(\gamma)\right|}{\rho(\gamma)} \quad \text { and } \quad \xi_{j}^{3}(\gamma)=\frac{2\left|N_{j}(\gamma)-I_{j}(\gamma)\right|}{\rho(\gamma)},
$$

and $\rho(\gamma)=2 \sum_{j=1}^{n-3}\left\{I_{j}(\gamma)+\left|N_{j}(\gamma)\right|+\left|N_{j}(\gamma)-I_{j}(\gamma)\right|\right\}$. It is easy to see that $\Psi(\gamma) \in \Delta_{n}=$ $\mathcal{C}^{n-3} \cap \Pi$ for every $\gamma \in \mathcal{G} \mathcal{L}_{n}$, where \mathcal{C} is the set of points $\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}_{+}^{3}$ satisfying:

$$
t_{2}+t_{3}=t_{1}, \quad t_{1}+t_{3}=t_{2}, \quad \text { or } \quad t_{1}+t_{2}=t_{3} .
$$

A similar argument to that given in $[4, \S 4.2]$ proves that Δ_{n} is homeomorphic to a sphere of dimension $2 n-7$.

We shall prove that there is a homeomorphism ψ_{1} of Π^{\prime} onto Π so that $\Psi=\psi_{1} \circ \psi_{0}$. Then we obtain:

Theorem 3.1. The function Ψ extends to $\overline{\pi \mathcal{I}\left(\mathcal{G}_{n}\right)}=\overline{\pi \mathcal{I}\left(\mathcal{G} \mathcal{L}_{n}\right)}$ as a continuous mapping into a sphere of dimension $2 n-7$.

It remains to construct the mapping ψ_{1}. For $\gamma \in \mathcal{G} \mathcal{L}_{n}$, let

$$
\nu(\gamma)=1-\frac{4}{\lambda(\gamma)} \sum_{j=1}^{n-4}\left|I_{j}(\gamma)-I_{j+1}(\gamma)\right|=1-2 \sum_{j=1}^{n-4}\left|x_{j}^{1}(\gamma)-x_{j+1}^{1}(\gamma)\right| .
$$

A direct computation shows that $\rho(\gamma)=\lambda(\gamma) \nu(\gamma)$, and the followings:

$$
\begin{aligned}
\xi_{j}^{1}(\gamma) & =\frac{x_{j}^{1}(\gamma)}{\nu(\gamma)} \quad \text { for } 1 \leq j \leq n-3, \\
\xi_{1}^{2}(\gamma) & =\frac{x_{1}^{2}(\gamma)}{\nu(\gamma)}-\frac{\left|x_{2}^{1}(\gamma)-x_{1}^{1}(\gamma)\right|+\left\{x_{2}^{1}(\gamma)-x_{1}^{1}(\gamma)\right\}}{2 \nu(\gamma)}, \\
\xi_{1}^{3}(\gamma) & =\frac{x_{1}^{3}(\gamma)}{\nu(\gamma)}-\frac{\left|x_{2}^{1}(\gamma)-x_{1}^{1}(\gamma)\right|+\left\{x_{2}^{1}(\gamma)-x_{1}^{1}(\gamma)\right\}}{2 \nu(\gamma)}, \\
\xi_{n-3}^{2}(\gamma) & =\frac{x_{n-3}^{2}(\gamma)}{\nu(\gamma)}-\frac{\left|x_{n-4}^{1}(\gamma)-x_{n-3}^{1}(\gamma)\right|+\left\{x_{n-4}^{1}(\gamma)-x_{n-4}^{1}(\gamma)\right\}}{2 \nu(\gamma)}, \\
\xi_{n-3}^{3}(\gamma) & =\frac{x_{n-3}^{3}(\gamma)}{\nu(\gamma)}-\frac{\left|x_{n-4}^{1}(\gamma)-x_{n-3}^{1}(\gamma)\right|+\left\{x_{n-4}^{1}(\gamma)-x_{n-4}^{1}(\gamma)\right\}}{2 \nu(\gamma)},
\end{aligned}
$$

and for $1<j<n-3$

$$
\begin{aligned}
\xi_{j}^{2}(\gamma)= & \frac{x_{j}^{2}(\gamma)}{\nu(\gamma)}-\frac{\left|x_{j-1}^{1}(\gamma)-x_{j}^{1}(\gamma)\right|+\left\{x_{j-1}^{1}(\gamma)-x_{j}^{1}(\gamma)\right\}}{2 \nu(\gamma)} \\
& -\frac{\left.\left|x_{j+1}^{1}(\gamma)-x_{j}^{1}(\gamma)\right|+x_{j+1}^{1}(\gamma)-x_{j}^{1}(\gamma)\right\}}{2 \nu(\gamma)}, \\
\xi_{j}^{3}(\gamma)= & \frac{x_{j}^{3}(\gamma)}{\nu(\gamma)}-\frac{\left|x_{j-1}^{1}(\gamma)-x_{j}^{1}(\gamma)\right|+\left\{x_{j-1}^{1}(\gamma)-x_{j}^{1}(\gamma)\right\}}{2 \nu(\gamma)} \\
& -\frac{\left.\left|x_{j+1}^{1}(\gamma)-x_{j}^{1}(\gamma)\right|+x_{j+1}^{1}(\gamma)-x_{j}^{1}(\gamma)\right\}}{2 \nu(\gamma)} .
\end{aligned}
$$

The above equations motivate the function $\psi_{1}: \Pi^{\prime} \longrightarrow \mathbb{R}^{3(n-3)}$ defined by
$\psi_{1}\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)=\left(t_{1}, t_{2}, \ldots, t_{3(n-3)}\right)$, where

$$
\begin{aligned}
t_{j} & =\frac{r_{j}}{f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)} \quad \text { for } j=3 k-2 \text { with } 1 \leq k \leq n-3 \\
t_{j} & =\frac{r_{j}}{f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)}-\frac{\left|r_{4}-r_{1}\right|+\left(r_{4}-r_{1}\right)}{2 f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)} \quad \text { for } j=2,3 \\
t_{j} & =\frac{r_{j}}{f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)}-\frac{\left|r_{3 n-14}-r_{3 n-11}\right|+\left(r_{3 n-14}-r_{3 n-11}\right)}{2 f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)}
\end{aligned}
$$

for $j=3 n-10$ or $3(n-3)$, and

$$
\begin{aligned}
t_{3 k-1}= & \frac{r_{3 k-1}}{f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)}-\frac{\left|r_{3 k-5}-r_{3 k-2}\right|+\left(r_{3 k-5}-r_{3 k-2}\right)}{2 f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)} \\
& -\frac{\left|r_{3 k+1}-r_{3 k-2}\right|+\left(r_{3 k+1}-r_{3 k-2}\right)}{2 f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)} \\
t_{3 k}= & \frac{r_{3 k}}{f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)}-\frac{\left|r_{3 k-5}-r_{3 k-2}\right|+\left(r_{3 k-5}-r_{3 k-2}\right)}{2 f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)} \\
& -\frac{\left|r_{3 k+1}-r_{3 k-2}\right|+\left(r_{3 k+1}-r_{3 k-2}\right)}{2 f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)} \quad \text { for } 1<k<n-3
\end{aligned}
$$

A direct computation proves that ψ_{1} maps Π^{\prime} into Π by showing that

$$
\sum_{j=1}^{3(n-3)} t_{j}=1 \quad \text { and } \quad 1+2 \sum_{j=1}^{n-4}\left|t_{3 j-2}-t_{3 j+1}\right|=\frac{1}{f\left(r_{1}, r_{2}, \ldots, r_{3(n-3)}\right)}
$$

From the definition of ψ_{1}, one proves easily that ψ_{1} is indeed a homeomorphism of Π^{\prime} onto Π.

Acknowledgement. The author would like to thank Professor L. Keen for her many informative comments and also the referee for reading the paper carefully.

References

[1] J. Birman and C. Series: Algebraic linearity for an automorphism of a surface group, J. Pure Appl. Algebra 52 (1988), 227-275.
[2] J. Birman and C. Series: Dehn's algorithm revisited, with applications to simple curves on surfaces, in Combinatorial Group Theory and Topology, (S. Gersten and J. Stallings, eds.), Ann. of Math. Stud. 111, Princeton, 1987. 451-478.
[3] Y. Chiang: Geometric Intersection Numbers on a Four-Punctured Sphere, Conform. Geom. Dyn. 1 (1997), 87-103.
[4] Y. Chiang: Geometric Intersection Numbers on a Five-Punctured Sphere, Ann. Acad. Sci. Fenn. Math. 26 (2001), 73-124.
[5] A. Fathi, F. Laudenbach and V. Poénaru: Travaux de Thurston sur les surfaces, Astérisque, 66-67, 1979.
[6] J. Harer: The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986), 157-176.
[7] W.J. Harvey: Boundary structure of the modular group, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (I. Kra and B. Maskit, eds.), Ann. Math. Stud. 97, Princeton, 1981.
[8] N.V. Ivanov: Complexes of curves and Teichmüller spaces, Math. Notes 49 (1991), 479-484.
[9] N.V. Ivanov: Automorphisms of complexes of curves and Teichmüller spaces, Internat. Math. Res. Notices 14 (1997), 651-666.
[10] L. Keen, J. Parker and C. Series: Combinatorics of simple closed curves on the twice punctured torus, Israel J. Math. 112 (1999), 29-60.
[11] B. Maskit: Kleinian Groups, Springer-Verlag, New York, 1987.
[12] H.A. Masur and Y.N. Minsky: Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999), 103-149.
[13] H.A. Masur and Y.N. Minsky: Geometry of the complex of curves II: Hierarchical structure, Geom. Funct. Anal. 10 (2000), 902-974.
[14] J. Nielsen: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189-358.
[15] W.P. Thurston: On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988), 417-431.

Department of Applied Mathematics National Sun Yat-Sen University Kaohsiung, Taiwan 80424, R.O.C e-mail: chiangyy @ibm7.math.nsysu.edu.tw

[^0]: The work was partially supported by a grant from the National Science Council of the Republic of China.

